生态学报  2015, Vol. 35 Issue (7): 2388-2398

文章信息

赵信国, 刘广绪
ZHAO Xinguo, LIU Guangxu
海洋酸化对海洋无脊椎动物的影响研究进展
Advances in the effects of ocean acidification on marine invertebrates
生态学报, 2015, 35(7): 2388-2398
Acta Ecologica Sinica, 2015, 35(7): 2388-2398
http://dx.doi.org/10.5846/stxb201305311257

文章历史

收稿日期:2013-05-31
网络出版日期:2014-07-22
海洋酸化对海洋无脊椎动物的影响研究进展
赵信国, 刘广绪     
浙江大学动物科学学院, 杭州 310058
摘要:人源二氧化碳(CO2)的大量排放,导致空气中CO2浓度越来越高,其中大约1/4至1/3被海洋吸收。过多CO2在海水中的溶解,除引起海水pH值降低外,还导致海水中碳酸盐平衡体系的变化,即"海洋酸化"现象。很多海洋无脊椎动物不但在海洋生态系统中发挥重要作用,还是重要的水产养殖种,因此具有重要的生态与经济价值。由于海洋无脊椎动物的生活史在海水中完成,因此海洋环境的变化极易对其造成影响。大量研究已证实海洋酸化能对多种海洋无脊椎动物的受精、发育、生物钙化、基因表达等生命活动产生显著影响。综述了近年来海洋酸化对海洋无脊椎动物影响研究的相关报道,归纳了其对海洋无脊椎动物不同生命活动的影响,分析了其生态学效应,探讨了现有研究在方法创新、内容拓展以及机理分析等方面存在的局限与不足,并展望了海洋酸化对海洋无脊椎动物影响研究的发展方向。
关键词海洋酸化    海洋无脊椎动物    生殖    早期发育    生物钙化    代谢    基因表达    
Advances in the effects of ocean acidification on marine invertebrates
ZHAO Xinguo, LIU Guangxu     
College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
Abstract:Since the industrial revolution in the 18th century to date, carbon dioxide (CO2) released into the atmosphere as a result of the burning of fossil fuels has elevated the atmospheric CO2 concentration from approximately 280 ×10-6 to 394×10-6. About a quarter or one third of the anthropogenic CO2 (several billion tons per year) has been absorbed by the ocean and subsequently lowers pH of seawater, which has been firstly termed as "ocean acidification" in 2003. Oceanic uptake of atmospheric CO2 not only acidifies the seawater, but also lowers the carbonate concentration and then causes a decrease in the saturation state (Ω) of calcium carbonate. The saturation states of calcite, aragonite, and high-magnesium calcite are critical to the formation of supporting skeletal structures or shells in many marine invertebrates. Therefore, theoretically the CO2-driven ocean acidification will affect all marine invertebrate species through altering the chemistry property of the habitat that they live in and subsequently poses a great threaten to marine invertebrates. Marine invertebrates are one of the important components in marine ecosystem which play critical roles in both material and energy flow. Moreover, many marine invertebrates such as edible mollusks, crustaceans, and echinoderms are traditional aquaculture species which are economical significant. In this circumstance, knowledge about the impacts of ocean acidification on marine invertebrates will definitely contribute to a comprehensive understanding of the mechanism underlying the ocean acidification effects, the precise prediction of the damage, and the aquaculture strategy designing to handle with ocean acidification in near future. Though ocean acidification has only been studied for approximately ten years, a great deal of researches have demonstrated that ocean acidification generally addressed significant negative effects on gametes traits (such as sperm swimming velocity and fertility), fertilization success, early stage embryonic development, biological calcification, and gene expression of a wide variety of marine invertebrates, including coelenterates, mollusks, nematodes, echinoderms, annelids, and arthropods. In addition, previous studies have showed that different marine invertebrates and marine invertebrates at various life stages exhibited differences in their responses to ocean acidification. Though the influences of ocean acidification on marine organisms have been a study hotspot for marine ecologists and marine biologists for about a decade and generally it is believed that the negative impacts of ocean acidification on marine invertebrates are due to the reduction of calcium carbonate saturation state, the alternation of pH, and the subsequent responses of bio-reaction pathways. However, the mechanism underneath these reported negative impacts of ocean acidification on marine invertebrates were not fully understood. Moreover, among the great number of marine invertebrate species only a few organisms such as corals, sea urchins, and blue mussels, have been well investigated. Furthermore, due to the fact that most studies are conducted in laboratory, whether they can reveal the true scene in natural environment is debatable. In this article, results of previous researches about the influences of CO2-driven ocean acidification on the gametes, fertilization, embryonic development, calcification, metabolism, and gene expression of various marine invertebrates were summarized. The potential impacts of ocean acidification on marine ecosystem were also discussed. The authors suggest that to precisely reflect the future scenario studies on the interaction between ocean acidification and marine invertebrates should be carried out in a wider range of species and take the complexity of marine ecosystem and environment into account.
Key words: ocean acidification    marine invertebrates    reproduction    early-stage development    biological calcification    metabolism    gene expression    

自18世纪工业革命以来,由于燃烧化石燃料等人类活动的影响,大气CO2浓度不断增长,已经从工业革命前的280×10-6(标准大气压比,下同),增长至2013年的394×10-6,增长了约40%,并仍将以每年0.5%的速率继续增长[1]。人类活动排放的CO2约有1/4至1/3被海洋吸收,这极大缓解了大气CO2浓度增长的趋势,却造成了海水酸度的增大和碳酸盐平衡体系的变化[2, 3, 4]。Caldeira等2003年第一次在著名科学杂志《Nature》阐述了这种现象,并将其命名为“海洋酸化”[3]。与工业革命前相比,当前表层海水的pH值已经降低了0.1个单位,如果继续以当前速率排放CO2,到21世纪末表层海水的pH值就会降低0.3—0.4个单位,而到2300年将降低0.7—0.8个单位[3, 5]。海洋酸化所导致的海水化学环境的变化势必会对海洋生物与海洋生态系统产生深远的影响。鉴于此,2009年8月13日,在联合国教科文组织倡导下,来自全球26个国家的155位顶尖海洋研究人员齐聚于摩纳哥,签署了《摩纳哥宣言》(Monaco Declaration),对海洋酸化严重影响全球海洋生态系统表达了深度关切[6]

