生态学报  2015, Vol. 35 Issue (24): 7974-7986

文章信息

方恺
FANG Kai
足迹家族研究综述
Footprint family: current practices, challenges and future prospects
生态学报, 2015, 35(24): 7974-7986
Acta Ecologica Sinica, 2015, 35(24): 7974-7986
http://dx.doi.org/10.5846/stxb201407031373

文章历史

收稿日期: 2014-07-03
网络出版日期: 2015-05-21
足迹家族研究综述
方恺1, 2     
1. 荷兰莱顿大学环境科学系, 莱顿 2333CC;
2. 浙江大学环境与能源政策研究中心, 杭州 310058
摘要: 综合测度人类社会的可持续发展状态是生态经济学者追求的重要目标。足迹家族由生态足迹、碳足迹和水足迹等一系列足迹类指标整合而成,旨在为决策者系统评估与权衡人类活动的环境影响提供理论和技术支持。从理论探索、整合实践和分类比较等三方面对足迹家族的研究现状进行了综述;在此基础上围绕极具争议的足迹定义、计算方法和加权方式等问题,深入分析了阻碍当前研究进一步推进的关键性因素;指出未来应从建立足迹类型学、完善跨区域投入产出模型、细化产品和机构环境足迹标准等方面入手,推动实现足迹家族的量化整合;并首次提出了足迹家族与行星边界耦合的构想,以期为监测和预警人类活动的生态阈值、促进环境影响评价向可持续性评价转变提供科学依据。
关键词: 足迹家族    量化整合    指标分类    行星边界    进展    
Footprint family: current practices, challenges and future prospects
FANG Kai1, 2     
1. Institute of Environmental Sciences (CML), Leiden University, Leiden 2333CC, Netherlands;
2. Environmental and Energy Policy Center, Zhejiang University, Hangzhou 310058, China
Abstract: It is increasingly widely accepted that anthropogenic impacts on the earth's systems should stay within critical thresholds for humanity to preserve the planet as a pleasant living place and as a source of welfare. It is therefore a high priority for ecological economists to identify and quantify the state of sustainable development of the human society. Efforts have been made to build up a footprint family in which a suite of footprint-style indicators, such as the ecological, carbon, and water footprints, are combined to measure the environmental impacts associated with human activities in multiple dimensions. The footprint family concept stems from the firm belief that environmental issues are getting increasingly complex, and that wise policies in most cases cannot be formulated without some form of trade-offs among an ever-expanding number of stressors. This highlights the importance of identifying ways to quantitatively integrate different footprints and to minimize the total footprint from a system perspective, rather than emphasizing "net zero" solutions to individual footprints. As a fast-growing interdisciplinary topic, a number of footprint family studies have received great attention over recent years since its first appearance in the literature. By labeling current studies with theoretical exploration, integrated practice, and comparison and classification, a comprehensive review of the footprint family research is provided. Challenges remain in developing a truly integrated footprint family, especially in defining the footprint concept in a generally accepted way. The scarcity of calculation methods that are valid for various footprints on multiple scales ranging from a product, an organization, a nation, and even globally, and the uncertainty of dealing with weighting both within and between footprints, provide obstacles as well. To remove all these obstacles, the remainder of this paper presents a research agenda for updating the footprint family framework in future work. We call for the investigation of footprint typology, the development of multiregional input-output models, the concretization of operational guidelines for product and organizational environmental footprints, and the combination of footprint family and planetary boundaries. We believe that many well-grounded footprint models have the potential to consolidate the scientific foundation of planetary boundaries by providing a robust and reliable assessment of current environmental impacts and, conversely, that the planetary boundary concept could allow footprints to benchmark against thresholds for environmental impacts that humanity is placing on the planet, as a clear recognition of sustainable limits to human interference is lacking in many of the existing footprint accounts. Thus, we come to the conviction that the joint use of a footprint family and planetary boundaries would contribute to the assessment of global sustainability from a broader point of view, in which current environmental impacts and forecasted threshold boundaries can be synchronously quantified and compared. In this manner, the footprint-boundary alignment makes it possible for policy makers to monitor the extent to which critical thresholds are being approached or exceeded, and to warn about critical transitions that may have profoundly undesirable consequences for environmental quality, ecosystem stability, and human health in large parts of the world.
Key words: footprint family    quantitative integration    indicator classification    planetary boundaries    advance    

现代生态学之父Odum[1]通过查考生态学(ecology)与经济学(economics)的希腊语词源,认为这2个分属自然科学和社会科学的学科之间应具有某些天然的联系[2]。生态学家与经济学家之所以在某些问题上持对立观点,是因为双方的研究视角都有一定的局限性。在这样的背景下,生态经济学(ecological economics)应运而生。作为连接生态学与经济学的交叉学科,生态经济学具有弥合分歧、促进融合的重要意义[3]

以生态足迹、碳足迹和水足迹等为代表的足迹类指标,是生态经济学研究的重要对象和手段,正日益受到学界、政府乃至公众的广泛关注[4]。随着人类对环境问题的复杂性、整体性与全球性特征的认识不断加深,任何单一足迹指标已无法满足环境影响综合评估的需要[5]。足迹家族概念的提出,标志着足迹研究重心正逐步由单指标的定量测度向多指标的集成整合演进[6]。足迹家族研究开展仅短短数年,但已经取得了一批重要的阶段性成果。本文在系统梳理足迹家族研究进展的基础上,聚焦限制当前研究进一步深入的主要问题,并据此展望未来发展方向,以期为我国学者开展相关研究提供参考。

1 研究现状与进展 1.1 足迹家族理论探索

国际上的足迹研究由3大学术群体共同主导:全球足迹网络(Global Footprint Network,GFN)主导生态足迹[7];水足迹网络(Water Footprint Network,WFN)主导水足迹[8];生命周期评价(Life Cycle Assessment,LCA)主导碳足迹[9]。足迹家族概念的提出,是一次将系统论观点引入生态经济学理论的有益尝试,有助于打破目前这种单打独斗、各自为战的局面,加强学术群体之间的沟通与交流。

文献分析表明,“足迹家族”一词最早由Giljum[10]与Stoeglehner[11]在2008年同时提出,旨在发挥其他足迹指标对生态足迹的补充作用。直到2012年,Galli[12]才首次将足迹家族作为独立的概念进行了详细论述,并赋予其特定的含义:由生态足迹、碳足迹和水足迹组成的指标集合,用于评估人类的生物资源和水资源消费及温室气体排放行为对地球环境系统的影响。此后,少量围绕足迹家族理论进行探索的论文陆续发表:C ˇ u c ˇ ek[13]全面回顾了各类足迹指标的定义、方法及计量单位,针对足迹家族研究限定于环境可持续性的情况,提出了一系列社会和经济类足迹指标;Fang[14]从足迹家族的角度系统比较了生态足迹、碳足迹、水足迹与能源足迹的概念和方法学异同,并分析了4种足迹整合的潜在优势及障碍;Hoekstra[15]提出了最大可持续足迹的概念,为科学评估人类活动的环境可持续性提供了参考依据;Ridoutt[16]提出一个基于LCA的足迹家族构想,认为普适性的足迹概念必须能够支撑以单一数值为结果表征的环境影响综合评价。

