生态学报  2015, Vol. 35 Issue (24): 8148-8154

文章信息

万菁娟, 郭剑芬, 刘小飞, 纪淑蓉, 任卫岭, 吴君君, 杨玉盛
WAN Jingjuan, GUO Jianfen, LIU Xiaofei, JI Shurong, REN Weiling, WU Junjun, YANG Yusheng
杉木和米槠凋落叶DOM对土壤碳矿化的影响
Effects of dissolved organic matter from Cunninghamia lanceolata and Castanopsis carlesii leaf litter on soil C mineralization
生态学报, 2015, 35(24): 8148-8154
Acta Ecologica Sinica, 2015, 35(24): 8148-8154
http://dx.doi.org/10.5846/stxb201407301532

文章历史

收稿日期: 2014-07-30
网络出版日期: 2015-05-21
杉木和米槠凋落叶DOM对土壤碳矿化的影响
万菁娟1, 2, 郭剑芬1, 2 , 刘小飞1, 2, 纪淑蓉1, 2, 任卫岭1, 2, 吴君君1, 2, 杨玉盛1, 2    
1. 湿润亚热带山地生态国家重点实验室培育基地, 福州 350007;
2. 福建师范大学地理科学学院, 福州 350007
摘要: DOM(Dissolved organic matter)是土壤微生物呼吸的重要底物,凋落物淋溶的DOM对土壤碳矿化具有重要影响。选择中亚热带地区具有代表性的杉木(Cunninghamia lanceolata)和米槠(Castanopsis carlesii)凋落叶作为研究对象,通过两个月的短期室内培养,把不同凋落叶浸提出的DOM添加到培养瓶中,定期测定土壤碳矿化速率,计算土壤碳累积矿化量,探讨两种等浓度等量DOM添加对土壤碳矿化的影响,并分析DOM化学性质在土壤碳矿化过程中的重要性。结果表明:米槠凋落叶浸提得到的DOC(Dissolved organic carbon)和DON(Dissolved organic nitrogen)浓度均显著高于杉木凋落叶的(P <0.05),而杉木凋落叶浸提得到的DOM的UV吸收值(SUVA254)和HIX(Humification index)均显著低于米槠凋落叶的(P <0.01)。添加等浓度等量杉木和米槠凋落叶DOM到土壤中均显著增加了土壤碳矿化速率,在第1天内分别比对照高198%和168%,3d后下降到61.8%和44.1%,14d后基本处于平稳状态,表明外源有机物添加对土壤碳矿化的前期影响较大。培养过程中,添加杉木和米槠凋落叶DOM的土壤碳矿化累积量均能采用双因素指数模型进行拟合(r2=0.99),但添加两者凋落叶DOM后土壤碳矿化累积量没有显著差异。
关键词: 米槠    杉木    DOM    凋落叶    有机碳矿化    
Effects of dissolved organic matter from Cunninghamia lanceolata and Castanopsis carlesii leaf litter on soil C mineralization
WAN Jingjuan1, 2, GUO Jianfen1, 2 , LIU Xiaofei1, 2, JI Shurong1, 2, REN Weiling1, 2, WU Junjun1, 2, YANG Yusheng1, 2    
1. Cultivation Base of State Key Laboratory of Humid Subtropical Mountain Ecology, Fuzhou 350007, China;
2. School of Geographical Science, Fujian Normal University, Fuzhou 350007, China
Abstract: The leaching of dissolved organic matter (DOM) from leaf litter, and the subsequent supply of an available carbon pool for microbial growth, can be important factors regulating forest C mineralization. Field studies have shown that with increasing DOM, soil respiration rates increase observably. Numerous studies have assessed the difference of dissolved organic C (DOC) and the C chemistry of solubility during leaching of DOM from different litters. The chemical structure of DOM and the complexity of its molecules were found to correlate with C mineralization. Our objectives were to investigate how differences in chemistry of DOM from Cunninghamia lanceolata and Castanopsis carlesii leaf litter affected soil CO2 fluxes in laboratory incubations. Mineral soils from a depth of 0-10 cm from a 39-year-old C. carlesii plantation forest in Sanming, Fujian, China were incubated for 2 months after adding the same concentrations and amounts of DOM from C. lanceolata and C. carlesii leaf litter. CO2 production was continuously measured during 59 days of laboratory incubation, and soil CO2 evolution patterns were determined by fitting the double exponential model (r2=0.99). Results showed that: (1) C chemistry varied significantly between DOM from C. lanceolata and C. carlesii leaf litter (P <0.05). UV and fluorescence spectra of DOM from C. lanceolata leaf litter were lower than those of C. carlesii leaf litter, which suggested that DOM from C. lanceolata leaf litter has a lower content of aromatic C. (2) Following additions of DOM from C. lanceolata and C. carlesii leaf litter to soils, rates of C mineralization increased by 198% and 168%, respectively, decreased to 61.8% and 44.1%, respectively, by day 3 and then decreased progressively. This indicated that an increase in soil C mineralization induced by the addition of external DOM to soil was short-term. (3) There was no significant difference in the cumulative mineralized C between the addition of DOM from C. lanceolata and C. carlesii leaf litter. Further research should be done to investigate the reasons for this lack of a significance difference.
Key words: Castanopsis carlesii    Cunninghamia lanceolata    dissolved organic matter    leaf litter    organic carbon mineralization    