海洋无脊椎动物占海洋动物的绝大部分,是其中门类最为繁多的一类,具有极大的生态与经济价值[7]。例如,珊瑚不仅可以作为旅游资源供人类欣赏,其形状复杂的骨骼也是其他海洋生物生活的基础和依存物,在珊瑚礁生态系统的形成和维持中发挥着不可替代的作用;牡蛎、贻贝、扇贝、鲍鱼、海蟹、对虾等传统养殖种类,是人类重要的动物性蛋白质来源之一;有壳翼足目动物和有孔虫处在食物链的底端,对海洋生态系统的稳定起着重要作用。由于海洋无脊椎生物终生生活在海水中,海洋酸化导致的海水化学环境的改变将会对其配子发生、受精、发育、生物钙化等生命过程产生影响(表 1)。因此开展海洋酸化对海洋无脊椎动物的影响研究具有重要意义,不仅可以指导海洋渔业生产,也可以评估海洋生态安全。本文综述了相关研究进展,探讨了目前研究中存在的不足,提出了相应改进方法,并对未来的研究方向进行了展望。

表1 海洋酸化对海洋无脊椎动物配子、受精、早期发育、生物钙化、代谢的影响 Table 1 Effects of CO2-driven ocean acidification on gametes,fertilization,early-stage development,biological calcification and metabolism of marine invertebrates
分类
Taxon
物种
Species
参数
Parameters
研究对象
Objectives
影响
Effects
文献
References
腔肠动物指形鹿角珊瑚(Acropora digitifera)pH <7.7精子精子尾部摆动能力减弱[8]
CoelenteratapH 8.2—7.2精子精子运动能力减弱[9]
pH 8.0—7.3幼虫耗氧量减少、代谢减弱[10]
软体动物太平洋牡蛎(Crassostrea gigas)pH 7.8精子无显著影响[11]
MolluscapH 7.7—7.1成体代谢途径改变[12]
悉尼岩石牡蛎(Saccostrea glomerata)pCO2 375—
1000×10-6
精子;幼虫受精率降低;致畸;致死;生长减缓[13]
马氏珠母贝(Pinctada martensii)pH 8.1—7.4精子;幼虫致畸;致死;生长发育减缓[14]
P. fucata*pH 7.7—7.4成体滤食减少;呼吸减弱;排泄减少[15]
加州贻贝(Mytilus Californianus)pCO2 380—
970×10-6
幼虫致死;致畸[16]
紫贻贝(M. edulis)pH 7.8—7.5幼虫孵化率降低;附着率降低;钙化率降低[17]
地中海贻贝(M. galloprovincialis)pH 8.2—7.4幼虫壳体畸形;生长减缓[18]
pH 7.3幼虫;成体生长发育减缓;代谢减弱[19]
盖勒贻贝(M. trossulus)pCO2
>1200×10-6
成体足丝附着能力减弱[20]
翡翠贻贝(Perna viridis)pH 7.7—7.4成体滤食减少;呼吸减弱;排泄减少[15]
栉孔扇贝(Chlamys farreri)pH 8.1—7.0成体钙化率减低;呼吸减弱[21]
华贵栉孔扇贝(C. nobilis)pH 7.7—7.4成体滤食减少;呼吸减弱;排泄减少[15]
海扇贝(Placopecten magellanicus)pH 7.0—9.0精子;卵细胞多精受精现象增多[22]
沟纹蛤仔(Ruditapes decussatus)pH 8.0—7.5幼虫致死[23]
玉黍螺(Littorina littorea)pH 8.0—7.7幼虫生物钙化减弱;代谢减弱[24]
节肢动物刺尾纺锤水蚤(Acartia spinicauda)pH 7.83—6.89成体卵母细胞减少;线粒体受损[25]
Arthropoda中华哲水蚤(Calanus sinicus)pH 7.83—6.89成体卵母细胞减少;线粒体受损[25]
斯式纺锤水蚤(A. steueri)pH 7.4—6.8幼虫;成体孵化率降低;致死[26, 27]
红纺锤水蚤(A. erythraea)pH 7.4—6.8幼虫;成体孵化率降低;致死[26, 27]
华美盘管虫(Hydroides elegans)pH 7.9—7.4幼虫生物钙化破坏;晶体结构改变[28]
蓝蟹(Callinectes sapidus)pCO2 400—
2900×10-6
幼虫钙化率提高[29]
脆壳蟹(Petrolisthes cinctipes)pH 7.6幼虫无显著影响[30]
堪察加拟石蟹
(Paralithodes camtschaticus)
pH 8.0—7.5幼虫生长发育减缓;致死[31]
拜氏楚蟹(Chionoecetes bairdi)pH 8.0—7.5幼虫生长发育减缓;致死;钙化率降低[31]
东方巨对虾(Penaeus plebejus)pCO2 400—
2900×10-6
幼虫钙化率提高[29]
棘皮动物紫海胆(Heliocidaris erythrogramma)pH 7.7精子精子运动能力减弱;受精率降低[32]
Echinodermata梅式长海胆(Echinometra mathaei)pH 7.8—6.8精子受精率降低[27, 33]
马粪海胆(Hemicentrotus pulcherrimus)pH 7.8—6.8卵细胞;幼虫致畸;生长发育减缓[27, 33]
紫球海胆(Strongylocentrotus purpuratus)pH 7.7幼虫生长发育减缓;代谢增强[34]
红海胆(S. franciscanus)pH 8.0—7.5精子受精率降低;多精受精现象增多[35]
海蛇尾(Amphiura filiformis)pH 8.0—6.8幼虫代谢增强;钙化率提高[36]
  *表中Pinctada martensiiPinctada fucata是同一个物种;中文名为马氏珠母贝,也可称为合浦珠母贝
1 海洋酸化对生殖的影响