1.2 足迹家族整合实践

足迹整合是足迹家族研究的重点与难点。国际上一些学者以此为切入点进行了有益的尝试(表 1),归纳起来主要包括以下几方面:

(1) 组成多样化 理论上,任何2类及以上的足迹指标都可以组成特定的足迹家族[6]。在整合实践中,足迹家族研究大多包含了碳足迹和水足迹,以及生态足迹、能源足迹和土地足迹等足迹中的一种或几种类型。

(2) 模型规范化 多数研究基于LCA或一系列MRIO模型,对不同足迹指标的计算过程进行规范化、可视化操作,以便实现足迹类指标的方法学融合,从而保证计算结果的一致性与可比性。

(3) 结果标准化 Cagiao[17]、Čuček[18]、Shepon[23]分别将各类足迹结果折算为碳足迹、欧元和时间,目的是为了使最终的计算结果有统一的参照物;de Benedetto[19]采用DDT以及Ridoutt[22]将各类足迹分别除以相应的全球人均值,也同样意在消除单位和量纲的差异。

(4) 数据网络化 在Ewing[20]、Galli[21]等一批国际学者研究的基础上,欧盟建立起EUREAPA在线数据库[24],完成了全球45个国家和地区及其57个产业部门的生态足迹、碳足迹和水足迹计算,所有数据均免费下载并可模拟不同情景下的足迹变化趋势。

表1 足迹指标整合研究文献综述 Table 1 Literature review of the studies on integrating footprint indicators
文献来源 Literature年份 Year足迹类型 Footprint categories整合方法 Approach to integration 研究意义 Implications
[17]2011水足迹、能源足迹、电力足迹、材料足迹、服务足迹、农业足迹基于组织-产品LCA计算各类足迹指标所有指标均折算成实际过程中所产生的碳足迹表征,以保证结果的可比性
[18]2012碳足迹、水足迹、能源足迹、土地足迹、污染足迹 基于LCA计算各类足迹指标,并引入多标准优化法对降低某类足迹所带来的环境收益进行价值量化 所有指标结果均折算成相应的欧元,用于区域生物能源供应链分析评价
[19]2009碳足迹、水足迹、能源足迹、排放足迹、工作环境足迹基于LCA计算各类足迹指标,并引入DTT*进行标准化各类足迹的计算结果经标准化后转换为无量纲量,进而构成环境绩效战略图
[20]2012生态足迹、水足迹基于MRIO* *模型计算各类足迹指标产品尺度的生态足迹和水足迹可以通过该模型得到,从而实现与碳足迹方法的兼容性
[21]2013生态足迹、碳足迹、水足迹基于环境扩展的MRIO模型计算各类足迹指标国家及以下尺度的生态足迹、碳足迹和水足迹均可以通过该模型得到
[22]2014碳足迹、水足迹、土地利用足迹分别基于IPCC* * *推荐方法、LCA和NPP* * * *进行计算,并根据相关文献值对结果标准化各类足迹的计算结果经标准化后转换为无量纲量,用于评估和比较不同肉牛生产系统的环境影响
[23]2013生态足迹、碳足迹、水足迹等各类足迹基于生态时间方法,将各类足迹除以其对应资源配额,转换为无量纲的时间 所有指标结果均折算成可再生时间,用于全球资源消费-配额计算比较
*DDT: 目标距离法Distance-to-Target; * *MRIO: 跨区域投入产出Multiregional Input-Output; * * *IPCC: 政府间气候变化专门委员会Intergovernmental Panel on Climate Change; * * * *NPP: 净初级生产力Net Primary Production
1.3 足迹指标比较与分类

正如家庭成员存在角色分工一样,不同足迹指标在足迹家族中的地位与作用也有显著差异[6]。综合当前足迹比较研究的主要成果(表 2),可以得出以下结论:①每类足迹指标都只能反映环境影响的一个方面,故不宜单纯依靠某类指标进行决策;②足迹指标往往具有此消彼长的关系,降低某一足迹可能导致其他足迹指标的增高,因此需要权衡不同减排方案的潜在影响;③足迹指标在决策支持方面具有互补性,通盘考量才能较为全面、客观地评估人类活动的环境影响;④随着LCA广泛应用于足迹指标的量化,有必要系统分析基于LCA方法的足迹指标与基于非LCA方法的足迹指标在清单分析、环境影响评价等方面的方法学差异,辩证看待LCA与足迹研究之间的关系[31]

此外,足迹指标的分类研究也是近年来的热点之一。常见的生态足迹、碳足迹、水足迹、能源足迹[32]、生物多样性足迹[33]、化学足迹[34]、氮足迹[35]和磷足迹[36]均旨在评估由资源消费或废料排放导致的某一类具体环境影响,可视为影响导向型足迹;而如产品足迹[37]、部门足迹[38]、国家足迹[39]则致力于研究特定尺度对象的局部或全局环境影响,属于对象导向型足迹。从严格意义上来说,任何足迹应用研究均需要同时指明所属的对象类型和影响类型,如某一产品的碳足迹、部门的水足迹、国家的生态足迹等。

表2 足迹指标比较研究文献综述 Table 2 Literature review of comparative studies of footprint indicators
文献来源 Literature年份 Year足迹类型 Footprint categories比较方法 Comparative approach主要结论 Key findings
[25]2013碳足迹、能源足迹综述2类足迹在低碳和低能耗决策过程中的作用与局限方法的规范化和数据的可得性是提高二者结果可比性的关键
[26]2011碳足迹、氮足迹测算不同生物质能源和化石燃料产生的碳足迹和氮足迹木材燃烧的碳足迹最低,但同时氮足迹也最高,仅考虑单一足迹类型会产生决策偏差
[27]2011生态足迹、碳足迹、水足迹、矿物足迹基于火用能计算生物产品的4类足迹需要权衡不同情景下的足迹大小,例如为减少27%的碳足迹,其代价是增加了93%的生态足迹、水足迹和矿物足迹
[14]2014生态足迹、碳足迹、水足迹、能源足迹在足迹家族框架下评估4类足迹在数据可得性、指标覆盖度、方法兼容性和政策相关性等方面的特征与整合潜力能源足迹应考虑不可再生资源的损耗,四者结合可以测度生物圈、大气圈、水圈和岩石圈的环境影响
[12]2012生态足迹、碳足迹、水足迹在欧盟政策框架下全面评估3类足迹在不同环境领域的决策相关性生态足迹较之碳足迹和水足迹具有相对广泛的政策覆盖面,但只有发挥三者的互补优势才能更好地为可持续发展决策服务
[28]2012生态足迹、生物多样性足迹基于LCA分类计算1340种产品的2类足迹及其构成土地利用和碳排放在生物多样性足迹中的占比与在生态足迹中的不同,表明产品环境评估也应考虑对生物多样性的影响
[29]2009生态足迹、水足迹评估2类足迹在概念缘起、计算方法和结果评估等方面的异同水足迹较之生态足迹具有更高的地理定位性和更复杂的计算过程,二者在自然资本利用评估中具有互补性
[30]2012碳足迹、水足迹基于LCA测算番茄生产各环节的2类足迹碳足迹所引起的气候变化危害占整个环境影响的84%—96%,因而应成为减排的优先方向
2 主要问题与争论 2.1 足迹概念的定义

