生态学报  2014, Vol. 34 Issue (8): 2061-2067

文章信息

殷睿, 徐振锋, 吴福忠, 杨万勤, 李志萍, 熊莉, 肖洒, 王滨
YIN Rui, XU Zhengfeng, WU Fuzhong, YANG Wanqin, LI Zhiping, XIONG Li, XIAO Sa, WANG Bin
雪被斑块对川西亚高山两个森林群落冬季土壤氮转化的影响
Effects of snow pack on wintertime soil nitrogen transformation in two subalpine forests of western Sichuan
生态学报, 2014, 34(8): 2061-2067
Acta Ecologica Sinica, 2014, 34(8): 2061-2067
http://dx.doi.org/10.5846/stxb201301180116

文章历史

收稿日期:2013-1-18
修订日期:2013-9-4
雪被斑块对川西亚高山两个森林群落冬季土壤氮转化的影响
殷睿, 徐振锋, 吴福忠, 杨万勤, 李志萍, 熊莉, 肖洒, 王滨    
四川农业大学生态林业研究所, 林业生态工程重点实验室, 成都 611130
摘要:为了解气候变暖情景下雪况变化对高寒森林冬季土壤氮转化的影响,测定了川西亚高山冷杉(Abies faxoniana)+红桦(Betula albo-sinensis)混交林(MF)和冷杉次生林(SF)三类雪被斑块(浅雪被、中厚度雪被和厚雪被)内冬季土壤氮矿化特征。结果表明:经过一个冬季(2011-2012),两个森林群落土壤净氮氨化量都为负值,净氮硝化量都为正值,且净氮硝化量显著高于净氮氨化量;冬季土壤氮氨化、硝化、矿化和固持量都是中度雪被厚度最高,但各雪被斑块之间都未达到显著水平。各雪被斑块下,冷杉次生林土壤氮矿化参数都显著高于针阔混交林,但雪被斑块和林型交互作用对冬季土壤氮矿化无显著影响。这表明,该区冬季土壤氮矿化以硝化过程为主,硝化和氨化过程可能受不同微生物群落调控;短时期内,未来气候变化所导致的雪被减少对该区森林冬季土壤氮转化影响可能不明显。
关键词季节性雪被    亚高山森林    氮矿化    氮硝化    氮氨化    氮固持    
Effects of snow pack on wintertime soil nitrogen transformation in two subalpine forests of western Sichuan
YIN Rui, XU Zhengfeng, WU Fuzhong, YANG Wanqin , LI Zhiping, XIONG Li, XIAO Sa, WANG Bin    
Key Laboratory of Ecological Forestry Engineering in Sichuan Province, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
Abstract:A consensus in global ecology is that climate change is profoundly altering the process of terrestrial ecosystem. In particular, more and more attentions have been focused on the effects of snow pack on soil process in cold biomes recently, since climate change characterized by winter warming and extreme is changing the pattern of seasonal snow cover and freeze-thaw cycles in the high-latitude and high-altitute regions. As yet, the results concerning the effects of seasonal cover and freeze-thaw cycles on soil process remain uncertainty, and little information has been available on the effects of snow pack on soil nitrogen tansformation in the subalpine forest of western Sichuan, China. In order to deeply understand the process of soil nitrogen transformation in the subalpine forest of western Sichuan under climate change scenarios, therefore, wintertime net nitrogen mineralization, net nitrogen ammonification, net nitrogen nitrification and microbial nitrogen immobilization in soils under three depths of snowpacks (deep snowpack, middle snowpack and shallow snowpack) were measured in two subalpine forests of western Sichuan, which locates at the upper reaches of Yangtze River and the eastern Qinghai-Tibet Plateau. The top of soil columns sampled from Abies faxoniana + Betula albo-sinensis mixed forest and secondary fir forest were closed, and then in-situ incubated in the forest floor under deep snowpack, middle snowpack and shallow snowpack of the corresponding forest from November 2011 to April 2012, respectively. The results indicated that wintertime soil net nitrogen ammonification ranged from -2.37mg/kg to -2.22 mg/kg under different snowpacks in the mixed forest, and from -7.73 mg/kg to -7.10 mg/kg under different snowpacks in the secondary fir forest. Wintertime soil net nitrogen nitrification varied from 71.98 mg/kg to 82.69 mg/kg under different snowpacks in the mixed forest, and from 101.56 mg/kg to 124.89 mg/kg under different snowpacks in the secondary fir forest. Net nitrogen nitrification was significantly (P < 0.05) higher than net nitrogen ammonification. The highest rates of soil nitrogen ammonification, nitrification, mineralization and microbial nitrogen immobilization were observed in the middle snow pack, but no significant (P > 0.05) differences were observed among snow packs. Meanwhile, all measured indexes in each snow pack were significantly (P < 0.05) higher in the secondary fir forest than those in the fir-birch mixed forest. However, the interaction of snow pack and forest type was not significant on wintertime soil nitrogen transformation. The results suggested that soil nitrogen nitrification be a major process of wintertime soil nitrogen mineralization, and the process of soil nitrogen nitrification and ammonification be regulated by different microbial communities in the subalpine forests of western Sichuan, China. The result also implies that the decline of snowpack caused by climate change, in the short-run, has little effects on soil nitrogen mineralization in our study area.
Key words: snow pack    subalpine forest    nitrogen mineralization    nitrification    ammonification    nitrogen immobilization    