不同于体内受精的生物,大多数海洋无脊椎动物(如:海洋双壳贝类)直接将配子排放到海水中,并在海水中完成受精过程。因此,配子和受精过程均易受到海水环境扰动的威胁。

1.1 海洋酸化对配子的影响

精子的游动速率和能游动精子的比例是受精成功的关键因素[37]。另外,卵细胞的状态和精卵比也对受精有重要影响[37, 38]。因此,海洋无脊椎动物配子对海洋酸化的响应成为研究的一个重要方面。2008年Havenhand等用pH值7.7的CO2酸化海水处理紫海胆(H. erythrogramma)的精子,发现精子的游动速率和能游动精子的百分比均显著降低[32];Morita等对指形鹿角珊瑚(A. digitifera)进行研究,发现当海水pH值低于7.7时,精子尾部的摆动能力被严重削弱[8],Nakamura等在此基础上进一步研究发现海水中CO2浓度与精子尾部摆动能力的下降之间存在着正相关性[9]。虽然众多研究表明,海洋酸化会对海洋无脊椎动物的精子产生不利影响,但是不同物种的精子对海洋酸化的耐受力也有所不同。例如,Havenhand等对太平洋牡蛎(C. gigas)的精子研究,发现精子游动速率和能游动精子的比例并未有显著变化[11]

相较于精子,海洋酸化对卵细胞的影响则少有报道。仅见张达娟等报道中华哲水蚤(C. sinicus)和刺尾纺锤水蚤(A. spinicauda)卵母细胞的电子密度随海洋酸化的加剧而降低,同时受损线粒体数目增加,球形颗粒内缩或瓦解,导致卵排出后球形颗粒不能正常释放[25]

海洋酸化对配子的影响研究,目前仍以精子为主要对象,且仅见于个别物种,因此研究的广度有待进一步拓展。

1.2 海洋酸化对受精的影响

海洋酸化对海洋无脊椎动物配子的影响,可能会引起受精难度的增加,进而导致受精率的降低。例如,Kurihara与Shirayama采用HCl酸化和CO2酸化的方式处理梅式长海胆(E. mathaei)和马粪海胆(H. pulcherrimus)的精子,发现受精率显著降低,相比而言CO2酸化对受精率的影响更大,这可能与CO2不仅导致海水酸度的增加,还引起海水碳酸盐平衡体系的变化,而HCl仅导致海水酸度增加有关[33];Havenhand等用pH值为7.7的酸化海水处理紫海胆(H. erythrogramma)精子后,用其与正常卵子做受精实验,发现受精率比对照组低24%[32];Parker等对悉尼岩石牡蛎(S. glomerata)的研究发现,受精率随着海洋酸化加剧而显著下降[13]

除了对受精率的影响,海洋酸化还表现出对多精受精现象的诱导作用。Desrosiers 等发现当海水pH值小于7.5时,海扇贝(P. magellanicus)多精受精现象显著增加[22]。Reuter等在红海胆(S. franciscanus)中的研究也表明海洋酸化能显著诱导多精受精现象的发生[35]

但是,目前的研究多为对受精率的简单考察,普遍存在忽视受精动力学原则的问题(例如:采用来源于多个亲本的混合配子而非单对受精实验分析,忽略配子性状差异对受精率的影响,采用单一且过高而非梯度设计的精卵比例进行受精实验,不量化受精率等)[35, 37, 39]。因此,许多研究结论值得推敲。例如,Byrne等报道称海洋酸化对四种海胆(H. erythrogramma,H. tuberculata,Tripneustes gratilla,Centrostephanus rodgersii)、海星(Patiriella regularis)及鲍鱼(Haliotis coccoradiata)的受精率没有显著影响[40],但是其实验设计明显忽略了配子性状差异对受精的影响,且采用了过高的精卵比例(>100 ∶ 1)[38],另外没有按受精动力学原则要求量化受精率,因此其结论有待商榷。例如,在卵子未受影响的前提下,精卵比例过高(>100 ∶ 1),即使海洋酸化使90%的精子丧失受精能力,仍有10倍于卵子数目的精子能使几乎全部卵子受精,从而可能掩盖海洋酸化对受精产生影响的事实。

2 海洋酸化对早期发育及生物钙化的影响 2.1 海洋酸化对早期发育的影响

发育是一个有机体从其生命开始到成熟的变化,也是生物有机体的自我构建和自我组织的过程。与成体相比,海洋无脊椎动物的早期胚胎和幼虫对环境扰动更加敏感,因此其发育过程更容易受到海洋酸化的威胁。

研究表明海洋酸化会导致许多海洋无脊椎动物的早期胚胎和幼虫发育延迟,并产生致畸、致死效应。例如,Kurihara等发现海洋酸化引起马粪海胆(H. pulcherrimus)幼虫生长发育速度减慢,畸形率增加[33];Michaelidis和Kurihara则分别报道了地中海贻贝(M. galloprovincialis)幼虫受海洋酸化的影响,出现生长发育放缓的现象[18, 19];Kurihara等报道了海洋酸化对太平洋牡蛎(C. gigas)幼虫的致畸和致死效应[41];Parker等在悉尼岩石牡蛎(S. glomerata)中的研究表明随着海洋酸化程度的加剧,悉尼岩石牡蛎(S. glomerata)D形幼虫存活率明显降低,畸形率显著增高,同时生长发育迟滞[13];Stumpp等对紫球海胆(S. purpuratus)的研究表明海洋酸化同样会使其幼虫生长发育速度减慢[34];Gaylord和Range则分别报道了海洋酸化对加州贻贝(M. Californianus)及沟纹蛤仔(R. decussatus)的致畸和致死效应[16, 23];刘文广等对马氏珠母贝(P. martensii)幼虫的研究表明海洋酸化导致其发育受阻,存活率降低[14];Long等则报道了海洋酸化对堪察加拟石蟹(P. camtschaticus)和拜氏楚蟹(C. bairdi)生长发育的阻碍作用[31]