围绕如何定义“足迹”概念而展开的争论由来已久(表 3)。起初,人们习惯将其等同于Wackernagel[7]所定义的生态足迹,即人类的生物资源消费和化石能源碳排放所需占用的生态生产性土地和水域面积。Hammond[41]据此断言足迹必须以空间物理量为单位,并改称碳足迹为碳质量。而随着碳足迹和水足迹等指标的引入,足迹概念的外延日趋宽泛和多样化,很多学者将其视为表征资源消费水平或环境影响强度的指标。近年来,一系列经济社会领域足迹指标的兴起,如经济足迹[13]、社会足迹[13]、天堂足迹[48]、雇佣足迹[49]等,使得上述定义的合理性再次遭受质疑。为此,UNEP/SETAC[44]、Peters[45]、Steen-Olsen[46]分别从全球可持续性和消费者负责等视角重新审视足迹概念。可以预见,随着足迹家族成员阵容的扩大,足迹概念的内涵与外延也将继续深化和扩展,体现可持续发展环境、经济、社会三重支柱的广义足迹概念更能反映该领域发展的实际趋势。

表3 足迹定义文献综述 Table 3 Literature review of the definitions of the footprint concept
文献来源 Literature年份 Year足迹定义 Definition of the footprint
[40]2000足迹反映了人类接近或超过生物物理极限的程度
[6]2015足迹旨在评估资源消费和废弃物排放等人类活动对环境的压力和影响
[12]2012足迹从消费者角度表征人类活动的环境影响
[41]2007足迹是以公顷或平方米为计量单位的空间指标
[35]2012足迹是对单一或复合人类环境影响的度量,且与地球的人口承载力相对应
[42]2014足迹旨在全面测度人类活动的环境影响
[43]2014足迹是用于解释一系列复杂人为现象的生物物理环境影响的独立度量
[44]2009足迹反映了人类活动对全球可持续性的各种负荷和影响
[45]2010足迹为消费者提供有助于其调整自身行为的可持续消费信息
[46]2012足迹以消费者负责为原则,核算某项产品或消费行为所造成的直接和间接效应
[47]2002足迹是表征人类资源消费的指标,且独立于GDP*
[7]1996足迹测度了人类资源消费和碳排放所需占用的生态生产性土地和水域面积
*GDP: 国内生产总值Gross Domestic Product
2.2 计算方法的选取

足迹类指标的计算方法虽然众多,但均有一定的适用条件。因此,找寻规范化的计算路径颇有意义。目前,有关足迹计算的方法学讨论主要集中在生态足迹、碳足迹和水足迹,以这3类足迹指标为例(表 4),同时适用的量化方法主要包括以下几种:

(1) LCA 产业生态学的重要分析方法,用于评估产品系统物质流输入、输出的一系列潜在环境影响[73, 74]。由于LCA覆盖“从摇篮到坟墓”的产品全生命周期,有助于破除“有烟囱才有污染”的末端治理观念,加之技术框架成熟、分析过程规范、定量结果可靠,目前已成为足迹类指标特别是碳足迹计算的常规方法。基于过程的LCA是一种自下而上(bottom-up)的分析方法,在确定系统边界的过程中不可避免地存在截断误差,对数据精度的要求也较高,因此基本不适用于区域及以上尺度足迹研究。

(2) IOA 与LCA相反,是一种典型的自上而下(top-down)分析方法,由Leontief[75]提出并用于国民经济核算。该方法通过编制投入产出表,运用线性代数构建数学模型,既清晰地揭示了社会最终需求与各生产和再生产部门之间投入产出的复杂联系[76],又节省了大量的人力物力成本。不过该方法只能反映部门平均水平,难以针对具体产品。随着人类产业活动引发的生态环境问题日益严重,IOA也被用于研究温室气体排放和自然资源(水、土地、原材料等)利用的结构与数量等环境问题,相继与生态足迹、碳足迹和水足迹等足迹指标结合,成为部门、区域和国家尺度上足迹计算的主要方法。

(3) 混合方法(hybrid method) 兼具LCA和IOA的优势,既能保证研究精度又能节省人力物力,因而有着更为广泛的适用范围[20, 45, 66]。值得注意的是,表 4所谓的方法学大类“自下而上”和“自上而下”,尽管理论上计算过程完全相反[77],但实际界定并不十分清晰。以生态足迹的经典计算方法NFA为例[7, 57],GFN原先认为其属于IOA(自上而下)的一个特例[78],后又将其归入过程分析(自下而上)的范畴[79],可见自下而上与自上而下两种方法之间存在交叉重叠,这一部分不妨也视为混合方法。

上述3类方法的适用范围如图 1所示。尽管各尺度上的足迹指标均有对应的计算方法,但仍然缺乏一个横跨材料尺度到全球尺度的普适性方法。如何破解尺度转换性障碍是足迹家族研究面临的重大挑战。

2.3 权重系数的确定

权重赋值始终是指标整合研究中一个极具争议的话题[80, 81]。足迹家族力图揭示可持续发展复杂系统的运行机制,不可避免地需要通过指标加权来综合评估和权衡人类活动的影响。表 5对比了7类足迹指标内部各自的加权方式,发现均采用的是线性加权聚合,遵循“总体等于部分之和”的思想,这显然与系统论的核心理念“总体不等于部分之和”相抵触[86]。此外,由于权重的确定多少会带有一些主观性[80],所以无论是生态足迹的均衡因子加权,还是水足迹的等量加权,都存在质疑和批评声[87, 88]。但碳足迹是一个例外,其权重赋值基于反映环境机理的GWP特征化模型,能够客观地描述不同温室气体对气候变化的潜在影响,因而具有广泛的科学共识[16, 80, 88]

