生态学报  2015, Vol. 35 Issue (17): 5797-5803

文章信息

江谱娟, 王东
JIANG Pujuan, WANG Dong
其它可利用食物对小花宽瓣黄堇(Corydalis giraldii Fedde)种子散布的影响
Effect of alternative food resources on the seed dispersal of an ant-dispersed plant Corydalis giraldii Fedde (Papaveraceae)
生态学报, 2015, 35(17): 5797-5803
Acta Ecologica Sinica, 2015, 35(17): 5797-5803
http://dx.doi.org/10.5846/stxb201311302852

文章历史

收稿日期: 2013-11-30
网络出版日期: 2014-11-03
其它可利用食物对小花宽瓣黄堇(Corydalis giraldii Fedde)种子散布的影响
江谱娟, 王东     
华中师范大学生命科学学院, 武汉 430079
摘要: 作为蚁播植物种子的重要传播者,蚂蚁不但取食种子上附着的油质体,也喜食其它富含蛋白质、脂类、糖和维生素等的食物,因此环境中其它可利用食物的存在可能会影响蚂蚁对种子的搬运进而影响种子散布,但目前对于这种影响是如何发生的仍不清楚。在野外研究了蚂蚁对小花宽瓣黄堇(Corydalis giraldii Fedde)种子、肉、蜂蜜、苹果、馒头等食物的趋性和偏好程度,以及添加食物后蚂蚁对种子的拜访频率和搬运效率,以揭示其它可利用食物如何影响蚂蚁觅食和取食偏好,进而影响小花宽瓣黄堇种子散布。结果显示,在所诱捕的8种蚂蚁中,玉米毛蚁(Lasius alienus (Foerster))和丝光蚁(Formica fusca Linnaeus)是小花宽瓣黄堇种子的主要搬运者,不同食物诱捕的玉米毛蚁数量无显著性差异(P > 0.05),但蜂蜜和苹果诱捕的丝光蚁数量均显著大于种子(P <0.05)。玉米毛蚁和丝光蚁均为杂食性,在觅食中分别行使群体募集和简单协作性募集。在仅有种子的对照处理中,玉米毛蚁和丝光蚁对种子的拜访频率分别为(38.73±4.57)头和(30.8±2.87)头(40 min, n=15),两种蚂蚁对种子的拜访频率差异不显著(P > 0.05);玉米毛蚁和丝光蚁搬运种子的效率分别为(33.87±4.22)粒和(16.27±3.35)粒 (40 min, n=15),玉米毛蚁的搬运效率显著高于丝光蚁(P <0.05)。与对照相比,添加馒头、苹果和蜂蜜后丝光蚁对种子的拜访频率显著降低(P <0.05),分别为(15.6±3.61)头、(9.07±1.4)头和(7.67±1.58)头(40 min, n=15);添加苹果和蜂蜜后丝光蚁对种子的搬运效率显著降低(P <0.05),分别为(3.47±1.17)粒和(2.87±0.9)粒(40 min, n=15);添加不同食物后玉米毛蚁对种子的拜访频率和搬运效率均无显著变化(P > 0.05)。研究结果表明行使群体募集的玉米毛蚁比行使简单协作募集的丝光蚁有更高的种子搬运效率,添加食物后影响丝光蚁对种子的拜访频率和搬运效率,这说明其它可利用食物对小花宽瓣黄堇种子散布的影响与搬运蚂蚁的种类及其觅食的募集方式有关。研究结果可为进一步研究蚂蚁与植物(种子)间的互利共生关系及其影响因素提供资料。
关键词: 小花宽瓣黄堇    种子散布    蚂蚁    觅食偏好    募集方式    可利用食物    
Effect of alternative food resources on the seed dispersal of an ant-dispersed plant Corydalis giraldii Fedde (Papaveraceae)
JIANG Pujuan, WANG Dong     
College of Life Sciences, Central China Normal University, Wuhan 430079, China
Abstract: Myrmecochory is a widespread and important ecological interaction in which ants benefit by obtaining nutrition from lipid-rich elaiosomes attached to seeds. Plants benefit from having their seeds dispersed from parent plants. Given that ants are generally polyphagous, we hypothesized that the availability of alternative food resources other than the diaspore itself may influence ant-mediated seed dispersal. We used the myrmecochore Corydalis giraldii Fedde (Papaveraceae), the seeds of which are attached to a lipid-rich elaiosome that is attractive to ants, to investigate: (1) whether dispersing ants are more prone to alternative resources than the diaspore itself; and (2) how the availability of alternative resources affects ant activity and feeding preference, and, hence, ant visiting frequency to seeds and the rate of seed removal. In a field experiment, the pitfall trapping method was used to examine ant feeding preference among five dietary items (i.e. meat, honey, apple, bread, and seed of C. giraldii). Additionally, two artificial diaspore depots were offered near the ant nests, one with seeds and the other with either meat, honey, bread, apple fragments, or no food (control), to determine the effect of alternative food resources on seed removal. While eight ant taxa (ca. 837 individuals) were captured in the sampling plots, only two species (Lasius alienus and Formica fusca) were dominant and effective dispersers, with mass recruitment and simple cooperative recruitment, respectively. In fifteen 40-minute trials, the mean number of ant visits to the seeds was 38.73±4.57 times, and the mean rate of seed removal was 33.87±4.22 in L. alienus. No significant difference in either ant visit frequency or seed removal rate was found in L. alienus following the addition of alternative food types (P > 0.05). Both ant visit frequency and the rate of seed removal in F. fusca were reduced significantly by the addition of alternative food (P <0.05). In particular, ant visit frequency decreased from the mean of 30.8±2.87 individuals (n=15, 40 min) in the control to 15.6 ± 3.61, 9.07±1.4,and 7.67±1.58 individuals with the addition of bread, apple fragments, and honey, respectively. The rate of seed removal decreased from 16.27±3.35 individuals (n=15, 40 min) in the control to 3.47±1.17 and 2.87±0.9 with the addition of apple fragments or honey, respectively. This suggested that the frequency of ant visits and removal rate of seeds in F. fusca strongly differed from that in L. alienus when alternative foods were presented along with the plant. We concluded that the indirect effects of alternative resources on seed dispersal depended on ant identity and its recruitment mode, contributing to the understanding of the fate of diaspores adapted for ant dispersal.
Key words: Corydalis giraldii Fedde    seed dispersal    ant    feeding preference    recruitment mode    alternative food resources    