据IPCC(2007)研究报告,21世纪末全球平均气温将升高1.8—4.0 ℃。全球变暖可能导致高寒地区季节性雪被减少或消失,促使土壤冻融循环和冻结强度增强。森林土壤氮转化受到土壤生物和非生物因子(如,水热条件和冻融循环等)所调控[1, 2]。雪被的绝热效应、土壤冻融循环和冻结强度与雪被厚度密切相关[3, 4]。因此,未来气候变化所导致的季节性雪被变化可能对高寒森林土壤氮转化过程产生深刻影响。

由于雪被覆盖期间野外调查的困难性和研究方法的局限性,以往关于高寒生态系统土壤氮循环的研究几乎都集中在生长季,而对冬季雪被覆盖期间土壤氮动态的研究相对缺乏[5]。为数不多的人工控制雪被试验几乎都集中在高纬度苔原和森林生态系统,且人工控制雪被试验往往带来一些不可避免的机械干扰[6, 7, 8]。至今,对于在全球雪盖分布中具有明显独特性的青藏高原,却一直缺乏相应的关注。相比极地苔原和其它高纬度生态系统,青藏高原东缘高山林区冬季雪被特征具有一些特殊性:降雪周期短、年际波动大、雪被覆盖的时间相对较短、厚度较浅及空气温度日较差明显等[9, 10],那么,雪被下水热条件及其对土壤氮转化的影响可能会有所不同[11]

川西亚高山森林位于青藏高原东缘,是具有明显季节性雪被的高寒森林生态系统[12]。亚高山森林普遍存在着林窗、树木的遮挡与集流作用及微地形的影响,使亚高山森林内普遍存在雪被覆盖厚度及持续时间等明显不同的雪被斑块[13]。因此,本试验通过亚高山森林天然雪被斑块模拟未来气候变化所导致的雪况变化,利用野外原位培养方法估测两个森林群落(针阔混交林和次生冷杉林)冬季土壤氮转化,为更加深入地认识高山森林生态系统过程,理解高山森林对气候变化的响应和适应机制提供理论支撑和基线数据。

1 实验方法 1.1 研究地概况和样地描述

本研究区域位于四川省阿坝州理县毕棚沟自然保护区(102°53′—102°57′E,31°14′—31°19′N,海拔2458—4619 m)。地处青藏高原—四川盆地的过渡地带,四姑娘山北麓,属丹巴—松潘半湿润气候,区域内年平均温度为2—4 ℃,最高气温(7月)23.7 ℃,最低温度(1月)-18.1 ℃。年均降水量850 mm,降雨主要分布在生长季节。研究区初次降雪一般发生在10月下旬—11月上旬,稳定性雪被形成时间大概11月下旬到翌年3月(因海拔和坡向而不同)。研究区域土壤类型为有机层较厚的雏形土,主要林型有岷江冷杉原始林、岷江冷杉—红桦混交林和岷江冷杉次生林;林下灌木主要有箭竹(Fargesia spathacea)、高山杜鹃(Rhododendron delavayi)、三颗针(Berberis sargentiana)、红毛花楸(Sorbus rufopilosa)、沙棘(Hippophae rhamnoides)和扁刺蔷薇(Rosa sweginzowii)等;草本主要有蟹甲草(Cacalia forrestii)、高山冷蕨(Cystopteris montana)、苔草属和莎草属等。两个森林群落土壤(0—15 cm)基本理化性质分别为,针阔混交林(海拔3295 m):有机碳175.22 g/kg、全氮8.05 g/kg、全磷0.94 g/kg和pH值6.61;冷杉次生林(海拔3035 m):有机碳160.94 g/kg、全氮9.64 g/kg、全磷1.52 g/kg和pH值6.54。