此外,海洋酸化对孵化率和附着率也表现出不利影响。例如,Kurihara等发现海洋酸化导致斯式纺锤水蚤(A. steueri)和红纺锤水蚤(A. erythraea)的幼虫孵化率降低[26];Mayor等发现海洋酸化使中华哲水蚤(Calanus finmarchicus)的孵化率降低[42];Gazeau等研究发现海洋酸化引起紫贻贝(M. edulis)孵化率和附着率的降低[17]

值得一提的是大量研究结果表明不同物种甚至同一物种在不同生活史阶段对海洋酸化的响应不尽相同。例如,何盛毅等[43]发现虽然pH值为7.70的酸化海水对马氏珠母贝(P. martensii)自养阶段的胚胎发育没有明显不利影响,但对其异养阶段的幼虫发育却有明显致畸作用,原因可能是早期胚胎完全依靠卵黄提供物质和能量,而幼虫开始进行呼吸、摄食等活动,使得其对环境的依赖性更高,从而表现出对海洋酸化更高的敏感性。

2.2 海洋酸化对生物钙化的影响

过多CO2在海水中的溶解不仅导致海水pH值的降低,还使碳酸钙饱和度(Ω)下降[2, 44]。而海洋无脊椎动物生物钙化的速度与碳酸钙饱和度水平密切相关,碳酸钙饱和度越大,对碳酸钙沉积即生物钙化越有利[4, 45, 46]

受海洋酸化的影响,地中海贻贝(M. galloprovincialis)与马氏珠母贝(P. martensii)幼虫的壳体生长缓慢并出现畸形[14, 18, 43];Fine等发现海洋酸化引起多种造礁珊瑚(Oculina patagonica等)碳酸钙骨架的消融,以水螅体的形式生存[47];Chan等研究华美盘管虫(H. elegans)的生物钙化作用发现,受海洋酸化影响,其形成的石灰质栖管的晶体结构杂乱无序,硬度和弹性明显改变,且易溶解文石的比例显著增加[28]。由此可见,海洋酸化不仅会显著阻碍海洋无脊椎动物壳体和碳酸钙骨架的生长,还会严重影响壳体和碳酸钙骨架的内部晶体结构,甚至引起壳体和碳酸钙骨架的消融。

海洋酸化对生物钙化作用的影响也存在物种间的差异,这可能与不同物种的壳体或碳酸钙骨架的形成机制、调节钙离子的能力及文石与方解石的比例不同有关[4]。例如,Wood等以海蛇尾(A. filiformis)为研究对象,发现其能通过增加代谢强度和提高钙化率来补偿海洋酸化对其壳体生长造成的不利影响[36];Ries等发现蓝蟹(C. sapidus)和东方巨对虾(P. plebejus)在海洋酸化的影响下,理应降低的钙化率反而显著升高[29]。这很可能是由于其壳体形成机制与具有碳酸钙质骨架及壳体的其它海洋无脊椎动物不同造成的,因为甲壳纲无脊椎动物的壳体一般是由几丁质构成。

3 海洋酸化对代谢的影响

目前,海洋酸化对海洋无脊椎动物代谢的影响研究主要是围绕分解代谢展开,通过耗氧量的变化来揭示代谢强度的变化,至于代谢途径以及合成代谢方面尚缺乏足够的研究。例如,Wood等对海蛇尾(A. filiformis)研究发现其能通过增强代谢和提高钙化率来补偿海洋酸化对其壳体生长造成的不良影响,但是由于这种代谢的增强是以诸如肌肉组织分解等为代价的,必然会对其健康状况和生存能力造成不利影响,是一种不可持续的应激反应[36];Carter等对脆壳蟹(P. cinctipes)研究发现海洋酸化使其幼虫分解代谢的底物由以脂肪为主变为以蛋白质为主,推测这是为了维持体内pH稳定,导致能量消耗增加的结果[30]。虽然Lannig等研究发现太平洋牡蛎(C. gigas)的代谢途径在海洋酸化的影响下发生了变化[12],但其它海洋无脊椎动物在海洋酸化的影响下代谢途径变化与否尚不得知。

另外,海洋酸化条件下代谢强度的变化也存在种属差异。例如,Beniash等对美洲牡蛎(C. virginica)研究发现,海洋酸化对包括生物钙化在内的一系列生理活动产生不利影响,同时使幼贝期的标准代谢率显著增加[48];Nakamura等则发现海洋酸化使指形鹿角珊瑚(A. digitifera)耗氧量减少、代谢减弱[10];Thomsen等甚至发现海洋酸化并不会长时间抑制紫贻贝(M. edulis)的代谢[49];刘文广等对马氏珠母贝(P. fucata)、华贵栉孔扇贝(C. nobilis)和翡翠贻贝(P. viridis)研究,虽然表明海洋酸化对三者的滤食、呼吸及排泄过程均产生不利影响,但严重程度却存在着明显不同[15]。代谢强度变化的种属差异可能与维持体内酸碱平衡的能力不同有关[15]。维持体内酸碱平衡能力强的物种,在面对海洋酸化时因为维持pH值的稳定需要大量能量的供给,因此需要加强代谢,以提供能量;维持体内酸碱平衡能力弱的物种,反而因为其能力不足以补偿pH变化带来的影响,在适宜环境条件恢复前,不得不通过降低代谢强度以减少物质和能量消耗的方式来维持生存[50]

4 海洋酸化对基因表达的影响

迄今为止,海洋酸化影响海洋无脊椎动物的具体机理尚不明确[4, 51, 52, 53]。为了阐明具体的机制,科学家在基因表达水平展开了研究,并取得了一系列极具参考价值的结果(表 2)。