蚂蚁通常是杂食性动物,一些搬运种子的蚂蚁除取食种子上附着的油质体外也取食其它含有蛋白质、脂类、糖和维生素的食物[9, 10, 11, 12]。如玉米毛蚁(Lasius alienus (Foerster))可以取食种子上的油质体[13]、节肢动物和蜜露[14],丝光蚁(Formica fusca Linnaeus)可以取食种子上的油质体、昆虫、蚜虫分泌物和花蜜等[15]。很多依赖蚂蚁传播种子的草本植物是热带尤其是温带森林林下草本层的优势成份[16, 17, 18],立地生境中有蚂蚁相对丰富的食物来源[14, 15, 19, 20]。有研究发现其它食物的存在如蜂蜜、黄粉虫、芝麻种子等可促进蚂蚁对铁筷子(Helleborus foetidus Linnaeus)种子的拜访频率和搬运效率[21]。也有研究推测立地生境中其它食物的存在有可能降低蚂蚁对种子的搬运效率[13, 20, 22, 23]。目前对立地生境中其它可利用食物如何影响蚂蚁对植物种子的散布仍不清楚。小花宽瓣黄堇(Corydalis giraldii Fedde)种子上有油质体,是典型的蚁播植物。本文在野外研究了搬运小花宽瓣黄堇种子的蚂蚁对其它可利用食物的趋性及偏好程度,以及其它食物对小花宽瓣黄堇种子散布的间接影响,以期为进一步研究蚂蚁与植物(种子)之间的互利共生关系及其影响因素提供参考。

1 材料与方法 1.1 研究地点和研究材料

研究样地位于秦岭南坡陕西省紫柏山自然保护区(33°40′N,106°49′E,Alt. 1278 m)。该地属于亚热带北缘山区暖温带湿润季风气候区。年平均气温11.5 ℃,年平均日照1804.4 h,年平均降雨量886.3 mm。实验样地设置在人为干扰较弱的林缘和旷地生境。