1.2 样地设置

研究区域内选取坡向坡度相近的两类森林群落作为研究样地。其一为针阔混交林,以岷江冷杉和红桦混交林为主,另外一个群落为冷杉次生林。针阔混交林海拔3298 m,次生冷杉林海拔3035 m,依据往年对两个森林群落林冠调查和非生长季节冬季雪被监测,及2011年冬季初期雪被在林内的分布格局,在两个森林内选取3类雪深梯度的雪被斑块,即厚雪被斑块(DS)、中厚度雪被斑块(MS)和浅雪被斑块(SS)。图 1为两个森林群落各处理冬季雪被厚度动态变化图。

图1 两种森林群落下各处理雪被厚度 Fig. 1 Snow depth of each treatment in the two subalpine forest ecosystems MF: 针阔混交林mixed forest;SF: 冷杉次生林secondary fir forest
1.3 样品的采集、野外培养与测定

本研究采用封顶埋管法(Close-Top Incubation)估测氮素的矿化速率。培养用管为内径6 cm,长15 cm的PVC管。具体方法是,在选定的两个森林群落内(采用原状土原位培养,同一地点取样法),随机选择6个取样点,先将地面部分的植物与凋落物清除干净,再在每个取样点上用PVC管相邻取样4管。将顶端(土壤表面一端)用通气但不透水的塑料薄膜封闭,使其自身基本保持一个密闭的系统,以防降水带来的氮素输入和对管内氮素的淋洗,底端用纱布和橡皮圈封底。原位培养PVC土柱,在DS、MS和SS雪被处理内各埋置1管,另1管带回实验室立即进行硝态氮,铵态氮和微生物生物量氮的测定,其含量作为土壤培养前起始状态的相应形态氮的含量,设重复6次。

实验于2011年11月下旬开始,翌年4月下旬结束。整个过程基本经历了一个冬季。培养结束样品取回后,立即测定土壤水分及相应形态氮的含量。将新鲜土样过2 mm筛后,用烘干法测定含水量。土壤铵态氮采用氯化钾浸提-靛酚蓝比色法(氯化钾浓度为2 mol/L,土水比1 ∶ 5),土壤硝态氮采用酚二磺酸比色法,土壤微生物生物量氮采用氯仿薰蒸-硫酸钾提取法测定。本试验相关计算如下:

土壤 净氮氨化量=培养后土壤铵态氮(NH+4-N)-培养前土壤铵态氮(NH+4-N)

土壤 净氮硝化量=培养后土壤硝化氮(NO-3-N)-培养前土壤硝化氮(NO-3-N)

土壤 净氮矿化量=培养后土壤无机氮(NO-3-N+NH+4-N)-培养前土壤无机氮(NO-3-N+NH+4-N)

土壤 净氮固持量=培养后土壤微生物生物量氮(MBN)-培养前土壤微生物生物量氮(MBN)

1.4 数据处理和统计方法

采用双因素方差分析(two-way ANOVA)和最小显著差异法(LSD)检验雪被厚度和林型及交互作用对土壤净氨化速率,净硝化速率,净矿化速率和微生物氮固持的影响。所有统计分析均采用SPSS16.0完成,且界定P < 0.05为显著水平。

2 研究结果 2.1 土壤铵态氮、硝态氮、微生物生物量氮、可溶性氮初始值

表 1可知,两类森林群落下,冬季土壤硝态氮初始含量相近。而土壤铵态氮和微生物生物量氮含量在两类林型间差距较大,均是SF林型高于MF林型,且分别高出2.84和1.88倍。