表4 生态足迹、碳足迹和水足迹在不同尺度研究中的方法归纳[14] Table 4 Summary of the approaches to the ecological,carbon and water footprints across scales[14]
尺度对象 Scale/object 生态足迹 Ecological footprint 碳足迹 Carbon footprint 水足迹 Water footprint
研究方法 Approach应用实例 Case研究方法 Approach应用实例 Case研究方法 Approach应用实例 Case
产品ProductLCAHuijbregts[50]LCACarballo-Penela[62]LCARidoutt[68]
自下而上Simmons[51]混合方法Virtanen[63]自下而上Chapagain[69]
自上而下Mamouni Limnios[52]自上而下van Oel[70]
部门SectorIOAHubacek[53]IOAHuang[64]IOASteen-Olsen[46]
自下而上Simmons[51]LCASanyé[65]自下而上van Oel[70]
自上而下Bastianoni[54]混合方法Berners-Lee[66]自上而下van Oel[70]
能值分析Zhao[55]
区域RegionIOA*Lenzen[56]IOAHertwich[67]IOAZhao[71]
NFA* *Borucke[57]自下而上Hoekstra[72]
NPPVenetoulis[58]
MEA* * *Burkhard[59]
能值分析Zhao[60]
火用能分析Chen[61]
*IOA: 投入产出分析Input-Output Analysis; * *NFA: 国家足迹核算National Footprint Accounts; * * *MEA: 千年生态系统评估Millennium Ecosystem Assessment; 凡文献未详细说明采用何种方法,均粗略划分为“自下而上”或“自上而下”

图1 不同尺度生态足迹、碳足迹和水足迹的适用方法 Fig.1 The range of applicability for different footprint approaches across scales

通过分析足迹指标内部的加权方式,对足迹间权重赋值的启示有以下几点:①目前的线性加权特别是等量加权,具有很大的主观性和不确定性,故很难反映复杂环境系统的客观实际;②部分足迹指标的核算账户有重叠(如碳足迹与能源足迹),进一步限制了足迹间加和的可能性;③解决各类足迹指标的计量单位不一致问题(如生态足迹基于面积、碳足迹基于质量、水足迹基于体积),一个可行的途径是结果标准化,对应的参考系既可以是特定的产品系统,也可以是某一区域乃至全球;④为降低二次加权(足迹内部和足迹之间)的不确定性,在采用如DDT等方法进行足迹间加权之前,在各类足迹内部的清单物质(如生态足迹中的土地类型、碳足迹中的温室气体)的分析及加和过程中,最好用科学的特征化因子取代人为权重系数。

3 研究展望 3.1 足迹类型学研究

随着新兴足迹的不断涌现(图 2),足迹类型学研究显得愈加重要。值得一提的是,我国学者近年来在海洋足迹[89]、化工足迹[90]、污染足迹[91, 92]以及基于生态系统服务的生态足迹[93, 94]等方面做了大量有益的探索,丰富和扩大了足迹家族的内涵与外延。有必要全面分析和归纳现有的足迹指标,考察其特性与共性,对某些有鲜明共性的指标进行归类,从而建立一批具有特定功能指向的足迹家族,以适应多角度、多层次评估人类活动影响的需要。例如,碳足迹虽然标榜指示气候变化,但事实上温室效应仅是气候变化的一个重要部分[45],其他如土地利用变化引发的碳源/汇改变,臭氧层空洞导致的紫外线辐射增加,硫化物、氮氧化物以及其他颗粒物对大气理化性质的影响等,长期而言均会对气候造成一定影响。因此,由这些对应环境足迹组成的足迹家族将比单单碳足迹更好地反映人为气候变化效应。

表5 各类足迹指标的加权方式 Table 5 Summary of the weighting schemes for different footprints
足迹类型 Footprint category单位 Unit权重 Weighting代表性组分(权重系数) Major components (weighting factors)参考文献 Reference
生态足迹 Ecologicalfootprinthm2均衡因子耕地 (2.51)林地 (1.26)草地 (0.46)渔业地 (0.37)碳吸收地 (2.51)建设地 (2.51)[39]
碳足迹* Carbon footprintkg CO2-eq.GWP CO2 (1)CH4 (25)N2O (298)HFCs (124—14800)PFCs (7390—12200)SF6 (22800)[82]
水足迹 Water footprintm3等量* *蓝水绿水灰水[29]
能源足迹* * * Energy footprinthm2当量因子原煤 (0.38)焦炭 (0.52)原油 (0.59)天然气 (0.42)火/水电 (0.28)核电 (3.91)[7]
氮足迹 Nitrogen footprintkg等量N2ONONH3NOxNO-3NH-4[35]
非生物资源足迹* * * * Abiotic resource footprintkg Sb-eq. ADP锑 (1)铝 (1.09×10-9)铜 (1.37×10-3)铁 (5.24×10-8)镁 (2.02×10-9)钠 (5.50×10-8)[84]
生物多样性 足迹* * * * * Biodiversity footprint数量等量气候变化贸易发展农业生产能源开采污染生境丧失[33]
*碳足迹的组成采用京都议定书所推荐的6大类温室气体, GWP: 全球暖化潜值Global Warming Potential; 这里取100a时间跨度,其单位为碳质量当量(kg CO2-eq.); * *等量加权(equal weighting)即指所有组分的权重系数均为1,此时权重系数略去不写; * * *能源足迹的权重系数是指每1 000 kg不同类型燃料折算成足迹时需要乘以的系数[83] ;* * * *非生物资源足迹主要考虑金属和矿物等的稀缺性, ADP: 非生物消耗潜值Abiotic Depletion Potential; 根据1999年主要非生物资源的全球储量及当年开采速度进行计算[85],其单位为锑质量当量(kg Sb-eq.); * * * * *由于相关资料缺乏,生物多样性足迹等量加权所有可能威胁物种数量的因素

此外,足迹类型学研究也将为探寻更加科学、合理和有针对性的足迹概念奠定基础。任何定义都有其适用的边界条件,即便是同一名称的足迹指标,也应根据采用的具体方法界定其所属类型。这无疑有赖于对足迹指标背后方法学异同的精准辨析。以水足迹为例,除了常规的WFN水足迹外,Pfister[95]、Ridoutt[68]提出基于水稀缺性指数(Water Scarcity Index,WSI)计算本地水足迹。WSI可以视为类似于GWP的特征化因子,所以基于WSI的水足迹应与碳足迹、而不是WFN水足迹归为一类。当然,足迹分类并非一成不变,应该根据研究需要灵活进行。有理由相信,通过推进足迹类型学,整个足迹家族研究的深度和广度都将得到拓展。

图2 足迹指标发展的时间轴 Fig.2 Timeline of the development of footprint indicators
3.2 基于MRIO模型的足迹指标量化研究

IOA自创立以来,在定量研究区域经济及其环境问题方面发挥了主导作用。在此基础上,区域间投入产出(Interregional Input-Output,IRIO)和MRIO等IOA扩展模型相继提出,旨在精准描绘部门间和区域间的全部投入产出关系。与IRIO相比,MRIO对数据资料要求较少,计算区域内技术系数和区域间贸易系数的过程也大幅简化[96, 97]。作为经济学原理成功应用于环境研究的范例,MRIO模型能够清晰追踪环境影响的地理空间分布信息[97],从而为量化废料排放或资源消费的跨区域转移与分布提供了一条切实可行的途径。总之,MRIO模型已成为中、宏观尺度上足迹类指标计算的重要方法[14, 98]