实验材料小花宽瓣黄堇为罂粟科(Papaveraceae)一年生草本植物,其种子上附着有吸引蚂蚁取食和搬运的油质体,是典型的蚁播植物,在秦岭南坡广泛分布于林缘、旷地等生境。实验在2013年5—7月小花宽瓣黄堇种子成熟和自然释放期间开展。新鲜的成熟种子在收集后随即用于实验或置于冰箱保鲜并在1—3 d内用于实验。

1.2 研究方法 1.2.1 陷阱诱捕法

在小花宽瓣黄堇种子释放期,设置相距1 m的15个1 m × 1 m样方,在每个样方内设5个陷阱,按对角线放射状排列,将塑料杯(口径为7.5 cm × 高9 cm)埋入地下,杯口与地面齐平,杯四周用立地泥土填平。前期的实验表明,3%甲醛的水溶液对玉米毛蚁和丝光蚁觅食活动影响较小,同时又可以防止蚂蚁逃跑,因此本实验在塑料杯中盛1/3的3%甲醛的水溶液。在5个杯子中分别用小花宽瓣黄堇种子、肉、蜂蜜、苹果、馒头等做诱饵,诱饵用支持物(铁丝)托起,并保持与杯口平齐、靠近杯口边缘1 cm处。每个陷阱上方放置用支撑物固定的防雨塑料布。放置48 h后,将诱捕到的蚂蚁转入盛有75%乙醇的小瓶内分别保存。实验处理15个重复。对蚂蚁进行种类鉴定和数量统计。另外,用小花宽瓣黄堇种子做立地观察实验,确定种子的主要搬运蚂蚁。

1.2.2 食物添加实验

玉米毛蚁和丝光蚁是实验样地中小花宽瓣黄堇种子的主要搬运者。在小花宽瓣黄堇植株附近选择外露迹象相似的玉米毛蚁、丝光蚁的蚁巢,将20粒种子和添加食物(肉、苹果和馒头分别约0.5 g,蜂蜜约0.1 mL)(参照Boulay等[21]、张智英等[24]的处理方法)放置于距蚁巢口20 cm处(种子与食物相距5 cm,并分别置于直径3 cm的圆纸片上)。共5个处理,即种子(对照)、种子-肉、种子-苹果、种子-馒头和种子-蜂蜜。实验中随时补充蚂蚁搬运的种子和食物,连续观察40 min,每个处理重复15次。分别记录不同处理中蚂蚁拜访种子和食物的数量(即蚂蚁发现食物后在单位时间内召集的蚂蚁头数),以及被蚂蚁搬运的种子数。统计蚂蚁对食物和种子的拜访频率及蚂蚁对种子的搬运效率。拜访频率为单位时间(40 min)内拜访食物、种子的蚂蚁数,搬运效率为单位时间(40 min)内蚂蚁搬运的种子数量。

1.3 数据分析

运用SPSS 17.0统计学软件进行数据分析。采用Kruskal-Wallis H分别检验食物诱捕的玉米毛蚁和丝光蚁数量及不同处理中玉米毛蚁和丝光蚁对食物和种子的拜访频率与对种子的搬运效率差异的显著水平。用独立样本t检测(Independent-Samples t test)比较玉米毛蚁和丝光蚁对种子的拜访频率和搬运效率差异的显著水平。

2 结果与分析 2.1 食物对蚂蚁的吸引

在样地中共诱捕到蚂蚁标本837头,隶属2亚科7属8种。其中,多栉蚁(Formica polyctena Foerster)332头、丝光蚁133头、史氏盘腹蚁(Aphaenogaster smythiesi Forel)110头、草地铺道蚁(Terramorium caespitum (L.))97头、玉米毛蚁89头、尼特纳大头蚁(Pheidole nietneri Emery)42头、弓背蚁(Camponotus sp.)23头和举腹蚁(Crematogaster sp.)11头。其中,多栉蚁、史氏盘腹蚁、草地铺道蚁等多立地取食油质体或搬运种子的数量极少。玉米毛蚁和丝光蚁是种子的主要搬运者,不同食物所诱捕的数量见表 1