表1 土壤各氮素指标初始值 Table 1 The initial value of soil nitrogen indicators
林型
Forest type
铵态氮
NH+4-N/
(mg/kg)
硝态氮
NO-3-N/
(mg/kg )
微生物生物
量氮 MBN/
(mg/kg )
MF: 针阔混交林Mixed forest;SF: 冷杉次生林Secondary fir forest
针阔混交林 (MF)2.97±0.34a49.78±7.58a14.05±6.53a
冷杉次生林 (SF)8.43±2.74b44.16±10.09a26.36±14.77b
2.2 雪斑梯度对土壤净氨化量的影响

两类森林群落下的冬季土壤净氨化量均为负值。MF林型内雪被斑块土壤净氨化量为-2.37—-2.22 mg/kg,SF林型内雪被斑块土壤净氨化量为-7.73—-7.10 mg/kg。不同林型相同雪被斑块内冬季土壤净氨化量,SF比MF高203.21%—233.20%(P < 0.01,图 2表 2)。同一森林群落下,冬季土壤净氨化量在不同厚度雪斑间差异不显著(图 2表 2)。

图2 两种森林群落各雪被处理下冬季土壤净氨化速率 Fig 2 The rate of winte-time soil net ammonification of each treatment in the two subalpine forest ecosystems

表2 林型和雪被对土壤N转化影响的双因素方差分析 Table 2 Two way ANOVA for soil nitrogen transformation to forest type and snow pack
变量
Variables
变异来源
Source
自由度
df
平方和
Sum of squares
均方
Mean square
FP
FT: 林型Forest type;SD: 雪被厚度Snow depth
净氨化FT1236.288236.28828.8770.000
SD20.4580.2290.0280.972
FT×SD20.5230.2620.0320.969
净硝化FT19696.6059696.6058.1350.000
SD21759.612879.8060.7380.487
FT×SD2295.831147.9150.1240.884
净矿化FT17480.7137480.7136.2410.017
SD21581.107790.5530.6790.516
FT×SD2238.416119.2080.1020.903
净固持FT11743.7091743.7096.6950.015
SD2621.344310.6721.1930.318
FT×SD2437.515218.7580.8400.442
2.3 雪斑梯度对土壤净硝化量的影响

两类森林群落下冬季土壤硝态氮含量均有明显增加。MF林型内雪被斑块土壤净硝化量为71.98—82.69 mg/kg,SF林型内雪被斑块土壤净硝化量为101.56—124.89 mg/kg。在两种林型下,土壤净硝化量在MS雪被斑块下为最高,DS与SS雪被斑块下土壤净硝化量相当。不同林型相同雪被斑块内冬季土壤净硝化量,SF是MF的1.37—1.51倍(P < 0.01,图 3表 2)。同一森林群落下,冬季土壤净硝化量在不同厚度雪斑之间未达到显著水平(P > 0.05,图 3表 2)。

图3 两种森林群落下各雪被处理冬季土壤净硝化速率 Fig. 3 The rate of winte-time soil net ammonification of each treatment in the two subalpine forest ecosystems
2.4 雪斑梯度对土壤净氮矿化量的影响

两类森林群落下冬季土壤氮矿化量均有明显增加。MF林型内雪被斑块土壤净氮矿化量为69.6—80.37 mg/kg,SF林型内雪被斑块土壤净氮矿化量为95.53—117.33 mg/kg。不同林型相同雪被斑块内冬季土壤净氮矿化量,SF比MF高33.09%—46%(P < 0.05,图 4,表 2)。

图4 两种森林群落下各雪被处理冬季土壤净矿化速率 Fig.4 The rate of winte-time soil net nitrogen mineralization of each treatment in the two forest subalpine ecosystems

相似于土壤净氮硝化速率,土壤净氮矿化量在MS雪被斑块下为最高,DS与SS雪被斑块下土壤净氮矿化量相当,但同一森林群落下,冬季土壤净氮矿化量在不同厚度雪斑之间没有显著性差异(P<0.05,图 4,表 2)。

2.5 雪斑梯度对土壤净氮固持量的影响

两类森林群落下冬季土壤氮固持量都有增加,且MF显著大于SF,MF林型内雪被斑块土壤净固持量为13.8—15.52 mg/kg,但SF林型内雪被斑块土壤净氮固持量为仅有3.05—5.86 mg/kg。不同林型相同雪被斑块内冬季土壤净氮固持量,SF是MF的2.4—4.5倍(P < 0.05,图 5,表 2)。同一森林群落下,冬季土壤净氮固持量在不同厚度雪斑之间差异不大(P > 0.05,图 4,表 2)。

