生态学报  2014, Vol. 34 Issue (8): 2146-2154

文章信息

吴燕明, 吕高明, 周航, 刘丽, 邓贵友, 廖柏寒
WU Yanming, LÜ Gaoming, ZHOU Hang, LIU Li, DENG Guiyou, LIAO Bohan
湘南某矿区蔬菜中Pb、Cd污染状况及健康风险评估
Contamination status of Pb and Cd and health risk assessment on vegetables in a mining area in southern Hunan
生态学报, 2014, 34(8): 2146-2154
Acta Ecologica Sinica, 2014, 34(8): 2146-2154
http://dx.doi.org/10.5846/stxb201212251868

文章历史

收稿日期:2012-12-25
修订日期:2013-6-24
湘南某矿区蔬菜中Pb、Cd污染状况及健康风险评估
吴燕明1, 吕高明1, 周航1, 2, 刘丽1, 3, 邓贵友1, 廖柏寒1     
1. 中南林业科技大学环境科学与工程研究中心, 长沙 410004;
2. 湖南农业大学生物科学技术学院, 长沙 410128;
3. 长沙环境保护职业技术学院, 长沙 410004
摘要:通过采集湘南某矿区周边农田中种植的蔬菜和对应耕作层土壤样品,探究了农田蔬菜Pb、Cd的污染状况,蔬菜和土壤重金属含量之间的相关性,蔬菜中重金属对人体的健康风险。结果表明:(1)污染区土壤重金属污染非常严重,叶菜类蔬菜重金属超出了食品卫生标准限值,但是果菜类蔬菜中重金属没有超出食品卫生标准限值。(2)不同蔬菜不同器官所含Pb、Cd有明显差异;不同种类蔬菜Pb、Cd含量不同,一般是叶菜类 > 果菜类;同种蔬菜不同部位重金属含量的顺序也不同,一般为根 > 茎 > 叶 > 果,或根 > 叶 > 茎 > 果。(3)二类蔬菜中重金属Pb、Cd的富集系数顺序为叶菜类 > 果菜类。(4)蔬菜中Pb、Cd含量与土壤中相对应元素含量均无显著相关性。(5)就农产品安全性而言,果菜类蔬菜比叶菜类蔬菜更适合在此矿区栽培。
关键词蔬菜    重金属    污染    矿区    健康风险评估    
Contamination status of Pb and Cd and health risk assessment on vegetables in a mining area in southern Hunan
WU Yanming1, LÜ Gaoming1, ZHOU Hang1, 2, LIU Li1, 3, DENG Guiyou1, LIAO Bohan1     
1. Research Center for Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
2. College of Bioscience and Technology, Hunan Agricultural University, Changsha 410128, China;
3. Changsha Environmental Protection College, Changsha 410004, China
Abstract:Vegetables, including leafy vegetables and fruit, are of importance to human health. In order to evaluate the heavy metal contamination status and associated health risks of vegetables, 57 vegetables (34 spring vegetables and 23 winter vegetables) and 34 corresponding soil samples (sampled with the spring vegetables) were collected from farmland surrounding a mining area in southern Hunan, China. Analysis was carried out to determine the correlation between the heavy metal content of vegetables and soils, to enable assessment of the potential health risk to local inhabitants consuming the vegetables grown in the contaminated soils. The results showed that: (1) The measured maximum total Pb and Cd in the soils were up to 1251.9 mg/kg (the corresponding soil to the three-colored amaranth) and 13.2 mg/kg (the corresponding soil to the kidney bean), respectively. The average concentration of total Pb and Cd in all soils were 841.7 mg/kg and 6.5 mg/kg, respectively, which were 3.37 and 21.67 times the standard allowable concentration of Pb and Cd for vegetable soils in China (pH level < 6.5, Pb ≤ 250 mg/kg, Cd ≤ 0.3 mg/kg; Environment Quality Standard for Soil Heavy Metals GB15168-1995, Grade Ⅱ). It suggested that contamination from heavy metals in these soils was very serious. (2) Vegetables grown on the contaminated soils were rich in Pb and Cd in different plant organs. The highest levels of heavy metals were 5.03 mg/kg for total Pb and 2.92 mg/kg for total Cd in the edible parts of garlic and three-colored amaranth, respectively, which exceeded the maximum levels of the China National Food Sanitation Standards for total Pb (GB 14935-94, 0.2 mg/kg) and Cd (GB 15201-94, 0.05 mg/kg). The heavy metal content of leafy vegetables, not fruit, exceeded the China National Food Sanitation Standards for Heavy Metals. The contents of total Pb and Cd in different organs of the vegetables were quite different and generally followed a sequence of root > stem > leaf > fruit, or root > leaf > stem > fruit. Pb and Cd contents in leafy vegetables were generally higher than those in fruits. (3) The order of bioaccumulation factors (BFs) of heavy metals in the two vegetable types was leafy vegetables > fruits. Based on fresh weight, the average BFs of Pb varied within (0.7-8.4)×10-3 for leafy vegetables and (0-0.02)×10-3 for fruits, and those of Cd varied within (15.4-895.2)×10-3 for leafy vegetables and (0.04-38.1)×10-3 for fruits, which signified that the average BFs of Pb and Cd for leafy vegetables was greater than those for fruit vegetables. (4) The correlations were not significant between the heavy metal content in vegetables and those in soils; however, total Pb and Cd in the edible parts of vegetables presented a higher significant correlation level (R2 =0.821; n =18, R20.01 =0.590). (5) The results of the risk assessment on vegetables indicated that the hazard quotient (HQ) for total Pb and Cd in the edible parts of leafy vegetables were 1.70 and 3.73, respectively, 34.00 times and 53.28 times higher than those of the fruits (0.005 and 0.070). In relation to suitability of agricultural products in this mining area, fruits were more suitable for planting than leafy vegetables.
Key words: vegetable    heavy metal    contamination    mining area    health risk assessment    