小花宽瓣黄堇种子、肉、馒头、苹果和蜂蜜对玉米毛蚁都表现出一定的吸引作用,但吸引作用的大小在各种食物间无显著性差异(P > 0.05)。小花宽瓣黄堇种子、肉、馒头、苹果和蜂蜜对丝光蚁也表现出吸引作用。其中,蜂蜜和苹果的吸引作用均显著大于种子(P < 0.05),蜂蜜的吸引作用显著大于肉(P < 0.05),其它食物间无显著性差异(P > 0.05)。

2.2 主要搬运蚂蚁对种子和其它食物的拜访频率和搬运种子的效率

玉米毛蚁发现食物后召集多头蚂蚁(约37头,n=15)行使群体募集方式觅食,丝光蚁发现食物后召集少量蚂蚁(约5头,n=15)行使简单协作募集方式觅食。在仅有种子的对照处理中,玉米毛蚁和丝光蚁对种子的拜访频率分别为(38.73±4.57)头和(30.8±2.87)头(40 min,n=15),差异不显著(P > 0.05);玉米毛蚁搬运种子的效率显著高于丝光蚁(P < 0.05),分别为(33.87±4.22)粒和(16.27±3.35)粒(40 min,n=15)。

表1 不同食物诱集到的玉米毛蚁和丝光蚁的数量 Table 1 Ant number of Lasius alienus and Formica fusca collected with different foods
食物类型 Food items玉米毛蚁 L.alienu/头丝光蚁 F. fusca/头食物类型 Food items玉米毛蚁 L.alienu/头丝光蚁 F. fusca/头
种子 Seed0.93±0.12 a0.87±0.09 c 肉 Meat1.2±0.11 a1.20±0.11 bc
馒头 Bread0.87±0.16 a1.80±0.46 abc 苹果 Apple1.4±0.27 a1.87±0.34 ab
蜂蜜 Honey1.53±0.22 a3.13±0.68 a
 表中数据为平均值±标准误(n=15),同列数据后标有不同字母的表示差异显著(P < 0.05)

在添加不同食物处理中(图 1),玉米毛蚁对肉、馒头、苹果和蜂蜜的拜访频率分别为(30.47±4.92)头、(22.93±1.90)头、(43.07±3.49)头和(57.13±3.68)头(40 min,n=15),其中玉米毛蚁对蜂蜜的拜访频率显著大于肉和馒头(P < 0.05),玉米毛蚁对苹果的拜访频率显著大于馒头(P < 0.05);丝光蚁对肉、馒头、苹果和蜂蜜的拜访频率分别为(13.13±2.81)头、(22.27±1.2)头、(25.13±3.1)头和(29.33±3.83)头(40 min,n=15),其中对蜂蜜的拜访频率显著大于肉(P < 0.05)。食物添加对玉米毛蚁拜访种子的频率和搬运种子的效率均无显著影响(P > 0.05)(图 1)。

添加馒头、苹果和蜂蜜后,丝光蚁对种子的拜访频率分别为(15.6±3.61)头、(9.07±1.4)头和(7.67±1.58)头(40 min,n=15),与对照相比,馒头、苹果和蜂蜜均显著降低了丝光蚁对种子的拜访频率(P < 0.05);添加苹果和蜂蜜后,丝光蚁对种子的搬运效率分别为(3.47±1.17)粒和(2.87±0.9)粒(40 min,n=15),与对照相比,苹果和蜂蜜均显著降低了丝光蚁对种子的搬运效率(P < 0.05)(图 1)。

图1 蚂蚁对其它食物的拜访频率及对种子的拜访频率和搬运效率 (平均值±标准误) Fig.1 The visit frequency of alternative foods and Corydalis giraldii seeds of ants and removal rate of seeds in two dispersing ants influenced by alternative foods (Mean±SE) 不同字母表示处理间的差异水平为P < 0.05
3 讨论与结论