土壤有机碳库是陆地生态系统最大的C储存库,其储量高达1500—2000 Pg,占到陆地生态系统总C量的2/3,超过大气C库的2倍、地上活生物量C库的3倍,而土壤呼吸则是土壤有机C进入大气的主要途径[1, 2]。据估计土壤呼吸年C释放量高达86—110 Pg[3],超过全球化石燃料燃烧年C释放量(≈ 6 Pg)的15倍。因此土壤C释放的微小变化能显著地改变大气中CO2浓度,对全球碳平衡和全球气候变化产生重大影响。

许多土壤呼吸研究表明70%—80%异养呼吸来自快速周转的活性碳库,其中可溶性有机碳(DOC)就是森林土壤主要的活性碳库来源[4]。已有研究表明,降雨淋溶、凋落物、枯死根等是DOM重要来源[5, 6],且不同来源DOM的化学组成和性质差异较大[7, 8]。如研究发现穿透雨经过新鲜树叶的淋溶,DOM含有更多低分子量、易分解的有机质,而枯枝落叶层DOM则以高分子量的腐殖酸为主[9]。De等[10]研究表明,凋落物渗滤液中主要成分是疏水性酸,而枯死根则产生亲水性酸和中性物质。Kiikkil等[11]认为凋落物的分解由凋落物淋溶的DOM性质决定,即含有亲水性酸和中性物质DOC容易被分解,而疏水性酸难被分解。Cleveland等[12] 发现可利用性碳与土壤呼吸速率具有极显著的正相关性。He等[13]和Wieder等[14]研究认为高质量的DOM对土壤碳矿化的影响更大。但目前外源添加DOM化学性质差异对森林土壤碳矿化的研究仍较少。

米槠是我国亚热带典型的阔叶树种,而杉木是我国亚热带地区重要的速生针叶用材树种[15],前期研究发现这两种人工林土壤异养呼吸具有显著差异[16]。凋落叶淋溶的DOM是土壤异养呼吸的重要碳源,本研究通过室内培养试验,探讨不同树种凋落叶DOM的差异对土壤碳矿化的影响,为森林土壤呼吸研究提供一个新思路。