表2 海洋酸化对海洋无脊椎动物基因表达的影响 Table 2 Effects of CO2-driven ocean acidification on gene expression of marine invertebrates
分类
Taxon
物种
Species
方法
Methods
转录组情况
Transcriptome
验证基因
Tested genes
参考文献
References
腔肠动物
Coelenterata
鹿角杯形珊瑚
(Pocillopora damicornis)
转录组测序;荧光定
量PCR
完整转录组48个未命名基因[54]
多孔鹿角珊瑚(A. millepora)转录组测序;荧光定
量PCR
完整转录组7个未命名基因[55]
软体动物
Mollusca
马氏珠母贝(P. fucata)荧光定量PCR aspein calmodulin
nacrein she-7-f10
hsp70
[56]
紫贻贝(M. edulis)cDNA文库构建;荧光定量PCR外套膜转录组chichsnacrnka等33个基因[57]
棘皮动物
Echinodermata
马粪海胆(H. pulcherrimus)荧光定量PCR msp130sm30sm50[58]
白海胆(Lytechinus pictus)基因芯片 [59]
紫球海胆 (S. purpuratus)荧光定量PCR wnt8pmar1alx1
vegfrsm30b
msp130sm50
[60]
基因芯片完整转录组 [61]
荧光定量PCR hsp70gp96nkanbc3nhe3等26个基因[62]
基因芯片;荧光定
量PCR
cyclophilin msp130
colp3α p16 suclg1
idh3a sdhb atp5d
cox5b ndufs6
[63]

在种类繁多的海洋无脊椎动物中,海胆不但已完成了全基因组测序,且具有重要的生态学地位,因此目前的研究多以海胆为对象展开。例如,2009年,Todgham与Hofmann以紫球海胆(S. purpuratus)幼虫为对象,利用基因芯片和荧光定量PCR的方法对选定的大约1000个生命进程相关基因在海洋酸化条件下的表达情况进行了研究,发现生物矿化、应激反应、代谢及细胞凋亡相关基因的表达水平下调,表明应激、代谢、细胞凋亡等生命进程和生物钙化一样受到了海洋酸化的严重影响[63];Stumpp等同样以紫球海胆(S. purpuratus)为对象,对26个可能基因进行了荧光定量PCR检测,发现代谢相关基因表达量上调,生物钙化相关基因表达量下调,但离子调节相关基因中有的表达量上调(如Na+/K+-ATPase),有的表达量下调(如nhe3)[62];Hammond与Hofmann为了解海洋酸化对原肠胚和骨针形成的影响,利用荧光定量PCR检测了7个细胞通路相关基因的表达水平,发现紫球海胆(S. purpuratus)早期胚胎发育基因wnt8和生物矿化基因sm30b的表达量上调[60];为了探明海洋酸化对生物钙化影响的机制,Kurihara等利用荧光定量PCR技术研究发现马粪海胆(H. pulcherrimus)钙离子转运基因msp130的表达受到了抑制,基因sm30和基因sm50的表达则未见明显影响[58]

虽然上述报道在一定程度上反映了海洋酸化对海胆基因表达水平的影响,但这些研究主要针对预选基因展开,限制了新分子调节机制的发现。为克服这一缺陷,Evans等利用基因芯片方法对紫球海胆(S. purpuratus)的整个转录组进行检测,分析发现钙离子稳态、离子转运、信号转导及基因转录相关基因的表达发生了变化,推测其能以调整钙离子生物利用率、改变骨骼发生途径的方式适应海洋酸化的威胁,以维持生物钙化作用的正常进行[61]

除海胆外,一些具有重要价值的海洋无脊椎动物(如造礁珊瑚、马氏珠母贝及紫贻贝)也有少量海洋酸化影响基因表达的研究报道。例如,Hüning等利用荧光定量PCR方法检测了紫贻贝(M. edulis)外套膜的基因表达情况,为揭示海洋酸化条件下壳体形成及能量代谢的分子机制奠定了基础[57];Vidal-Dupiol等利用转录组测序技术和荧光定量PCR对鹿角杯形珊瑚(P. damicornis)整个转录组进行了研究,发现与生物钙化相关的离子转运基因及能量代谢相关基因表达水平上调[54];刘文广等将海洋酸化和水温升高相结合,研究了马氏珠母贝(P. fucata)特定基因的表达情况,此结果对预测气候变化的影响更具现实意义[56]

5 海洋酸化对海洋无脊椎动物影响的生态学效应

如前所述,海洋酸化会对多种海洋无脊椎动物的配子特性及受精、早期发育、生物钙化、基因表达等生命活动产生影响。对配子特性、受精和早期发育的不利影响将直接导致群体规模与构成的改变,而对生物钙化作用的抑制效应则会使物种适应度(fitness)降低和死亡率升高,这些影响的累积效应可能使生态系统中某些种类的竞争力增强,有些则可能失去目前所拥有的种群优势,甚至导致物种的灭绝[51]。从生态系统水平看,海洋酸化可能通过食物链,将初级效应传递到上级营养层,进而影响物种间的相互作用及生态系统的稳定性,如果食物链中的关键物种灭绝,对海洋生态系统的影响则更加严重[64, 65]

例如,Inoue等报告称海洋酸化越严重,拥有坚硬骨骼且能够制造珊瑚礁的造礁珊瑚就越少,而柔软的海鸡冠则会增加,若海洋酸化过于严重,造礁珊瑚在本世纪末就有可能消失[66] 。这说明海洋酸化导致造礁珊瑚的种群优势减弱,海鸡冠的竞争力增强,从而改变了珊瑚礁生态系统的构成;而造礁珊瑚如果在本世纪末消失,则其他生物将失去赖以生存的栖息环境,导致珊瑚礁生态系统的严重破坏。由于珊瑚礁生态系统是地球上生物多样性最高的生态系统[4, 64, 67],因此海洋酸化对珊瑚礁生态系统的危害将严重影响整个海洋生态系统的稳定。O′Donnell等研究发现海洋酸化使盖勒贻贝(M. trossulus)的足丝附着能力减弱[20]。足丝的作用是将贻贝附着在岩石、木桩等表面,抵御风浪的侵袭,固定栖息环境,以维持自己的生活方式。另外,足丝也在贻贝抵御天敌捕食的过程中发挥重要作用。可见海洋酸化将影响盖勒贻贝(M. trossulus)的生活方式(有可能使其变为底栖型)和抵御天敌捕食的能力,进而对其生存产生严重不利影响,进一步影响其天敌和在其壳体表面附着生存的海洋生物的群体规模和数量,从而改变近岸海域生态系统的构成。