蚂蚁散布是自然界中普遍存在的互利共生关系[1, 2],蚂蚁和植物都从这种关系中获益,蚂蚁得到食物,植物种子得到散布,双方的适合度都能得到提高[3, 4, 5, 25, 26]。蚂蚁是杂食性动物,搬运种子的蚂蚁除取食种子上的油质体外通常也取食节肢动物、蚜虫分泌物或花蜜等其它食物[9, 14, 15]。花蜜、蚜虫蜜露等富含糖成份的食物是蚂蚁最喜食的食物之一[19]。从食物来源上讲,这些含糖的食物比节肢动物(如蜘蛛、千足虫、蜈蚣及昆虫等)的活体、尸体或尸体碎片等食物更稳定[27, 28]。另外,含糖的食物极易残留在搜寻蚂蚁的上颚或触角上,募集来的蚂蚁可通过气味或短暂的触碰就能获得食源信息,从而使觅食时间缩短和实现能量最大摄入[29, 30]。有研究表明,一些搬运蚂蚁对植物种子上油质体的取食是一种净收益相对低的觅食策略,如铁筷子种子的搬运者盘腹蚁(Aphaenogaster senilis)、曼陀罗属植物(Datura wrightiiD. discolor)种子的搬运者收获蚁(Pogonomyrmex californicus)对油质体的觅食,而且研究发现仅取食油质体的蚂蚁,其工蚁存活率和产卵量均显著降低[11, 31]。因此在有其它食物可选择的情况下,种子上附着的油质体不一定是蚂蚁最偏好的食物[11, 32]。这在一定程度上说明蚂蚁在不同食物间的觅食存在选择偏好[9, 10, 11, 12]。本研究也发现,种子、肉、馒头、苹果和蜂蜜等食物对玉米毛蚁和丝光蚁都有一定的吸引作用,但玉米毛蚁在不同食物间的偏好无显著差异;而丝光蚁对蜂蜜和苹果的偏好显著大于种子,对蜂蜜的偏好显著大于肉。

蚂蚁作为社会性的昆虫其觅食行为复杂。通常当某一蚂蚁成功觅食后,有时会召集其他少量其他个体前去搬运即行使简单协作性募集,有时召集同伴列队前去搬运即行使小组募集,有时则召集大批工蚁一起涌向食物进行搬运即行使群体募集。本研究结果表明,在有或无其它食物添加时,行使群体募集的玉米毛蚁都比行使简单协作募集的丝光蚁对种子有更高的搬运效率,这与已有的研究结论即行使群体募集的蚂蚁比单独搬运种子的蚂蚁通常有较高的搬运效率是一致的[33, 34]

动物在捕食或传播种子过程中,环境中食物呈随机、小块或斑块状等多种分布及觅食环境的复杂性等因素都会影响其觅食行为和觅食成功,进而影响种子散布。有研究发现,入侵种旱雀麦(Bromus tectorum)种子数量的增加可降低啮齿动物对乡土种芨芨草(Achnatherum hymenoides)、灰色赖草(Leymus cinereus) 和拟鹅观草(Pseudoroegneria spicata)等种子被捕食的概率,不同食物对种子被捕食的影响存在关联效应(associational effect)[35]。鹿鼠(deer mice)、白足鼠(white-footed mice)等啮齿类动物在添加可利用食物后对种子的搬运效率显著降低[36, 37, 38]。有研究表明,蜂蜜、黄粉虫、芝麻种子等可促进蚂蚁对铁筷子种子的搬运效率[21],但也有研究推测其它食物的存在可能会降低蚂蚁对某些植物种子的搬运效率[13, 20, 22, 23]。本研究结果中,玉米毛蚁或丝光蚁在发现小花宽瓣黄堇种子或其它食物后会募集更多的蚂蚁前去搬运和取食。其中,玉米毛蚁召集大量蚂蚁行使群体募集方式觅食,但添加食物后对玉米毛蚁拜访种子的频率和搬运种子的效率无显著影响;丝光蚁召集少量蚂蚁行使简单协作募集方式觅食,尽管前去觅食的蚂蚁数量有所增加,但这些行使简单协作搬运的蚂蚁趋向于“更偏好”的食物如蜂蜜和苹果等。与对照相比,添加苹果、蜂蜜后丝光蚁拜访和搬运种子的蚂蚁数量相对减少,丝光蚁对种子的拜访频率和搬运效率降低。这说明添加食物的影响作用在不同募集方式的蚂蚁间存在差异。添加食物对蚂蚁散布的影响不但与搬运蚂蚁的种类和食物类型有关,也与搬运蚂蚁的募集方式及其觅食偏好相关。另外,与对照相比,在添加食物没有被耗尽的情况下,玉米毛蚁和丝光蚁仍搬运小花宽瓣黄堇种子,这很可能与募集的蚂蚁在其搜寻和发现食物过程中碰见种子的概率有关[30, 39]