1 材料与方法 1.1 试验地概况

试验地位于福建省三明市格氏栲自然保护区(26°11′N,117°28′E),属于中亚热带山区,区域内典型针叶树种和阔叶树种,分别是杉木(Cunninghamia lanceolata)和米槠(Castanopsis carlesii)。该保护区气候属于中亚热带季风气候,试验地附近的三明市年均气温20.1℃,年降水量1670 mm,降水多集中于3—8月份。米槠人工林的前身为米槠次生林,20世纪70年代经过皆伐、火烧、挖穴造林和幼林抚育,形成米槠人工林,树龄39a。林分密度为2042株 hm2,平均胸径16.6 cm,平均树高14.2 m。样地海拔305 m,坡度为15°。林下植被主要以毛冬青(Ilex pubescens)、乌饭树(Vaccinium bracteatum)、薄叶山矾(Symplocos anomala)、桂北木姜子(Litsea subcoriacea)、山姜(Alpinia japonica)等为主,草本以芒萁(Dicranopteris dichotoma)为主[16]

1.2 样品采集

2013年9月中旬在39年生的米槠人工林内的上、中、下坡,随机布设3块20 m × 20 m的标准样地,在每个标准样地内用按S型选取5个采样点,去除表层的枯枝落叶层,采用土钻取表层土壤(0—10cm),带回实验室,去除可见植物残体、石头和根系,混合均匀后过2 mm筛备用。一部分用于风干测定其理化性质(表 1),另一部分保存在4 ℃冷藏,用于后续的培养试验。于2013年9月底,在米槠人工林和邻近的杉木人工林内的上、中、下坡设3条平行于等高线的样线,每条样线上随机设10个25 cm × 25 cm小样方,收集未分解的杉木凋落叶和米槠凋落叶,带回实验室烘干,保存。

表1 试验地表层土壤 (0—10cm) 性质 (平均值±标准偏差) Table 1 Surface soil (0—10 cm) properties of study sites (mean±SD)
试验地 Study site有机碳/(g/kg) Organic carbon 全氮/(g/kg) Total NC/NpH粒径密度Soil texture(%)
砂粒Sand粉粒 Silt粘粒 Clay
米槠人工林 Castanopsis carlesii plantation24.88±0.711.7±0.0814.6±0.323.95±0.0444.18±2.7928.29±2.2627.53±0.81
1.3 试验设计

各称取20 g烘干的杉木和米槠凋落叶,加入200 mL去离子水浸泡24 h后,上清液用0.45 μm玻璃纤维过滤器减压过滤,滤液4℃保存,测定其理化性质(表 2)。

表2 杉木和米槠凋落叶DOM的性质(平均值±标准偏差) Table 2 Initial DOM characterization of Cunninghamia lanceolata and Castanopsis carlesii leaf litter(mean± SD)
种类 Species可溶性有机碳 Dissolved organic carbon/(g/kg)可溶性有机氮 Dissolved organic nitrogen/(g/kg)DOC/DON紫外吸收值 Special ultraviolet visible absorption/ (UV)腐殖化指标 Humification index/ (HIX)
杉木Cunninghamia lanceolata12.13±0.19a0.06±0.001a206.39±5.46a 0.99±0.03a0.64±0.01a
米槠Castanopsis carlesii13.39±0.37b0.11±0.004b121.96±7.68b1.19±0.04b1.21±0.02b
每一列中不同的字母表示差异显著性(P < 0.05)

取相当于50 g干土的土壤到500 mL的广口瓶中,调节土壤含水量为饱和持水量40%,放在25 ℃的恒温培养箱条件下预培养15d。然后把杉木和米槠凋落叶DOM浓度用去离子水稀释至1000 mg/L(按照浸提得到的DOC浓度进行计算),分别取5 mL和等量去离子水作为对照添加到培养瓶中,再用去离子水调节土壤含水量达到饱和持水量 60%,每个处理12个重复。此外,广口瓶内放入盛有10 mL 0.5 mol/L NaOH的小瓶,用于吸收培养瓶内土壤矿化释放出的CO2,随后将广口瓶密封。分别在处理后的第5、12小时、1、2、3、6、9、14、19、24、29、36、43、50、57天取出盛有NaOH的小瓶,放置2h,以保证培养瓶内氧气充足,然后放入新的盛有NaOH的小瓶,将广口瓶密封培养。用0.5 mol/L的HCl滴定取出盛有NaOH的小瓶,用于计算土壤碳矿化速率和累积矿化量。