不过,也有部分海洋无脊椎动物可以通过一定方式适应海洋酸化胁迫,维持其群体的稳定。例如,Pespeni等报道称在海洋酸化条件下,紫球海胆(S. purpuratus)生长状况良好并未出现不良状况,经研究发现其基因组发生了大量变异,说明其以进化的方式适应了海洋酸化所带了的环境变化[68]

6 展望

自“海洋酸化”概念提出以来,其对海洋无脊椎动物的影响便引起人们的高度关注,逐渐成为国际科学研究的重点之一[69]。通过归纳分析可见,目前海洋酸化对海洋无脊椎动物的影响研究仍然存在不足亟待改善,研究内容的广度和深度也有待进一步扩展与延伸[70, 71]。可以预见,随着研究的逐渐深入,海洋酸化对海洋无脊椎动物的影响将被越来越准确全面地了解。但仍然要注意以下几个问题:

(1)由于目前所进行的海洋酸化研究绝大部分是基于人工模拟,不能反映自然状态下海洋酸化的渐变过程以及其长期作用对海洋无脊椎动物的影响。同时也有研究表明,很多海洋无脊椎动物会通过进化的方式对海洋酸化做出适应性响应[68, 72, 73]。因此,未来要在更大的时空尺度下展开研究,并充分考虑进化和物理迁移等对实验结果的影响。

(2)对海洋酸化的响应与生存的海域有很大关系,分布近岸海域和高纬度的海洋无脊椎动物更易受到海洋酸化的威胁[4, 64]。因此有必要尽量采用原位研究的方法[74],以展现自然环境下海洋无脊椎动物对海洋酸化的响应。

(3)海洋系统是一个复杂的环境体系,光照、温度、营养状况等都能对海洋无脊椎动物生命活动产生影响,从而加剧或缓解海洋无脊椎动物对海洋酸化的响应。已有很多研究报道了海洋升温和海洋酸化对海洋无脊椎动物的耦合效应[56, 75, 76, 77, 78, 79],进一步开展海洋酸化与海水温度等其它环境因子变化对海洋无脊椎动物耦合效应的研究,将有助于更准确全面地预测海洋酸化对海洋无脊椎动物的影响。

(4)海洋酸化的影响在不同物种间存在很大差异,并随生活史的演替而呈现不同[51]。但目前的研究在实验对象选择上仍主要局限于珊瑚、海胆、贻贝、牡蛎等具有生物钙化过程的物种,且侧重于早期发育阶段的研究。因此,要客观且全面地评价海洋无脊椎动物对海洋酸化的响应,将有赖于研究在更多物种与生活史阶段的开展。同时,不同生理过程对海洋酸化的响应研究也需要加强。