图3 基于MRIO系列模型的多足迹量化研究指标网络 Fig.3 Indicator network of the multi-footprinting quantitative analyses based on a series of MRIO models 节点间的紧密度随实线、长虚线和短虚线递减。土地足迹和能源足迹分别对应生态足迹中的生物生产性土地和碳吸收地部分。

采用文献计量学手段,对基于标准MRIO、环境扩展MRIO(EE-MRIO)或混合环境扩展MRIO(hybrid EE-MRIO)模型的多足迹指标(≥2)研究论文进行全面分析,发现当前MRIO足迹研究呈现碳足迹与水足迹双核驱动的指标分布网络,且此2节点间的联系也最为紧密(图 3)。这也基本上反映了不同足迹指标在足迹家族中的地位差异。总之,开展基于MRIO模型的足迹指标量化研究,既可以保证计算方法的一致性与兼容性,又能为指标结果的标准化和权重化奠定基础,是目前中、宏观尺度足迹家族量化整合的首选模型。

3.3 产品和机构环境足迹标准研究

欧盟于近期发布了产品环境足迹(Product Environmental Footprint,PEF)和机构环境足迹(Organization Environmental Footprint,OEF)标准方法导则[99, 100],首次提出从生命周期的角度规范化地评估产品和机构的整体环境影响。无论是OEF还是PEF都与足迹家族的概念紧密相连:PEF可以有效避免因依赖单一指标(如碳足迹)而导致的环境负担转嫁问题[101],未来还可能以标签的形式贴在每件出厂产品上,从环保角度为消费者选购商品提供参考;OEF由于涉及对所研究机构(工厂、企业、学校、社区等)生命周期系统边界的明确定义,并以此为基础分析整个系统内部及其与外部的复杂物质流动和交换,因而较之PEF更具挑战性[102]

值得注意的是,上述两份导则乍一发布就引发了两种截然不同的看法:支持者认为相较于现有LCA方法优势明显[38];反对者则认为与目前的LCA标准相抵触,不仅无益于方法统一,反而会加深学科内部的分歧与对立[37]。笔者认为,若要真正实践PEF和OEF,在影响类型的选取、权重系数的确定等问题上都需要更加详尽的操作细则。此外,厘清PEF与现有产品LCA[103, 104]等领域的关系将会对合理界定足迹概念起到借鉴作用,比如不少关于产品贸易隐含碳、虚拟水、虚拟土地的研究尽管没有采用“足迹”式称谓,但基本思路与碳足迹、水足迹、生态足迹相似甚至完全一致,是否一并纳入足迹研究范畴值得思考。

3.4 足迹家族与行星边界耦合研究

足迹家族表征人类活动作用于地球环境系统的影响,属于静态的回顾性评估,缺乏实际的决策咨询价值,无法回答产生影响的压力源是否可控[14, 105]。鉴于此,可以考虑将承载力的研究成果引入目前研究。行星边界(planetary boundaries)是近年来承载力领域最重要的一项成果,由Rockstrm[106, 107]于2009年提出,旨在为全球尺度的重要环境问题划定“生态红线”。如表 6所示,行星边界共设置了10项地球环境系统过程的生物物理参数阈值,并对工业革命以前和现在的水平进行估算,据此判断人类活动的“越界”程度。由于行星边界实现了对地球拐点的定量预测预警,Nature及其子刊曾辟专栏加以评论。国内迄今未见相关的文献报道,令人遗憾。

表6 行星边界概念框架[106, 107] Table 6 Conceptual framework for planetary boundaries
地球系统过程 Earth-system process参数 Parameters行星边界 Planetary boundary现状估值 Current value工业化前估值 Pre-industrial value是否越界 Boundary crossed
气候变化大气CO2浓度/(10-4%)350387280
Climate change辐射强迫值/(W/m2)11.50
生物多样性丧失 Biodiversity loss物种灭绝速度/(10-6/a)10>1000.1-1
氮循环Nitrogen cycle人工固氮量/(106 t/a)351210
磷循环Phosphorus cycle海水磷输入量/(106 t/a)118.5-9.5-1
平流层臭氧消耗 Stratospheric ozone depletionO3浓度/(DU)276283290
海洋酸化Ocean acidification全球平均表层海水饱和状态/(Ωarag)2.752.903.44
水资源利用Freshwater use淡水消费量/(km3/a)4 0002 600415
土地利用变化Land use change耕地占比/%1511.7极低
大气气溶胶沉降 Atmospheric aerosol loading大气颗粒物浓度(区域尺度)待定待定待定待定
化学污染Chemical pollution待定待定待定待定待定

当然,与很多生态环境领域研究成果一样,行星边界理论也招致了激烈的抨击和质疑[108, 109, 110]。一个关键性的问题在于其对现状参数的估计全部基于专家知识,因而带有较大的主观成分,而现状影响评估恰恰是足迹类指标的强项。因此,将足迹家族与行星边界结合起来,有望真正实现由环境影响评价向可持续性评价的转变[111]:一方面,足迹研究相对成熟的量化手段能够为行星边界提供更加客观、准确的现状评估结果作参照;另一方面,行星边界又为足迹家族预测人类活动的临界值、划定剩余的安全操作空间提供了可能。足迹家族与行星边界耦合研究亟需一批不同专业知识背景(如生态学、环境科学、资源科学、地球科学、系统科学、社会科学等)的专家学者广泛参与,跨学科、跨团队的国际学术合作势在必行。