1.4 分析方法

凋落叶浸提得到的DOC,用总有机碳分析仪(SHIMADZU TOC-VCPH/CPN Analyzer)测定;DON用流动注射分析仪(Lachat Qyickchem automatedion analyzer)测定;土壤C、N元素含量采用碳氮元素分析仪(Elemental Analyzer Vario ELIII)测定;为了测定结果的可比性,用于紫外和荧光光谱测定的样品DOC浓度用去离子水稀释至10 mg/L,pH值用稀HCl调为2,用254 nm处的紫外吸光度(UV2450 分光光度计 Shimadzu),计算芳香性;荧光发射光谱通过日立-4600 荧光分光光度计获得,λex 254 nm,slit 10 nm,λem 300—480 nm,slit 10 nm,scan speed 4800 nm/min,腐殖质指标通过计算发射光谱中∑435—480 nm与∑300—345 nm的面积比获得。

1.5 数据处理

所有数据统计分析基于SPSS 17.0软件进行,相关图表在Origin 8.0 软件下完成。采用单因素方差分析(one-way ANOVA)检验添加杉木和米槠凋落叶DOM后土壤碳矿化之间差异的显著性。为分析不同来源DOM添加到土壤中,对土壤碳矿化累积量的影响,采用如下模型:

Cm(%)=a×[1-exp(-k1t)]+(100-a)×[1-exp(-k2t)]

式中,t表示培养时间; Cm表示在时间t时累积矿化量与土壤初始总碳的百分比;a、(100-a)、k1、k2为待定参数。a是土壤初始总碳中易分解碳的百分比;(100-a)代表是难分解碳的百分比; k1和k2分别是易分解碳库和难分解碳库的矿化常数。

2 结果和分析 2.1 DOM化学性质

米槠凋落叶浸提得到的DOC和DON浓度均显著高于杉木凋落叶的(P < 0.05)(表 2)。两种DOM的化学性质具有极显著差异(P < 0.01),即米槠凋落叶DOM的UV吸收值(SUVA254)和HIX均显著高于杉木凋落叶的,但杉木凋落叶DOM的C/N显著高于米槠凋落叶的(P < 0.05),表明杉木凋落叶DOM中含有更多的低分子量、易分解有机物,米槠凋落叶DOM中含有更多含氮营养物质。

2.2 土壤碳矿化速率动态变化

添加杉木和米槠凋落叶DOM后土壤碳矿化速率在第1天内分别显著高于照198%和168%,3d后下降到61.8%和44.1%(图 1)。培养前3d,土壤碳矿化速率与对照均有极显著差异(P < 0.01),但3d后差异不显著,表明添加外源有机物到土壤后,引起土壤碳矿化速率增加只是一个短暂的过程。培养期间添加杉木凋落叶DOM与米槠凋落叶DOM的土壤碳矿化速率没有显著差异(图 1)。土壤碳矿化速率在添加两种DOM后第1天内达到最大值,6d后下降了90%,14d后基本处于平稳状态,说明单次添加DOM后引起土壤碳矿化的变化,会随着DOM中易分解物质的消耗而逐渐变小。

图1 添加不同DOM土壤C矿化速率的变化 (平均值 ± 标准偏差) Fig.1 Changes in the rate of soil C mineralization after addition of different dissolved organic matter (mean ± SD)
2.3 土壤碳累积矿化量动态变化

图 2可以看出,添加杉木和米槠凋落叶DOM后土壤碳累积矿化量没有显著差异,但二者均显著高于对照(P < 0.05),随着时间延长差异性越小,如第1天分别高于对照84.3%和64.4%,第29天分别高于对照40.9%和33.1%,培养结束则下降到20.7%和17.3%。在培养第3天,添加杉木凋落叶DOM的土壤净碳矿化量已经超过了外源DOM添加量100 mg/kg,而添加米槠凋落叶DOM的土壤净碳矿化量直到第9天才超过外源DOM添加量,表明添加杉木凋落叶DOM比添加米槠凋落叶DOM更容易引起土壤有机碳矿化。