(5)脱离海洋生态系统的个体水平的研究,无法真实的展现海洋酸化带来的影响。因此要加强生态系统水平的相关研究,从而全面揭示海洋酸化对海洋生物的影响。

参考文献
[1] National Oceanic and Atmospheric Administration (NOAA). Annual Data | Atmospheric CO2. [2013-11-04]. http://co2now.org/Current-CO2/CO2-Now/annual-co2. html.
[2] Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wanninkhof R, Wong C S, Wallace D W, Tilbrook B, Millero F J, Peng T H, Kozyr A, Ono T, Rios A F. The oceanic sink for anthropogenic CO2. Science, 2004, 305(5682): 367-371.
[3] Caldeira K, Wickett M E. Oceanography: anthropogenic carbon and ocean pH. Nature, 2003, 425(6956): 365-365.
[4] 汪思茹, 殷克东, 蔡卫君, 王东晓. 海洋酸化生态学研究进展. 生态学报, 2012, 32(18): 5859-5869.
[5] Orr J C, Fabry V J, Aumont O, Bopp L, Doney S C, Feely R A, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key R M, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar R G, Plattner G K, Rodgers K B, Sabine C L, Sarmiento J L, Schlitzer R, Slater R D, Totterdell I J, Weirig M F, Yamanaka Y, Yool A. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 2005, 437(7059): 681-686.
[6] UNESCO. Monaco Declaration. [2013-05-07]. http://www.ocean-acidification. net/Symposium2008/MonacoDeclaration.pdf.
[7] Branch T A, DeJoseph B M, Ray L J, Wagner C A. Impacts of ocean acidification on marine seafood. Trends in Ecology and Evolution, 2013, 28(3): 178-186.
[8] Morita M, Suwa R, Iguchi A, Nakamura M, Shimada K, Sakai K, Suzuki A. Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates. Zygote, 2010, 18(2): 103-107.
[9] Nakamura M, Morita M. Sperm motility of the scleractinian coral Acropora digitifera under preindustrial, current, and predicted ocean acidification regimes. Aquatic Biology, 2012, 15(3): 299-302.
[10] Nakamura M, Ohki S, Suzuki A, Sakai K. Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS One, 2011, 6(1): e14521.
[11] Havenhand J N, Schlegel P. Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences, 2009, 6(12): 3009-3015.
[12] Lannig G, Eilers S, Pörtner H O, Sokolova I M, Bock C. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas-changes in metabolic pathways and thermal response. Marine Drugs, 2010, 8(8): 2318-2339.
[13] Parker L M, Ross P M, O'Connor W A. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Global Change Biology, 2009, 15(9): 2123-2136.
[14] 刘文广, 林坚士. 海洋酸化对马氏珠母贝受精及早期发育的影响. 海洋科学, 2012, 36(4): 19-23.
[15] Liu W G, He M X. Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China. Chinese Journal of Oceanology and Limnology, 2012, 30(2): 206-211.
[16] Gaylord B, Hill T M, Sanford E, Lenz E A, Jacobs L A, Sato K N, Russell A D, Hettinger A. Functional impacts of ocean acidification in an ecologically critical foundation species. Journal of Experimental Biology, 2011, 214(15): 2586-2594.
[17] Gazeau F, Gattuso J P, Dawber C, Pronker A E, Peene F, Peene J, Heip C H R, Middelburg J J. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences, 2010, 7(7): 2051-2060.
[18] Kurihara H, Asai T, Kato S, Ishimatsu A. Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquatic Biology, 2009, 4(3): 225-233.
[19] Michaelidis B, Ouzounis C, Paleras A, Pörtner H O. Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Marine Ecology Progress Series, 2005, 293: 109-118.
[20] O'Donnell M J, George M N, Carrington E. Mussel byssus attachment weakened by ocean acidification. Nature Climate Change, 2013, 3(6): 587-590.
[21] 张明亮, 邹健, 方建光, 张继红, 杜美荣, 李斌, 任黎华. 海洋酸化对栉孔扇贝钙化、呼吸以及能量代谢的影响. 渔业科学进展, 2011, 32(4): 48-54.
[22] Desrosiers R R, Désilets J, Dubé F. Early developmental events following fertilization in the giant scallop Placopecten magellanicus. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53(6): 1382-1392.
[23] Range P, Chícharo M A, Ben-Hamadou R, Piló D, Matias D, Joaquim S, Oliveira A P, Chícharo L. Calcification, growth and mortality of juvenile clams Ruditapes decussatus under increased pCO2 and reduced pH: Variable responses to ocean acidification at local scales? Journal of Experimental Marine Biology and Ecology, 2011, 396(2): 177-184.
[24] Melatunan S, Calosi P, Rundle S D, Widdicombe S, Moody A J. Effects of ocean acidification and elevated temperature on shell plasticity and its energetic basis in an intertidal gastropod. Marine Ecology Progress Series, 2013, 472: 155-168.
[25] 张达娟, 李少菁, 王桂忠, 郭东晖. 二氧化碳酸化对两种桡足类肌肉和卵母细胞超微结构的影响. 海洋学报: 中文版, 2012, 34(3): 127-133.
[26] Kurihara H, Shimode S, Shirayama Y. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea). Marine Pollution Bulletin, 2004, 49(9/10): 721-727.
[27] Kurihara H, Shimode S, Shirayama Y. Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. Journal of Oceanography, 2004, 60(4): 743-750.
[28] Chan V B S, Li C, Lane A C, Wang Y, Lu X, Shih K, Zhang T, Thiyagarajan V. CO2-driven ocean acidification alters and weakens integrity of the calcareous tubes produced by the serpulid tubeworm, Hydroides elegans. PLoS One, 2012, 7(8): e42718.
[29] Ries J B, Cohen A L, McCorkle D C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology, 2009, 37(12): 1131-1134.
[30] Carter H A, Ceballos-Osuna L, Miller N A, Stillman J H. Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. Journal of Experimental Biology, 2013, 216(8): 1412-1422.
[31] Long W C, Swiney K M, Harris C, Page H N, Foy R J. Effects of ocean acidification on juvenile red king crab (Paralithodes camtschaticus) and tanner crab (Chionoecetes bairdi) growth, condition, calcification, and survival. PLoS One, 2013, 8(4): e60959.
[32] Havenhand J N, Buttler F R, Thorndyke M C, Williamson J E. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Current Biology, 2008, 18(15): R651-R652.
[33] Kurihara H, Shirayama Y. Effects of increased atmospheric CO2 on sea urchin early development. Marine Ecology Progress Series, 2004, 274: 161-169.
[34] Stumpp M, Wren J, Melzner F, Thorndyke M C, Dupont S T. CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2011, 160(3): 331-340.
[35] Reuter K E, Lotterhos K E, Crim R N, Thompson C A, Harley C D G. Elevated pCO2 increases sperm limitation and risk of polyspermy in the red sea urchin Strongylocentrotus franciscanus. Global Change Biology, 2011, 17(1): 163-171.
[36] Wood H L, Spicer J I, Widdicombe S. Ocean acidification may increase calcification rates, but at a cost. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1644): 1767-1773.
[37] Styan C A. Polyspermy, egg size, and the fertilization kinetics of free-spawning marine invertebrates. The American Naturalist, 1998, 152(2): 290-297.
[38] Dong Y H, Yao H H, Lin Z H, Zhu D L. The effects of sperm-egg ratios on polyspermy in the blood clam, Tegillarca granosa. Aquaculture Research, 2012, 43(1): 44-52.
[39] 刘广绪. 海洋无脊椎生物受精动力学模型: 研究方法与应用. 水生生物学报, 2013, 37(5): 929-935.
[40] Byrne M, Soars N, Ho M, Wong E, McElroy D, Selvakumaraswamy P, Dworjanyn S, Davis A. Fertilization in a suite of coastal marine invertebrates from SE Australia is robust to near-future ocean warming and acidification. Marine Biology, 2010, 157(9): 2061-2069.