参考文献
[1] Odum E P, Barrett G W. Fundamentals of Ecology. 5th ed. Belmont: Thomson Brooks/Cole Publishing Company, 2005.
[2] 阳含熙. 生态学的过去、现在和未来. 自然资源学报, 1989, 4 (4): 355-361.
[3] 包庆德, 张秀芬. 《生态学基础》: 对生态学从传统向现代的推进--纪念E.P.奥德姆诞辰100周年. 生态学报, 2013, 33 (24): 7623-7629.
[4] 徐中民, 程国栋, 张志强. 生态足迹方法的理论解析. 中国人口·资源与环境, 2006, 16 (6): 69-78.
[5] Chapman P M, Maher B. The need for truly integrated environmental assessments. Integrated Environmental Assessment and Management, 2014, 10 (2): 151-151.
[6] 方恺. 足迹家族:概念、类型、理论框架与整合模式. 生态学报, 2015, 35 (6): 1-13, doi: 10.5846/stxb201305211128
[7] Wackernagel M, Rees W E. Our Ecological Footprint: Reducing Human Impact on the Earth. Gabriola Island: New Society Publishers, 1996.
[8] Hoekstra A Y, Hung P Q. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade // Value of Water Research Report Series (No. 11). Delft: UNESCO-IHE Institute for Water Education, 2002.
[9] Wiedmann T, Minx J. A definition of 'carbon footprint'. ISAUK Research Report (No. 07-01), Durham, 2007.
[10] Giljum S, Hinterberger F, Lutter S. Measuring natural resource use: context, indicators and EU policy processes. SERI Background Paper 14. Vienna: SERI, 2008.
[11] Stoeglehner G, Narodoslawsky M. Implementing ecological footprinting in decision-making processes. Land Use Policy, 2008, 25 (3): 421-431.
[12] Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing B, Giljum, S. Integrating ecological, carbon and water footprint into a "Footprint Family" of indicators: Definition and role in tracking human pressure on the planet. Ecological Indicators, 2012, 16: 100-112.
[13] Č u č ek L, Klemeš J J, Kravanja Z. A review of Footprint analysis tools for monitoring impacts on sustainability. Journal of Cleaner Production, 2012, 34: 9-20.
[14] Fang K, Heijungs R, de Snoo G R. Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: Overview of a footprint family. Ecological Indicators, 2014, 36: 508-518.
[15] Hoekstra A Y, Wiedmann T O. Humanity's unsustainable environmental footprint. Science, 2014, 344: 1114-1117.
[16] Ridoutt B G, Pfister S. Towards an integrated family of footprint indicators. Journal of Industrial Ecology, 2013, 17 (3): 337-339.
[17] Cagiao J, Gómez B, Doménech J L, Mainar S G, Lanza H G. Calculation of the corporate carbon footprint of the cement industry by the application of MC3 methodology. Ecological Indicators, 2011, 11 (6): 1526-1540.
[18] Č u č ek L, Varbanov P S, Klemeš J J, Kravanja Z. Total footprints-based multi-criteria optimisation of regional biomass energy supply chains. Energy, 2012, 44 (1): 135-145.
[19] de Benedetto L, Klemeš J. The Environmental Performance Strategy Map: an integrated LCA approach to support the strategic decision-making process. Journal of Cleaner Production, 2009, 17 (10): 900-906.
[20] Ewing B R, Hawkins T R, Wiedmann T O, Galli A, Ercin E A, Weinzettel J, Steen-Olsen K. Integrating ecological and water footprint accounting in a multi-regional input-output framework. Ecological Indicators, 2012, 23: 1-8.
[21] Galli A, Weinzettel J, Cranston G, Ercin E. A Footprint Family extended MRIO model to support Europe's transition to a One Planet Economy. Science of the Total Environment, 2013, 461-462: 813-818.
[22] Ridoutt B G, Page G, Opie K, Huang J, Bellotti W. Carbon, water and land use footprints of beef cattle production systems in southern Australia. Journal of Cleaner Production, 2014, 73: 24-30.
[23] Shepon A, Israeli T, Eshel G, Milo R. EcoTime-An intuitive quantitative sustainability indicator utilizing a time metric. Ecological Indicators, 2013, 24: 240-245.
[24] Roelich K, Owen A, Thompson D, Dawkins E, West C. Improving the policy application of footprint indicators to support Europe's transition to a one planet economy: The development of the EUREAPA tool. Science of the Total Environment, 2014, 481: 662-667.
[25] Chakraborty D, Roy J. Energy and carbon footprint: numbers matter in low energy and low carbon choices. Current Opinion in Environmental Sustainability, 2013, 5 (2): 237-243.
[26] Č u č ek L, Klemeš J J, Varbanov P S, Kravanja Z. Life cycle assessment and multi-criteria optimization of regional biomass and bioenergy supply chains. Chemical Engineering Transactions, 2011, 25: 575-580.
[27] de Meester S, Callewaert C, de Mol E, van Langenhove H, Dewulf J. The resource footprint of biobased products: a key issue in the sustainable development of biorefineries. Biofuels, Bioproducts & Biorefining, 2011, 5 (5): 570-580.
[28] Hanafiah M M, Hendriks A J, Huijbregts M A J. Comparing the ecological footprint with the biodiversity footprint of products. Journal of Cleaner Production, 2012, 37: 107-114.
[29] Hoekstra A Y. Human appropriation of natural capital: a comparison of ecological footprint and water footprint analysis. Ecological Economics, 2009, 68 (7): 1963-1974.
[30] Page G, Ridoutt B, Bellotti B. Carbon and water footprint tradeoffs in fresh tomato production. Journal of Cleaner Production, 2012, 32: 219-226.
[31] Fang K, Heijungs R. Rethinking the relationship between footprints and LCA. Environmental Science & Technology, 2015, 49 (1): 10-11.
[32] Ferng J J. Toward a scenario analysis framework for energy footprints. Ecological Economics, 2002, 40 (1): 53-69.
[33] Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A. International trade drives biodiversity threats in developing nations. Nature, 2012, 486 (7401): 109-112.
[34] Guttikunda S K, Tang Y H, Carmichael G R, Kurata G, Pan L, Streets D G, Woo J-H, Thongboonchoo N, Fried A. Impacts of Asian megacity emissions on regional air quality during spring 2001. Journal of Geophysical Research, 2005, 110 (D20), D20301, doi: 10.1029/2004JD004921.
[35] Leach A M, Galloway J N, Bleeker A, Erisman J W, Kohn R, Kitzes J. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environmental Development, 2012, 1 (1): 40-66.
[36] Wang F, Sims J T, Ma L, Ma W, Dou Z, Zhang F. The phosphorus footprint of China's food chain: implications for food security, natural resource management, and environmental quality. Journal of Environmental Quality, 2011, 40 (4): 1081-1089.
[37] Finkbeiner M. Product environmental footprint-breakthrough or breakdown for policy implementation of life cycle assessment?. The International Journal of Life Cycle Assessment, 2014, 19 (2): 266-271.