紫堇属是北温带分布的大属,属内植物种子上常具有吸引蚂蚁取食和搬运的油质体,植物(种子)与蚂蚁在长期的历史演化过程中形成了一种互利共生关系。本研究表明,作为小花宽瓣黄堇种子的主要搬运者,行使群体募集的玉米毛蚁比行使简单协作募集的丝光蚁对种子有更高的搬运效率,生境中除种子外其它食物的存在会降低丝光蚁对种子的拜访频率和搬运效率,但对玉米毛蚁拜访种子的频率和搬运种子的效率没有显著影响。研究结果可为进一步研究蚂蚁与植物(种子)之间的互利共生关系及其影响因子提供资料,也为生物多样性保护提供参考。
致谢: 西南林业大学徐正会教授帮助鉴定蚂蚁,秦岭紫柏山自然保护区给予支持和帮助,特此致谢。

参考文献
[1] Sernander R. Entwurf einer Monographie der europäischen Myrmecochoren. Kungliaga Svenska Vetenskapsakademiens Handlingar, 1906, 41(7): 1-410.
[2] Lengyel S, Gove A D, Latimer A M, Majer J D, Dunn R R. Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: a global survey. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12(1): 43-55.
[3] Beattie A J. The Evolutionary Ecology of Ant-Plant Mutualisms. Cambridge: Cambridge University Press, 1985.
[4] Beattie A J, Hughes L. Ant-plant interactions // Herrera C M, Pellmyr O. Plant-Animal Interactions: An Evolutionary Approach. Oxford: Blackwell Science, 2002: 211-235.
[5] Giladi I. Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory. Oikos, 2006, 112(3): 481-492.
[6] Andersen A N, Morrison S C. Myrmecochory in Australia's seasonal tropics: effects of disturbance on distance dispersal. Australian Journal of Ecology, 1998, 23(5): 483-491.
[7] Lengyel S, Gove A D, Latimer A M, Majer J D, Dunn R R. Ants sow the seeds of global diversification in flowering plants. PLoS One, 2009, 4(5): e5480.
[8] Dominguez-Haydar Y, Armbrechi I. Response of ants and their seed removal in rehabilitation areas and forests at El Cerrejón Coal mine in Colombia. Restoration Ecology, 2011, 19(201): 178-184.
[9] Carroll C R, Janzen D H. Ecology of foraging by ants. Annual Review of Ecology and Systematics, 1973, 4(1): 231-257.
[10] Barroso A, Amor F, Cerdá X, Boulay R R. Dispersal of non-myrmecochorous plants by a "keystone disperser" ant in a Mediterranean habitat reveals asymmetric interdependence. Insectes Sociaux, 2013, 60(1): 75-86.
[11] Caut S, Jowers M J, Cerdá X, Boulay R R. Questioning the mutual benefits of myrmecochory: a stable isotope-based experimental approach. Ecological Entomology, 2013, 38(4): 390-399.
[12] Mashaly A A M, Al-Mekhlafi F A, Al-Qahtani A M. Foraging activity and food preferences of the samsum ant, Pachycondyla sennaarensis. Bulletin of Insectology, 2013, 66(2): 187-193.
[13] Culver D C, Beattie A J. Myrmecochory in Viola: dynamics of seed-ant interactions in some West Virginia species. The Journal of Ecology, 1978, 66(1): 53-72.
[14] Feener D H. Response of Pheidole morrisi to two species of enemy ants, and a general model of defense behavior in Pheidole (Hymenoptera: Formicidae). Journal of the Kansas Entomological Society, 1987, 60(4): 569-575.
[15] Morley B D W. A study of the ant fauna of a garden, 1934-42. Journal of Animal Ecology, 1944, 13(2): 123-127.
[16] Berg R Y. Myrmecochorous plants in Australia and their dispersal by ants. Australian Journal of Botany, 1975, 23(3): 475-508.
[17] Beattie A J, Culver D C. The guild of myrmecochores in the herbaceous flora of West Virginia forests. Ecology, 1981, 62(1): 107-115.
[18] Rice B, Westboy M. Myrmecochory in sclerophyll vegetation of the West Head, New South Wales. Australian Journal of Ecology, 1981, 6(3): 291-298.