[41] Kurihara H, Kato S, Ishimatsu A. Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquatic Biology, 2007, 1(1): 91-98.
[42] Mayor D J, Matthews C, Cook K, Zuur A F, Hay S. CO2-induced acidification affects hatching success in Calanus finmarchicus. Marine Ecology Progress Series, 2007, 350: 91-97.
[43] 何盛毅, 林传旭, 何毛贤, 严岩. 海洋酸化对马氏珠母贝胚胎和早期幼虫发育的影响. 生态学杂志, 2011, 30(4): 747-751.
[44] Feely R A, Sabine C L, Lee K, Berelson W, Kleypas J, Fabry V J, Millero F J. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 2004, 305(5682): 362-366.
[45] Fabry V J, Seibel B A, Feely R A, Orr J C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science, 2008, 65(3): 414-432.
[46] Guinotte J M, Fabry V J. Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences, 2008, 1134(1): 320-342.
[47] Fine M, Tchernov D. Scleractinian coral species survive and recover from decalcification. Science, 2007, 315(5820): 1811-1811.
[48] Beniash E, Ivanina A, Lieb N S, Kurochkin I, Sokolova I M. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Marine Ecology Progress Series, 2010, 419: 95-108.
[49] Thomsen J, Melzner F. Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Marine Biology, 2010, 157(12): 2667-2676.
[50] Guppy M, Withers P. Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biological Reviews, 1999, 74(1): 1-40.
[51] Kurihara H. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series, 2008, 373: 275-284.
[52] Vézina A F, Hoegh-Guldberg O. Effects of ocean acidification on marine ecosystems. Marine Ecology Progress Series, 2008, 373: 199-201.
[53] Parker L M, Ross P M, O'Connor W A, Pörtner H O, Scanes E, Wright J M. Predicting the response of molluscs to the impact of ocean acidification. Biology, 2013, 2(2): 651-692.
[54] Vidal-Dupiol J, Zoccola D, Tambutté E, Grunau C, Cosseau C, Smith K M, Freitag M, Dheilly N M, Allemand D, Tambutté S. Genes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals: New insights from transcriptome analysis. PLoS One, 2013, 8(3): e58652.
[55] Moya A, Huisman L, Ball E E, Hayward D C, Grasso L C, Chua C M, Woo H N, Gattuso J P, Forêt S, Miller D J. Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Molecular Ecology, 2012, 21(10): 2440-2454.
[56] Liu W G, Huang X D, Lin J S, He M X. Seawater acidification and elevated temperature affect gene expression patterns of the pearl oyster Pinctada fucata. PLoS One, 2012, 7(3): e33679.
[57] Hüning A, Melzner F, Thomsen J, Gutowska M, Krmer L, Frickenhaus S, Rosenstiel P, Pörtner H O, Philipp E R, Lucassen M. Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: Implications for shell formation and energy metabolism. Marine Biology, 2012, 160(8): 1845-1861.
[58] Kurihara H, Takano Y, Kurokawa D, Akasaka K. Ocean acidification reduces biomineralization-related gene expression in the sea urchin, Hemicentrotus pulcherrimus. Marine Biology, 2012, 159(12): 2819-2826.
[59] O'Donnell M J, Todgham A E, Sewell M A, Hammond L M, Ruggiero K, Fangue N A, Zippay M L, Hofmann G E. Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Marine Ecology Progress Series, 2010, 398: 157-171.
[60] Hammond L M, Hofmann G E. Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO2 seawater conditions. Journal of Experimental Biology, 2012, 215(14): 2445-2454.
[61] Evans T G, Chan F, Menge B A, Hofmann G E. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment. Molecular Ecology, 2013, 22(6): 1609-1625.
[62] Stumpp M, Dupont S, Thorndyke M C, Melzner F. CO2 induced seawater acidification impacts sea urchin larval development II: Gene expression patterns in pluteus larvae. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2011, 160(3): 320-330.
[63] Todgham A E, Hofmann G E. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. Journal of Experimental Biology, 2009, 212(16): 2579-2594.
[64] 唐启升, 陈镇东, 余克服, 戴民汉, 赵美训, 柯才焕, 黄天福, 柴扉, 韦刚健, 周力平, 陈立奇, 宋佳坤, Barry J, 吴亚平, 高坤山. 海洋酸化及其与海洋生物及生态系统的关系. 科学通报, 2013, 58(14): 1307-1314.
[65] Rossoll D, Bermúdez R, Hauss H, Schulz K G, Riebesell U, Sommer U, Winder M. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS One, 2012, 7(4): e34737.
[66] Inoue S, Kayanne H, Yamamoto S, Kurihara H. Spatial community shift from hard to soft corals in acidified water. Nature Climate Change, 2013, 3(7): 683-687.
[67] 张成龙, 黄晖, 黄良民, 刘胜. 海洋酸化对珊瑚礁生态系统的影响研究进展. 生态学报, 2012, 32(5): 1606-1615.
[68] Pespeni M H, Sanford E, Gaylord B, Hill T M, Hosfelt J D, Jaris H K, LaVigne M, Lenz E A, Russell A D, Young M K, Palumbi S R. Evolutionary change during experimental ocean acidification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 6937-6942.
[69] King C, Pendlebury D A. Research fronts 2013: 100 top-ranked specialities in the sciences and social sciences. [2013-05-29]. http://sciencewatch.com/articles/research-fronts-2013-100-top-ranked-specialities-sciences-and-social-sciences.
[70] Dupont S, Pörtner H O. A snapshot of ocean acidification research. Marine Biology, 2013, 160(8): 1765-1771.
[71] Dupont S, Portner H. Get ready for ocean acidification. Nature, 2013, 498(7455): 429-429.
[72] Holmes B. Sea urchins evolving to cope with ocean acidification. New Scientist, 2013, 218(2912): 12-12.
[73] Sunday J M, Crim R N, Harley C D, Hart M W. Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS One, 2011, 6(8): e22881.
[74] Brewer P, Kirkwood W, Gattuso J P. Progress in controlled in situ ocean acidification experiments. Eos, Transactions American Geophysical Union, 2013, 94(16): 152-152.
[75] Matoo O B, Ivanina A V, Ullstad C, Beniash E, Sokolova I M. Interactive effects of elevated temperature and CO2 levels on metabolism and oxidative stress in two common marine bivalves (Crassostrea virginica and Mercenaria mercenaria). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2013, 164(4): 545-553.
[76] Calosi P, Turner L M, Hawkins M, Bertolini C, Nightingale G, Truebano M, Spicer J I. Multiple physiological responses to multiple environmental challenges: An individual approach. Integrative and Comparative Biology, 2013, 53(4): 660-667.
[77] Byrne M, Gonzalez-Bernat M, Doo S, Foo S, Soars N, Lamare M. Effects of ocean warming and acidification on embryos and non-calcifying larvae of the invasive sea star Patiriella regularis. Marine Ecology Progress Series, 2013, 473: 235-246.
[78] Byrne M. Impacts of warming and ocean acidification on growth of larval and juvenile sea urchins-from the poles to the tropics. Integrative and Comparative Biology, 2013, 53(1): E27-E27.
[79] Pansch C, Nasrolahi A, Appelhans Y S, Wahl M. Impacts of ocean warming and acidification on the larval development of the barnacle Amphibalanus improvisus. Journal of Experimental Marine Biology and Ecology, 2012, 420: 48-55.