[38] Pelletier N, Allacker K, Pant R, Manfredi S. The European Commission Organisation Environmental Footprint method: comparison with other methods, and rationales for key requirements. The International Journal of Life Cycle Assessment, 2014, 19 (2): 387-404.
[39] GFN. National Footprint Accounts. 2012 ed. [2014-04-25]. http://www.footprintnetwork.org/images/article_uploads/National_Footprint_Accounts_2012_Edition_Report.pdf.
[40] Costanza R. The dynamics of the ecological footprint concept. Ecological Economics, 2000, 32 (3): 341-345.
[41] Hammond G. Time to give due weight to the 'carbon footprint' issue. Nature, 2007, 445 (7125): 256-256.
[42] Lenzen M. An outlook into a possible future of footprint research. Journal of Industrial Ecology, 2014, 18 (1): 4-6.
[43] Lifset R. Frontiers in footprinting. Journal of Industrial Ecology, 2014, 18 (1): 1-3.
[44] UNEP/SETAC. Life cycle management-how business uses it to decrease footprint, create opportunities and make value chains more sustainable. [2011-10-05]. http://www.unep.fr/shared/publications/pdf/DTIx1208xPA-LifeCycleApproach-Howbusinessusesit.pdf.
[45] Peters G P. Carbon footprints and embodied carbon at multiple scales. Current Opinion in Environmental Sustainability, 2010, 2 (4): 245-250.
[46] Steen-Olsen K, Weinzettel J, Cranston G, Ercin A E, Hertwich E G. Carbon, land, and water footprint accounts for the European Union: Consumption, production, and displacements through international trade. Environmental Science & Technology, 2012, 46 (20): 10883-10891.
[47] Vogelsang K M. Footprint: ignoring the facts that don't fit the theory. Nature, 2002, 420 (6913): 267-267.
[48] Kocsis T. Looking through the dataquadrate: characterizing the human-environment relationship through economic, hedonic, ecological and demographic measures. Journal of Cleaner Production, 2012, 35: 1-15.
[49] Alsamawi A, Murray J, Lenzen M. The employment footprints of nations. Journal of Industrial Ecology, 2014, 18 (1): 59-70.
[50] Huijbregts M A J, Hellweg S, Frischknecht R, Hungerbühler K, Hendriks A J. Ecological footprint accounting in the life cycle assessment of products. Ecological Economics, 2008, 64 (4): 798-807.
[51] Simmons C, Lewis K, Barrett J. Two feet-two approaches: a component-based model of ecological footprinting. Ecological Economics, 2000, 32 (3): 375-380.
[52] Limnios E A M, Ghadouani A, Schilizzi S G, Mazzarol T. Giving the consumer the choice: A methodology for Product Ecological Footprint calculation. Ecological Economics, 2009, 68 (10): 2525-2534.
[53] Hubacek K, Giljum S. Applying physical input-output analysis to estimate land appropriation (ecological footprints) of international trade activities. Ecological Economics, 2003, 44 (1): 137-151.
[54] Bastianoni S, Galli A, Pulselli R M, Niccolucci V. Environmental and economic evaluation of natural capital appropriation through building construction: practical case study in the Italian context. AMBIO: A Journal of the Human Environment, 2007, 36 (7): 559-565.
[55] Zhao S, Song K, Gui F, Cai H W, Jin W H, Wu C W. The emergy ecological footprint for small fish farm in China. Ecological Indicators, 2013, 29: 62-67.
[56] Lenzen M, Kanemoto K, Moran D, Geschke A. Mapping the structure of the world economy. Environmental Science & Technology, 2012, 46 (15): 8374-8381.
[57] Borucke M, Moore D, Cranston G, Gracey K, Iha K, Larson J, Lazarus E, Morales J C, Wackernagel M, Galli A. Accounting for demand and supply of the biosphere's regenerative capacity: the National Footprint Accounts' underlying methodology and framework. Ecological Indicators, 2013, 24: 518-533.
[58] Venetoulis J, Talberth J. Refining the ecological footprint. Environment Development and Sustainability, 2008, 10 (4): 441-469.
[59] Burkhard B, Kroll F, Nedkov S, Müller F. Mapping ecosystem service supply, demand and budgets. Ecological Indicators, 2012, 21: 17-29.
[60] Zhao S, Li Z Z, Li W L. A modified method of ecological footprint calculation and its application. Ecological Modelling, 2005, 185 (1): 65-75.
[61] Chen B, Chen G Q. Modified ecological footprint accounting and analysis based on embodied exergy-a case study of the Chinese society 1981-2001. Ecological Economics, 2007, 61 (2/3): 355-376.
[62] Carballo-Penela A, Doménech J L. Managing the carbon footprint of products: the contribution of the method composed of financial statements (MC3). The International Journal of Life Cycle Assessment, 2010, 15 (9): 962-969.
[63] Virtanen Y, Kurppa S, Saarinen M, Katajajuuri J M, Usva K, Mäenpää I, Mäkelä J, Grönroos J, Nissinen A. Carbon footprint of food-approaches from national input-output statistics and a LCA of a food portion. Journal of Cleaner Production, 2011, 19 (16): 1849-1856.
[64] Huang Y A, Lenzen M, Weber C L, Murray J, Matthews H S. The role of input-output analysis for the screening of corporate carbon footprints. Economic Systems Research, 2009, 21 (3): 217-242.
[65] Sanyé E, Oliver-Solà J, Gasol C M, Farreny R, Rieradevall J, Gabarrell X. Life cycle assessment of energy flow and packaging use in food purchasing. Journal of Cleaner Production, 2012, 25: 51-59.
[66] Berners-Lee M, Howard D C, Moss J, Kaivanto K, Scott W A. Greenhouse gas footprinting for small businesses-The use of input-output data. Science of the Total Environment, 2011, 409 (5): 883-891.
[67] Hertwich E G, Peters G P. Carbon footprint of nations: a global, trade-linked analysis. Environmental Science & Technology, 2009, 43 (16): 6414-6420.
[68] Ridoutt B G, Pfister S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Global Environmental Change, 2010, 20 (1): 113-120.
[69] Chapagain A K, Hoekstra A Y, Savenije H H G., Gautam R. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecological Economics, 2006, 60 (1): 186-203.
[70] van Oel P R, Mekonnen M M, Hoekstra A Y. The external water footprint of the Netherlands: Geographically-explicit quantification and impact assessment. Ecological Economics, 2009, 69 (1): 82-92.
[71] Zhao X, Chen B, Yang Z F. National water footprint in an input-output framework-a case study of China 2002. Ecological Modelling, 2009, 220 (2): 245-253.
[72] Hoekstra A Y, Mekonnen M M. The water footprint of humanity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (9): 3232-3237.
[73] Guinee J B, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R, Ekvall T, Rydberg T. Life cycle assessment: past, present, and future. Environmental Science & Technology, 2010, 45 (1): 90-96.