[19] Rico-Gray V. Use of plant-derived food resources by ants in the dry tropical lowlands of Coastal Veracruz, Mexico. Biotropica, 1993, 25(3): 301-315.
[20] Guitián J, Garrido J L. Is early flowering in myrmecochorous plants an adaptation for ant dispersal? Plant Species Biology, 2006, 21(3): 165-171.
[21] Boulay R, Fedriani J M, Manzaneda A J, Cerdá X. Indirect effects of alternative food resources in an ant-plant interaction. Oecologia, 2005, 144(1): 72-79.
[22] Kalisz S, Hanzawa F M, Tonsor S J, Thiede D A, Voigt S. Ant-mediated seed dispersal alters pattern of relatedness in a population of Trillium grandiflorum. Ecology, 1999, 80(8): 2620-2634.
[23] Prinzing A, Dauber J, Hammer E, Hammouti N, Böhning-Gaese K. Does an ant-dispersed plant, Viola reichenbachiana, suffer from reduced seed dispersal under inundation disturbances? Basic and Applied Ecology, 2008, 9(2): 108-116.
[24] 张智英, 李玉辉, 张亮. 不同诱饵对搬运舞草种子蚂蚁诱集作用比较. 昆虫知识, 2006, 43(2): 196-199.
[25] 张智英, 曹敏, 杨效东, 赵志模. 舞草种子的蚂蚁传播. 生态学报, 2001, 21(11): 1847-1853.
[26] 鲁长虎. 蚁对植物种子的传播作用. 生态学杂志, 2002, 21(2): 64-66.
[27] Retana J, Cerdá X, Espadaler X. Arthropod corpses in a temperate grassland: a limited supply? Ecography, 1991, 14(1): 63-67.
[28] Cerdá X, Retana J, Cros S. Prey size reverses the outcome of interference interactions of scavenger ants. Oikos, 1998, 82(1): 99-110.
[29] Cassill D. Rules of supply and demand regulate recruitment to food in an ant society. Behavioral Ecology and Sociobiology, 2003, 54(5): 441-450.
[30] Le Breton J, Fourcassié V. Information transfer during recruitment in the ant Lasius niger L. (Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 2004, 55(3): 242-250.
[31] Marussich W A. Testing myrmecochory from the ant's perspective: the effects of Datura wrightii and D. discolor on queen survival and brood production in Pogonomyrmex californicus. Insectes Sociaux, 2006, 53(4): 403-411.
[32] Heithaus E R, Heithaus P A, Liu S Y. Satiation in collection of myrmecochorous diaspores by colonies of Aphaenogaster rudis (Formicidae: Myrmicinae) in Central Ohio, USA. Journal of Insect Behavior, 2005, 18(6): 827-846.
[33] Hughes L, Westoby M. Effect of diaspore characteristics on removal of seeds adapted for dispersal by ants. Ecology, 1992, 73(4): 1300-1312.
[34] Gorb S N, Gorb E V. Effect of ant species composition on seed removal in deciduous forest in Eastern Europe. Oikos, 1999, 84(1): 110-118.
[35] Ostoja S M, Schupp E W, Durham S, Klinger R. Seed harvesting is influenced by associational effects in mixed seed neighbourhoods, not just by seed density. Functional Ecology, 2013, 27(3): 775-785.
[36] Sullivan T P. The use of alternative foods to reduce conifer seed predation by the deer mouse, (Peromyscus maniculatus). Journal of Applied Ecology, 1979, 16(2): 475-495.
[37] LoGiudice K, Ostfeld R. Interactions between mammals and trees: predation on mammal-dispersed seeds and the effect of ambient food. Oecologia, 2002, 130(3): 420-425.
[38] Enders M S, Vander Wall S B. Black bears Ursus americanus are effective seed dispersers, with a little help from their friends. Oikos, 2012, 121(4): 589-596.
[39] Gordon D M. The expandable network of ant exploration. Animal Behaviour, 1995, 50(4): 995-1007.