图2 添加不同DOM土壤碳累积矿化量的变化 (平均值 ± 标准偏差) Fig.2 Changes of cumulative mineralized C after addition of different dissolved organic matter (mean ± SD)

土壤CO2累积通量的拟合曲线可以很好的反映土壤碳变化趋势,本研究发现添加杉木凋落叶DOM和米槠凋落叶DOM后的土壤碳矿化累积量能很好的用双因素指数模型进行拟合(表 3)。其中r2均达到了0.99,k2的值均是0.001,a的值分别是0.982%和0.848%。两者模型参数之间没有达到显著差异。

表3 土壤碳矿化的双因素指数模型参数 Table 3 Parameters of C mineralization double factor index model
不同处理 Different treatmentCm/(%)a/(%)100-a/(%)k1k2r2
杉木凋落叶 Cunninghamia lanceolata leaf litter3.700.98299.0180.5350.0010.997
米槠凋落叶 Castanopsis carlesii leaf litter 3.59 0.848 99.1520.5990.001 0.998
3 讨论 3.1 添加凋落叶DOM对土壤碳矿化的影响

土壤有机碳矿化不仅受到温度、水分等环境因素的调控,也受外源有机物(包括有机物的质量和复杂性)的影响[17, 18, 19]。野外试验表明,枯枝落叶层淋溶得到的DOM是土壤异养呼吸重要碳源,占土壤CO2年通量很大一部分[12, 20, 21]。本研究也发现,添加杉木和米槠凋落叶DOM到土壤中,土壤碳累积矿化量在第2天分别比对照高95%和83%。这与Cleveland等[12]的研究结果类似,即添加凋落物淋溶的DOM到土壤中后,CO2释放量明显增加。因为凋落物DOM作为外源碳库及营养物质输入到土壤中,改变了土壤微生物和酶的活性,从而增加微生物对土壤碳的分解[4, 12]

矿化速率在添加DOM后第1天内达到最大值,6d后下降了90%,14d后基本处于平稳状态,这与凋落叶浸提得到的DOM所含物质的难易分解程度有关[22],易分解的物质会被微生物优先利用而快速增加土壤碳矿化速率,随着易分解物质的消耗而降低土壤碳矿化。Hobbie等[23]也认为异养微生物能快速利用活性的(低分子量)、养分含量较高的DOM而促进土壤呼吸,但分子量大的难分解DOM对土壤呼吸的贡献不大。同时,说明单次添加外源有机物到土壤中,对土壤碳矿化的影响是大而短暂。已有研究表明,输入易变的C到土壤中(如根的渗滤液)能显著地影响土壤有机碳的矿化[24, 25, 26]。本研究在培养第9天,发现土壤净碳矿化累积量均超过了外源添加的DOM量(0.1g/kg),说明添加凋落叶DOM,增加了土壤原有机碳的分解。而且,本研究还发现,对照组在培养第1天,土壤碳矿化速率相比预培养阶段土壤矿化速率增加了100%,这可能因为土壤水分从饱和持水量40%调整到60%,促进了土壤有机碳矿化[27, 28]