图5 两种森林群落下各雪被处理冬季土壤净固持速率 Fig.5 The rate of winte-time soil net nitrogen immobilization of each treatment in the two subalpine forest
3 结论与讨论

两个森林群落(针阔混交林和冷杉次生林)各雪被斑块冬季土壤净氮硝化量显著高于净氮氨化量,即硝化过程在氮矿化过程中占有主导地位,这和前人的研究结果类似[14, 15]。另外,对两类林型土壤无机氮素(铵态氮和硝态氮)初始值的测定发现,该区土壤硝态氮含量(44.16—49.78 mg/kg)远大于铵态氮含量(2.97—8.43 mg/kg),这与前人得出土壤硝态氮是该区高山/亚高山无机氮库的主体的结论一致,也表明该区森林土壤矿化以硝化为主[14, 16]。我国东北温带森林土壤氮矿化模式也有类似的表现,但云南哀牢山中山湿性常绿阔叶林土壤氮矿化却以氨化为主[17, 18],这可能是气候,土壤和植被等多因子综合作用的结果。

土壤氮矿化在很大程度上由土壤微生物参与完成,土壤微生物活性往往与土壤温度密切相关,因此,土壤矿化也在很大程度上受土壤温度调控。中国东部常绿阔叶林土壤氮矿化最低值出现在冬季,且净氮矿化量为负值[19]。而本研究发现川西亚高山两类森林群落冬季土壤净氮矿化速率(0.48—0.68 mg kg-1 d-1)较高,且明显高于刘金玲[15]对该区森林生长季土壤净氮矿化速率(-0.13—-0.12 mg kg-1 d-1)。说明该区冬季土壤净氮矿化对全年氮矿化有极大的贡献。显然,季节性雪被覆盖区土壤氮矿化与其它地区有所不同,冬季冻融循环和雪被特征可能有利于土壤氮矿化过程。另外,最新研究发现,该区森林冬季低温下仍存在显著的土壤氨氧化细菌和古菌,微生物生物量的峰值也出现在冬季,这些都暗示季节性雪被覆盖下高山森林土壤存在显著的矿化过程[20]。最后,室内实验研究表明,当该区森林土壤在-5 ℃培养后会释放大量铵态氮,且显著高于其它培养温度下铵态氮(未发表数据)。在高山森林生态系统中,土壤有效氮(铵态氮和硝态氮)是植物生长发育的重要限制因子[17]。冬季土壤氮矿化及土壤有效氮含量的提高为春季森林植被的迅速生长提供了基础条件[21]。但同时,硝态氮的增加及早春冻融循环和雪被融化为土壤氮淋溶提供了良好的条件,因此,冬季矿化产生的大量硝态氮也可能通过淋溶方式从系统中大量丢失。

经过一个冬季后,两类林型各雪被处理下土壤铵态氮浓度均表现为培养后低于培养前(表 1图 2),即土壤净氨化量为负值,但培养前后土壤铵态氮浓度变化相对较小。先前的研究也发现,该区森林土壤在冬季末期硝态氮浓度增加而铵态氮浓度降低[22]。在冬季,土壤经过氨化作用后,大部分铵态氮可能通过自养细菌的硝化作用转变成硝态氮。少量的铵态氮被微生物固持,或被粘土矿物质固定。有时,铵态氮也可能通过异养硝化转变成硝态氮[1]。冬季土壤中铵态氮向硝态氮大量转化的现象极为常见,且土壤中较高含量的氨氧化细菌和古菌也在一定程度上证实了这一观点[20, 23]。另外,在生长季节到来前,森林土壤中硝态氮会大量积累,这可能与许多植物通常表现出对硝态氮的偏爱有关,硝态氮是这些植物获得氮素的主要来源。