[74] 施晓清, 李笑诺, 杨建新. 基于生命周期视角的产业资源生态管理效益分析--以虚拟共生网络系统为例. 生态学报, 2013, 33 (19): 6398-6410.
[75] Leontief W. Input-Output Economics. 2th ed. New York: Oxford University Press, 1986.
[76] 曹淑艳, 谢高地. 基于投入产出分析的中国生态足迹模型. 生态学报, 2007, 27 (4): 1499-1507.
[77] Feng K S, Chapagain A, Suh S, Pfister S, Hubacek K. Comparison of bottom-up and top-down approaches to calculating the water footprints of nations. Economic Systems Research, 2011, 23 (4): 371-385.
[78] Kitzes J, Galli A, Bagliani M, Barrett J, Dige G, Ede S, Erb K, Giljum S, Haberl H, Hails C, Jolia-Ferrier L, Jungwirth S, Lenzen M, Lewis K, Loh J, Marchettini N, Messinger H, Milne K, Moles R, Monfreda C, Moran D, Nakano K, Pyhälä A, Rees W, Simmons C, Wackernagel M, Wada Y, Walsh C, Wiedmann T. A research agenda for improving national Ecological Footprint accounts. Ecological Economics, 2009, 68 (7): 1991-2007.
[79] Weinzettel J, Steen-Olsen K, Hertwich E G., Borucke M, Galli A. Ecological footprint of nations: Comparison of process analysis, and standard and hybrid multiregional input-output analysis. Ecological Economics, 2014, 101: 115-126.
[80] Finnveden G, Hauschild M Z, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S. Recent developments in life cycle assessment. Journal of Environmental Management, 2009, 91 (1): 1-21.
[81] Ahlroth S, Nilsson M, Finnveden G, Hjelm O, Hochschorner E. Weighting and valuation in selected environmental systems analysis tools-suggestions for further developments. Journal of Cleaner Production, 2011, 19 (2/3): 145-156.
[82] IPCC. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2007.
[83] 方恺, 董德明, 林卓, 沈万斌. 基于全球净初级生产力的能源足迹计算方法. 生态学报, 2012, 32 (9): 2900-2909.
[84] Fang K, Heijungs R. Moving from the material footprint to a resource depletion footprint. Integrated Environmental Assessment and Management, 2014, 10 (4): 596-598.
[85] van Oers L, de Koning A, Guinée J B, Huppes G. Abiotic resource depletion in LCA. Road and Hydraulic Engineering Institute, Ministry of Transport and Water, Amsterdam, Netherlands, 2002.
[86] 张金萍, 秦耀辰, 张二勋. 中国区域可持续发展定量研究进展. 生态学报, 2009, 29 (12): 6702-6711.
[87] van den Bergh J C J M, Grazi F. Ecological footprint policy? Land use as an environmental indicator. Journal of Industrial Ecology, 2014, 18 (1): 10-19.
[88] Berger M, Finkbeiner M. Methodological challenges in volumetric and impact-oriented water footprints. Journal of Industrial Ecology, 2013, 17 (1): 79-89.
[89] 陈成忠, 林振山, 王晖. 人类最大可持续海洋足迹的模拟. 生态学报, 2008, 28 (2): 656-660.
[90] 范小杉, 高吉喜. 中国食品生产消费过程中农用化学品足迹分析. 现代化工, 2008, 28 (5): 79-84.
[91] 闵庆文, 焦雯珺, 成升魁. 污染足迹: 一种基于生态系统服务的生态足迹. 资源科学, 2011, 33 (2): 195-200.
[92] 焦雯珺, 闵庆文, 成升魁, 袁正, 李静, 戴忱. 污染足迹及其在区域水污染压力评估中的应用--以太湖流域上游湖州市为例. 生态学报, 2011, 31 (19): 5599-5606.
[93] 卢小丽. 基于生态系统服务功能理论的生态足迹模型研究. 中国人口·资源与环境, 2011, 21 (12): 115-120.
[94] 张义, 张合平. 基于生态系统服务的广西水生态足迹分析. 生态学报, 2013, 33 (13): 4111-4124.
[95] Pfister S, Koehler A, Hellweg S. Assessing the environmental impacts of freshwater consumption in LCA. Environmental Science & Technology, 2009, 43 (11): 4098-4104.
[96] Wiedmann T. A review of recent multi-region input-output models used for consumption-based emission and resource accounting. Ecological Economics, 2009, 69 (2): 211-222.
[97] 姚亮, 刘晶茹, 王如松, 尹科. 基于多区域投入产出(MRIO)的中国区域居民消费碳足迹分析. 环境科学学报, 2013, 33 (7): 2050-2058.
[98] Tukker A, Poliakov E, Heijungs R, Hawkins T, Neuwahl F, Rueda-Cantuche J M, Giljum S, Moll S, Oosterhaven J, Bouwmeester M. Towards a global multi-regional environmentally extended input-output database. Ecological Economics, 2009, 68 (7): 1928-1937.
[99] EC. Product Environmental Footprint (PEF) Guide. [2013-05-01]. http://ec.europa.eu/environment/eussd/pdf/footprint/PEF%20methodology%20final%20draft.pdf.
[100] EC. Organization Environmental Footprint (OEF) Guide. [2013-05-01]. http://ec.europa.eu/environment/eussd/pdf/footprint/OEF%20Guide_final_July%202012_clean%20version.pdf.
[101] Laurent A, Olsen S I, Hauschild M Z. Limitations of carbon footprint as indicator of environmental sustainability. Environmental Science & Technology, 2012, 46 (7): 4100-4108.
[102] Fang K, Heijungs R. There is still room for a footprint family without a life cycle approach-Comment on "towards an integrated family of footprint indicators". Journal of Industrial Ecology, 2014, 18 (1): 71-72.
[103] 杨建新, 王如松, 刘晶茹. 中国产品生命周期影响评价方法研究. 环境科学学报, 2001, 21 (2): 234-237.
[104] Hauschild M Z. Assessing environmental impacts in a life-cycle perspective. Environmental Science & Technology, 2005, 39 (4): 81A-88A.
[105] 刘某承, 王斌, 李文华. 基于生态足迹模型的中国未来发展情景分析. 资源科学, 2010, 32 (1): 163-170.
[106] Rockström J, Steffen W, Noone K, Persson Å, Chapin III F S, Lambin E F, Lenton T M, Scheffer M, Folke C, Schellnhuber H J, Nykvist B, de Wit C A, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder P K, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell R W, Fabry V J, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J A. A safe operating space for humanity. Nature, 2009, 461(7263): 472-475.
[107] Rockström J, Steffen W, Noone K, Persson Å, Chapin III F S, Lambin E, Lenton T M, Scheffer M, Folke C, Schellnhuber H J, Nykvist B, de Wit C A, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder P K, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell R W, Fabry V J, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J. Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society, 2009, 14 (2): 32-32.
[108] Barnosky A D, Hadly E A, Bascompte J, Berlow E L, Brown J H, Fortelius M, Getz W M, Harte J, Hastings A, Marquet P A, Martinez N D, Mooers A, Roopnarine P, Vermeij G, Williams J W, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell D P, Revilla E, Smith A B. Approaching a state shift in Earth's biosphere. Nature, 2012, 486 (7401): 52-58.
[109] Brook B W, Ellis E C, Perring M P, Mackay A W, Blomqvist L. Does the terrestrial biosphere have planetary tipping points? Trends in Ecology & Evolution, 2013, 28 (7): 396-401.
[110] Lenton T M, Williams H T. On the origin of planetary-scale tipping points. Trends in Ecology & Evolution, 2013, 28 (7): 380-382.
[111] Fang K, Heijungs R, de Snoo R G. Understanding the complementary linkages between environmental footprints and planetary boundaries in a footprint-boundary environmental sustainability assessment framework. Ecological Economics, 2015, 114: 218-226.