3.2 添加不同来源DOM对土壤碳矿化的影响

关于外源添加DOM化学性质对土壤碳矿化的影响,已有的研究结果基本一致。如Wieder等[14]通过室内试验将不同树种凋落叶淋溶的DOM,按照等浓度等量的DOM添加到土壤后,发现异养呼吸速率差异超过4倍。Zhao等[29]研究表明DOM组成会影响土壤碳矿化,即DOM中含有越多的芳香类难分解物质,土壤碳矿化速率就越小。He等[13]的研究认为土壤碳矿化与DOM的化学组成是密切相关的,与DOM中的碳水化合物呈显著正相关,而与酚类物质、UV值呈显著负相关。本研究结果得到米槠凋落叶DOM的UV吸收值(SUVA254)和HIX均显著高于杉木凋落叶的,表明杉木凋落叶DOM中含有更多的小分子量、易分解的物质而容易增加土壤CO2的排放[30, 31]。但添加等浓度等量的杉木和米槠凋落叶DOM后土壤矿化累积通量均显著高于对照,而两者之间没有显著差异,可见添加不同来源DOM对土壤碳矿化的影响除了与DOM性质差异有关外,可能还与土壤自身性质有关。土壤C/N是影响土壤碳矿化的主要因素之一[32, 33],本研究培养所选择土壤的C/N比低于最适值25,属于碳限制性土壤,所以,土壤碳矿化主要受外源碳添加量的影响。也可能与土壤吸附作用有关,熊丽等[34]研究认为土壤会优先吸附芳香化合物和大分子物质,因而添加米槠凋落叶DOM后土壤碳的矿化不会受难分解物质的影响,而且米槠凋落叶DOM中含有更多的含氮营养物质会增加土壤CO2释放[21]。另外,模拟土壤碳矿化得到的双因素指数模型中的易变碳库a和易变碳库的分解速率k1,在添加杉木凋落叶DOM与添加米槠凋落叶DOM后均没有显著差异。Leff等[35]的研究表明影响凋落物分解的是土壤微生物的量而不是微生物群落结构的组成,培养结束后,添加杉木凋落叶DOM与添加米槠凋落叶的土壤微生物量碳分别是657.1 mg/kg和638.3 mg/kg,是没有显著差异的。因此,关于不同来源DOM对土壤碳矿化的影响机制有待进一步的研究。

4 结论

本研究发现米槠凋落叶浸提得到的DOC、DON浓度、UV吸收值(SUVA254)和HIX均显著高于杉木凋落叶的,但杉木凋落叶DOM的C/N显著高于米槠凋落叶的。添加等浓度等量的杉木和米槠凋落叶DOM到培养瓶中,土壤碳矿化速率均显著高于对照,但培养期间,添加杉木凋落叶DOM引起的土壤碳累积矿化量与添加米槠凋落叶DOM的没有显著差异,这有待进一步的研究。