森林土壤氮转化主要包括氨化、硝化和微生物固持3个过程[24]。经过整个冬季后,各雪被斑块土壤净氮氨化量、硝化量和矿化量均表现为冷杉次生林高于针阔混交林。而冬季净氮固持量与此相反,即为针阔混交林显著高于冷杉次生林。这可能与各森林群落土壤基本特征有关。冷杉次生林土壤氮素含量(9.64 mg/kg)显著高于针阔混交林(8.05 mg/kg),且土壤C/N比(16.7)显著低于后者(21.7),这可能有利于土壤氮矿化过程。另外,由于次生冷杉林相对针阔混交林光照时数较多,且海拔相对较低,即土壤温度较高一些,这些因素也在一定程度上有利于次生冷杉林土壤净氮矿化过程。

森林土壤氮转化受到土壤生物和非生物因子(如,水热条件和冻融循环等)所调控[1, 2]。雪被的绝热效应、土壤冻融循环和冻结强度与雪被厚度密切相关[3, 4]。那么,雪被厚度变化可能对高寒森林土壤氮转化过程产生深刻影响。人工控制雪被实验研究指出冻融可增强土壤氮矿化作用,因为去除雪被处理可显著增加土壤冻结强度和冻融交替频率,进而促使更多有机氮向无机氮转化,土壤净氮矿化速率得以增加[5, 25, 26];Williams和Tonnessen[27]指出,在高山地区雪被改变着土壤氮矿化时空格局[6, 8],如果降雪提前且降雪量增大,雪被覆盖时间及雪被厚度则增加,土壤氮矿化便加强。因为更早形成且更深厚度的雪被可起到更好更持久的保温绝热作用,使土壤更长时间保持在相对温暖的环境,从而使土壤净氮矿化速率明显增加。但本研究发现,雪被厚度变化对两个森林群落土壤氮转化没有显著影响,中等厚度雪被下土壤净硝化和净氮矿化速率强于厚雪被和浅雪被下土壤净硝化和净矿化速率。在冬季雪被较薄斑块,土壤温度较低,土壤冻结范围更深、时间更长,或冻融交替更频繁而强烈,导致植物根系和土壤微生物死亡率升高,释放出更多的氮素,使土壤中有效氮含量和氮矿化速率增加[7]。此外,频繁的冻融交替破坏土壤团聚体结构,土壤可利用基质更容易被微生物分解,从而增强土壤氮矿化速率[28]。反之,一定深度的雪被可以起到较好保温作用,进而可能促进土壤氮矿化[29]。不同系统和地理区域,能有效隔绝气温对土温的影响的雪被厚度差异很大[29, 30, 31]。温度升高或冻融交替加剧均可引起土壤净氮矿化速率的增强,雪被可能通过此类间接作用对土壤氮矿化过程起到截然相反的影响,但这两者矛盾而统一,适度雪被厚度可能最有利于高寒森林冬季土壤氮矿化过程。本研究中度雪被厚度土壤氮转化率最高,虽然和其它两个雪被斑块没有显著差异,但从一定程度上也反映了以上观点。