土壤是人类赖以生存的自然环境和农业生产的重要资源,但是随着经济不断发展,工业化和城市化的进程日益加快,农田土壤和主要农产品重金属污染问题已受到人们的普遍关注[1, 2]。土壤受到重金属污染主要是由于污水灌溉、农药化肥施用、采矿、冶炼、化工等工业三废的排放,使得城市和工业周边农田重金属积累,影响到农产品的安全和人体的健康[3, 4]。湖南省矿产资源丰富,享有有色金属之乡的美誉。开采有色金属使得当地经济得到迅速发展,同时也对周边的农田带来一定的环境影响,导致重金属在土壤中不断积累,使当地农作物生长受到影响,也影响到居民的身体健康,土壤重金属污染越来越严重[5, 6, 7, 8]。蔬菜是人们的常用食物,土壤中的重金属可以通过蔬菜进入到食物链,对人体健康造成一定的危害[9, 10, 11]。研究表明,蔬菜有一定的富集重金属能力[12, 13, 14],所以蔬菜的品质直接影响人们的健康。近年来,有一些针对蔬菜品质和蔬菜中重金属含量调查评价及对人体健康风险性评估的研究报道[15, 16, 17, 18, 19],不同种类蔬菜及同一品种蔬菜的不同部位对重金属元素的富集大不相同[20, 21, 22]。本研究分析湘南某矿区农田蔬菜重金属含量污染状况、评估该地区蔬菜消费带来的健康风险,主要针对农田蔬菜中Pb、Cd含量进行测定,并对不同种类蔬菜不同部位重金属含量的规律及危害进行探讨,为当地蔬菜的安全种植提供科学依据,为人们食用蔬菜提供合理建议。

1 材料与方法 1.1 蔬菜种植及样品采集方法

研究区域位于湘南某矿区附近的一个面积大约为8—10 km2自然村(北纬25°848′,东经113°807′),该地区重金属污染较为严重,特别是Pb、Cd污染[23],选取一块约0.1333公顷旱地作为实验田。在试验田中设置36个小样地,每个小样地为2 m×4 m。于2011年3—4月在36块样地中种植12种春季蔬菜(西红柿、黄瓜、南瓜、茄子、玉米、四季豆、长豆角、辣椒、苋菜、空心菜、丝瓜、苦瓜),每种蔬菜种植重复3次,所有样方随机区组排列。春季蔬菜收获完毕后,于2011年9—10月在试验田的27块小样地中种植9种秋季蔬菜(红菜苔,香菜,生菜,白菜苔,小白菜,大白菜,大蒜,包菜,菠菜),每种蔬菜种植重复3次,所有样方随机区组排列。由于农民提前收获,春季蔬菜中茄子和丝瓜以及秋季蔬菜中红菜苔、香菜、小白菜、大白菜均只采集到2块样地中的样品。采样是按照梅花点方式进行的,即每个土壤样方的中心点与4个角度方向的等距离点各采一个土壤样和一个蔬菜样。用取土器采集对应蔬菜的耕作层(0—20 cm)土壤样品,然后均匀混合装入样品袋里。共计采集两季蔬菜样品57个(其中春季蔬菜34个,秋季蔬菜23个)和土壤样品34个(春季蔬菜样地)。采集到的样品分别用塑料袋封装、冷藏,迅速带回实验室处理。

1.2 样品预处理方法

所有样品均于取样当日运达实验室。将蔬菜的根、茎、叶、果分开,用自来水洗去表层泥土,再用蒸馏水清洗数次,以除去表面上的农药和污染物,晾干后称鲜重;放入烘箱,在105 ℃杀青30 min,然后在70 ℃下烘干至恒重后称干重。所有蔬菜样品按不同部位用粉碎机分别粉碎,置于塑料封口袋中保存待测。土壤样品经自然风干后,剔除生物残骸、植物碎片、碎石和砾石,压碎后过100目尼龙筛,保存备用。