致谢: 野外样品采集得到付林池、林庭武等同学的大力帮助,特此致谢。

参考文献
[1] Vargas R, Carbone M S, Reichstein M, Baldocchi D D. Frontiers and challenges in soil respiration research: from measurements to model-data integration. Biogeochemistry, 2011, 102(1): 1-13.
[2] Tucker C L, Bell J, Pendall E, Ogle K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Global Change Biology, 2013, 19(1): 252-263.
[3] Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record. Nature, 2010, 464(7288): 579-582.
[4] Kaiser K, Kalbitz K. Cycling downwards-dissolved organic matter in soils. Soil Biology and Biochemistry, 2012, 52: 29-32.
[5] Tu C L, Liu C Q, Lu X H, Yuan J, Lang Y C. Sources of dissolved organic carbon in forest soils: evidences from the differences of organic carbon concentration and isotope composition studies. Environmental Earth Sciences, 2011, 63(4): 723-730.
[6] Throckmorton H M, Bird J A, Dane L, Firestone M K, Horwath W R. The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems. Ecology Letters, 2012, 15(11): 1257-1265.
[7] Inamdar S, Finger N, Singh S, Mitchell M, Levia D, Bais H, Scott D, Mchale P. Dissolved organic matter (DOM) concentration and quality in a forested mid-Atlantic watershed, USA. Biogeochemistry, 2012, 108(1-3): 55-76.
[8] Kothawala D N, Roehm C, Blodau C, Moore T R. Selective adsorption of dissolved organic matter to mineral soils. Geoderma, 2012, 189-190: 334-342.
[9] Kalbitz K, Meyer A, Yang R, Gerstberger P. Response of dissolved organic matter in the forest floor to long-term manipulation of litter and throughfall inputs. Biogeochemistry, 2007, 86(3): 301-318.
[10] De Troyer I, Amery F, van Moorleghem C, Smolders E, Merckx R. Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: A batch incubation study. Soil Biology and Biochemistry, 2011, 43(3): 513-519.
[11] Kiikkilä O, Smolander A, Kitunen V. Degradability, molecular weight and adsorption properties of dissolved organic carbon and nitrogen leached from different types of decomposing litter. Plant and Soil, 2013, 373(1/2): 787-798.
[12] Cleveland C C, Nemergut D R, Schmidt S K, Townsend A R. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry, 2007, 82(3): 229-240.
[13] He D M, Ruan H H. Long term effect of land reclamation from Lake on chemical composition of soil organic matter and its mineralization. PloS ONE, 2014, 9: e99251, doi: 10.1371/journal.pone.0099251.
[14] Wieder W R, Cleveland C C, Townsend A R. Tropical tree species composition affects the oxidation of dissolved organic matter from litter. Biogeochemistry, 2008, 88(2): 127-138.
[15] Chen C Y, Wang S L. Ecology of Mixed Plantation Forest. Beijing: Science Press, 2004.
[16] 吴君君, 杨智杰, 刘小飞, 熊德成, 林伟盛, 陈朝琪, 王小红. 米槠和杉木人工林土壤呼吸及其组分分析. 植物生态学报, 2014, 38(1): 45-53.
[17] Kirschbaum M U F. Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Global Change Biology, 2004, 10(11): 1870-1877.
[18] Fierer N, Craine J M, McLauchlan K, Schimel J P. Litter quality and the temperature sensitivity of decomposition. Ecology, 2005, 86(2): 320-326.
[19] Hartley I P, Ineson P. Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biology and Biochemistry, 2008, 40(7): 1567-1574.
[20] Townsend A R, Braswel B H, Holland E A, Penner J E. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecological Applications, 1996, 6(3): 806-814.
[21] Cleveland C C, Townsend A R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10316-10321.
[22] Cleveland C C, Neff J C, Townsend A R, Hood E. Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems, 2004, 7(3): 175-285.
[23] Hobbie S E, Reich P B, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology, 2006, 87(9): 2288-2297.
[24] Kuzyakov Y, Domanski G. Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science, 2000, 163(4): 421-431.
[25] Blagodatskaya E, Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils, 2008, 45(2): 115-131.
[26] Kuzyakov Y. Priming effects: interactions between living and dead organic matter. Soil Biology and Biochemistry, 2010, 42(9): 1363-1371.
[27] Housman D C, Powers H H, Collins A D, Belnap J. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. Journal of Arid Environments, 2006, 66(4): 620-634.
[28] Potts D L, Huxman T E, Cable J M, English N B, Ignace D D, Eilts J A, Williams D G. Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland. New Phytologist, 2006, 170(4): 849-860.
[29] Zhao M X, Zhou J B, Kalbitz K. Carbon mineralization and properties of water extractable carbon in soils of the south Loess Plateau in China. European Journal of Soil Biology, 2008, 44(2): 158-165.
[30] Wang Q K, Wang S L, He T X, Liu L, Wu J B. Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils. Soil Biology and Biochemistry, 2014, 71: 13-20.
[31] Bu X L, Ding J M, Wang L M, Yu X N, Huang W, Ruan H H. Biodegradation and chemical characteristics of hot-water extractable organic matter from soils under four different vegetation types in the Wuyi Mountains, southeastern China. European Journal of Soil Biology, 2011, 47(2): 102-107.
[32] Giardina C P, Ryan M G, Hubbard R M, Binkley D. Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Science Society of America Journal, 2001, 65(4): 1272-1279.
[33] 窦晶鑫, 刘景双, 王洋, 赵光影. 三江平原草甸湿地土壤有机碳矿化对C/N的响应. 地理科学, 2009, 29(5): 773-778.
[34] 熊丽, 杨玉盛, 王巧珍, 杨智杰, 黄惠, 司友涛. 可溶性有机碳在米槠天然林土壤中的淋溶特征. 亚热带资源与环境学报, 2014, 9(1): 46-52.
[35] Leff J W, Nemergut D R, Grandy A S, O'Neill S P, Wickings K, Townsend A R, Cleveland C C. The effects of soil bacterial community structure on decomposition in a tropical rain forest. Ecosystems, 2012, 15(2): 284-298.