参考文献
[1] Chen F S, Zeng D H, He X Y. Soil nitrogen transformation and cycling in forest ecosystem. Chinese Journal of Ecology, 2004, 23(5): 126-133.
[2] Liu L, Wu Y, He Y X, Wu N, Sun G, Zhang L, Xu J J. Effects of seasonal snow cover on soil nitrogen transformation in alpine ecosystem: a review. Chinese Journal of Applied Ecology, 2011, 22(8): 2193-2200.
[3] Groffman P M, Driscoll C T, Fahey T J, Hardy J P, Fitzhugh R D, Tierney G L. Colder soils in a warmer world: A snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry, 2001, 56(2): 135-150.
[4] Yu X Z, Yuan F H, Wang A Z, Wu J B, Guan D X. Effects of snow cover on soil temperature in broad-leaved Korean pine forest in Changbai Mountains. Chinese Journal of Applied Ecology, 2010, 21(12): 3015-3020.
[5] Groffman P M, Hardy J P, Fashu-Kanu S, Driscoll C T, Cleavitt N L, Fahey T J, Fisk M C. Snow depth, soil freezing and nitrogen cycling in a northern hardwood forest landscape. Biogeochemistry, 2011, 102(1/3): 223-238.
[6] Schimel J P, Bilbrough C, Welker J M. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biology and Biochemistry, 2004, 36(2): 217-227.
[7] Gaul D, Hertel D, Leuschner C. Effects of experimental soil frost on the fine-root system of mature Norway spruce. Journal of Plant Nutrition and Soil Science, 2008, 171(5): 690-698.
[8] Rixen C, Freppaz M, Stoeckli V, Huovinen C, Huovinen K, Wipf S. Altered snow density and chemistry change soil nitrogen mineralization and plant growth. Arctic, Antarctic, and Alpine Research, 2008, 40(3): 568-575.
[9] Li S C, Xu L, Guo Y X, Qian W H, Zhang G Q, Li C. Change of annual precipitation over Qinghai-Xizang plateau and sub-regions in recent 34 years. Journal of Desert Research, 2007, 27(2): 307-314.
[10] Wang Y T, He Y, Hou S G. Analysis of the temporal and spatial variations of snow cover over the Tibetan Plateau based on MODIS. Journal of Glaciology and Geocryology, 2007, 29(6): 855-861.
[11] Hagedorn F, Mulder J, Jandl R. Mountain soils under a changing climate and land-use. Biogeochemistry, 2010, 97(1): 1-5.
[12] Wu F Z, Yang W Q, Zhang J, Deng R J. Fine root decomposition in two subalpine forests during the freeze-thaw season. Canadian Journal of Forest Research, 2010, 40(2): 298-307.
[13] Varhola A, Coops N C, Bater C W, Teti P, Boon S, Weiler M. The influence of ground- and lidar-derived forest structure metrics on snow accumulation and ablation in disturbed forests. Canadian Journal of Forest Research, 2010, 40(4): 812-821.
[14] Xu Z F, Hu R, Xiong P, Wan C, Cao G, Liu Q. Initial soil responses to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China: Nutrient availabilities, microbial properties and enzyme activities. Applied Soil Ecology, 2010, 46(2): 291-299.
[15] Liu J L, Wu F Z, Yang W Q, Shi P L, Wang A, Yang Y L, Wu Z C. Characteristics of soil net nitrogen mineralization in subalpine/alpine forests of west Sichuan, Southwest China during seasonal freeze-thaw period. Chinese Journal of Applied Ecology, 2012, 23(3): 610-616.
[16] Tan B, Wu F Z, Yang W Q, Yu S, Liu L, Wang A. The dynamics pattern of soil carbon and nutrients as soil thawing proceeded in the alpine/subalpine forest. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, 2011, 61(7): 670-679.
[17] Li J Z, Sha L Q, Wang J, Feng W T, Chen J H, Li J L. Seasonal variation of soil nitrogen mineralization in a Mountane moist evergreen broad-leaved forest in Ailao Mountains, SW China. Journal of Mountain Science, 2006, 24(2): 86-192.
[18] Fu M J, Wang C K, Wang Y, Liu S, Ding S. Effects of climate warming on the N2O emission from Larix gmelinii forest soils at different latitudes during soil thawing period. Chinese Journal of Applied Ecology, 2009, 20(7): 1635-1642.
[19] Yan E R, Wang X H, Huang J J, Li G Y, Zhou W. Decline of soil nitrogen mineralization and nitrification during forest conversion of evergreen broad-leaved forest to plantations in the subtropical area of Eastern China. Biogeochemistry, 2008, 89(2): 239-251.
[20] Wang A, Wu F Z, He Z H, Xu Z F, Liu Y, Tan B, Yang W Q. Characteristics of ammonia-oxidizing bacteria and ammonia-oxidizing archaea abundance in soil organic layer under the subalpine/alpine forest. Acta Ecologica Sinica, 2012, 32(14): 4371-4378.
[21] Tong X J, Tao B, Cao M K. The responses of soil respiration and nitrogen mineralization to global warming in terrestrial ecosystems. Progress in Geography, 2005, 24(4): 84-96.
[22] Tan B, Wu F Z, Yang W Q, Yang Y L, Wang A, Kang L N. Effects of snow pack removal on the dynamics of winter-time soil temperature, carbon, nitrogen, and phosphorus in alpine forests of west Sichuan. Chinese Journal of Applied Ecology, 2011, 22(10): 2553-2559.
[23] Virginia R A, Jarrell W M. Soil properties in a mesquite-dominated Sonoran desert ecosystem. Soil Science Society of America Journal, 1983, 47(1): 138-144.
[24] Han X G, Li L H, Huang J H. An Introduction to Biogeochemistry. Beijing: Higher Education Press, Heidelberg: Springer-Verlag, 1999: 197-244.
[25] Steinweg J M, Fisk M C, McAlexander B, Groffman P M, Hardy J P. Experimental snowpack reduction alters organic matter and net N mineralization potential of soil macroaggregates in a northern hardwood forest. Biology and Fertility of Soils, 2008, 45(1): 1-10.
[26] Groffman P M, Hardy J P, Driscoll C T, Fahey T J. Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest. Global Change Biology, 2006, 12(9): 1748-1760.
[27] Williams W M, Tonnessen A K. Critical loads for inorganic nitrogen deposition in the Colorado Front Range, USA. Ecological Applications, 2000, 10(6): 1648-1665.
[28] Zhou W M, Chen H, Zhou L, Ye Y J, Tian J, Li G W, Dai L M. Effect of freezing-thawing on nitrogen mineralization in vegetation soils of four landscape zones of Changbai Mountain. Annals of Forest Science, 2011, 68(5): 943-951.
[29] Liu L, Sun G, Wu Y, He Y X, Wu N, Zhang L, Xu J J. Effect of seasonal snow cover on soil nitrogen mineralization in an alpine meadow on the eastern Tibetan Plateau. Chinese Journal of Applied and Environmental Biology, 2011, 17(4): 453-460.
[30] Taylor B R, Jones H G. Litter decomposition under snow cover in a balsam fir forest. Canadian Journal of Botany, 1990, 68(1): 112-120.
[31] Cline D. Snow surface energy exchanges and snowmelt at a continental alpine site//Tonnessen K A, ed. Biogeochemistry of Seasonally Snow-Covered Catchments. Wallingford, UK: International Association for Hydrological Sciences Press, 1995: 157-166.
[1] 陈伏生, 曾德惠, 何兴元. 森林土壤氮素的转化与循环. 生态学杂志, 2004, 23(5): 126-133.
[2] 刘琳, 吴彦, 何奕忻, 吴宁, 孙庚, 张林, 徐俊俊. 季节性雪被对高山生态系统土壤氮转化的影响. 应用生态学报, 2011, 22(8): 2193-2200.
[4] 于小舟, 袁凤辉, 王安志, 吴家兵, 关德新. 积雪对长白山阔叶红松林土壤温度的影响. 应用生态学报, 2010, 21(12): 3015-3020.
[9] 李生辰, 徐亮, 郭英香, 钱维宏, 张国庆, 李川. 近34a青藏高原年降水变化及其分区. 中国沙漠, 2007, 27(2): 307-314.
[10] 王叶堂, 何勇, 侯书贵. 2000—2005年青藏高原积雪时空变化分析. 冰川冻土, 2007, 29(6): 855-861.
[15] 刘金玲, 吴福忠, 杨万勤, 石培礼, 王奥, 杨玉莲, 武志超. 季节性冻融期间川西亚高山/高山森林土壤净氮矿化特征. 应用生态学报, 2012, 23(3): 610-616.
[17] 李检舟, 沙丽清, 王君, 冯文婷, 陈建会, 李江林. 云南哀牢山中山湿性常绿阔叶林土壤氮矿化季节变化. 山地学报, 2006, 24(2): 86-192.
[18] 傅民杰, 王传宽, 王颖, 刘实, 丁爽. 气候暖化对解冻期不同纬度兴安落叶松林土壤氧化亚氮释放的影响. 应用生态学报, 2009, 20(7): 1635-1642.
[21] 同小娟, 陶波, 曹明奎. 陆地生态系统土壤呼吸、氮矿化对气候变暖的响应.地理科学进展, 2005, 24(4): 84-96.
[22] 谭波, 吴福忠, 杨万勤, 杨玉莲, 王奥, 康丽娜. 雪被去除对川西高山森林冬季土壤温度及碳、氮、磷动态的影响. 应用生态学报, 2011, 22(10): 2553-2559.
[24] 韩兴国, 李凌浩, 黄建辉. 生物地球化学概论. 北京: 高等教育出版社, Heidelberg: Springer-Verlag, 1999: 197-244.
[29] 刘琳, 孙庚, 吴彦, 何奕忻, 吴宁, 张林, 徐俊俊. 季节性雪被对青藏高原东缘高寒草甸土壤氮矿化的影响. 应用与环境生物学报, 2011, 17(4): 453-460.