1.3 样品分析方法

土壤中总Pb、Cd用王水-高氯酸消解,蔬菜植株各部位重金属总量采用硝酸-高氯酸消解[24]。植物样品中重金属元素的浓度用石墨炉原子吸收分光光度计(日立Z-2000)测定(Pb、Cd的检测限分别为5.0 μg/L、0.1 μg/L),土壤样品中重金属元素的浓度用火焰原子吸收分光光度计(日立Z-2000)测定(Pb、Cd的检测限分别为0.40 mg/L、0.025 mg/L)。所有样品均重复3次,同时做空白实验。土壤样品测定结果以风干重计,蔬菜样品测定结果则以鲜重计,即烘干后的蔬菜中重金属含量乘以(1-蔬菜含水率)。测定过程中用国家标准物质湖南大米(GBW-10045)和土壤(GBW(E)-070009)进行Pb和Cd分析的质量控制,回收率分别为90%—105%和90%—108%。

1.4 蔬菜中重金属健康风险评估

以食品中Pb、Cd限量卫生标准[25, 26]作为蔬菜中Pb、Cd的最大允许限量(表 1),根据不同种类蔬菜中重金属元素含量大小来评价蔬菜重金属污染程度。

表 1 食品中重金属卫生标准 Table 1 China National Food Sanitation Standards for heavy metals
元素
Elements
标准限值/(mg/kg鲜重)
Standard limit
标准来源
Standard sources
Pb≤0.2 mg/kg《食品中铅限量卫生标准》(GB 14935—94)
Cd≤0.05 mg/kg《食品中隔限量卫生标准》(GB 15201—94)

为了研究居民通过食用蔬菜而带来的健康风险,结合矿区的实际情况,评价重金属污染的土壤周围居民的健康风险时,并综合前人的研究成果和已有的研究材料,通常考虑人体通过水、食物摄入和空气吸入土壤中的污染物途径,蔬菜摄入产生的重金属平均日摄入量[27, 28]计算公式。计算公式如下:

CDI蔬菜=(C×I×103)/BW

C×I =∑(ci×Di×Fd)

式中,CDI蔬菜为重金属污染物通过蔬菜进入人体的平均日摄入量 (μg kg-1 d-1);C 为蔬菜重金属浓度(mg/kg);I为接触率(kg/d);BW为体重(kg),按人平均体重60 kg计算;ci为某类蔬菜的重金属平均浓度 (mg/kg);Di为每日对某类蔬菜的食用量(kg),在中国人均蔬菜的日食用量为0.3 kg/d[29]Fd为蔬菜鲜重折算为干重的比例,按0.1计算[30]

根据美国环保局(USEPA United States Environmental Protection Agency)[31]和世界卫生组织(WHO,World Health Organization)[32]推荐评价有毒污染物的参考暴露剂量RfD,Pb、Cd的RfD分别为3.5、1.0 μg kg-1 d-1,以HQ蔬菜表征由蔬菜摄入引起的重金属暴露风险指数。HQ蔬菜的计算公式如下:

HQ蔬菜=CDI蔬菜RfD

式中,HQ为发生某种特定有害健康效应而造成等效死亡的终身危险度;RfD为化学污染物在某种暴露途径下的日参考计量(μg kg-1 d-1)。如果HQ蔬菜值小于1,说明没有明显的风险;反之,如果大于或等于1,相关暴露人群就会有健康风险。

1.5 数据的分析与统计

采用Excel和SPSS统计软件对数据进行相关分析和聚类分析。

2 结果与分析 2.1 蔬菜土壤和蔬菜中重金属污染状况

表 2中可知,各采样点(酸性)土壤中重金属Pb和Cd含量均超出我国土壤Ⅱ级标准值(GB15618—1995,pH值 < 6.5,Pb ≤ 250 mg/kg,Cd≤0.3 mg/kg;适用于一般农田和蔬菜地),超标率达到100%,可知该地区重金属污染非常严重。根据表 1《食品中重金属卫生标准》中重金属Pb和Cd的标准限值可知,采集的57个蔬菜样品中受到重金属Pb污染的蔬菜有30个,如空心菜、苋菜、大白菜、大蒜、包菜、菠菜、香菜、生菜、小白菜、红菜苔,白菜苔和茄子;受到重金属Cd污染的蔬菜有26个,包括苋菜、空心菜、大白菜、大蒜、包菜、生菜、菠菜、香菜、小白菜、白菜苔、红菜苔和茄子。显然,当地部分蔬菜受到重金属的污染。只有苦瓜、黄瓜、玉米、丝瓜等果菜类蔬菜重金属含量未超过国家食品卫生标准。

表 2 不同种类蔬菜和土壤中重金属含量 Table 2 Contents of heavy metals in soils and vegetables
蔬菜类型
Vegetable types
样品数(N)
Samples
蔬菜种类
Different
vegetables
Pb/ (mg/kg) Cd/ (mg/kg)
土壤
(均值±标准差)
Soil
(Mean ±SD)
蔬菜可食部位
(均值±标准差)
Edible part
(Mean± SD)
土壤
(均值±标准差)
Soil
(Mean ±SD)
蔬菜可食部位
(均值±标准差)
Edible part
(Mean± SD)
NG为未检出
叶菜类(N=29)3空心菜627.5±56.40.51±0.072.8±0.50.20±0.10
Leaf vegetables3苋菜1251.9±38.72.36±0.297.6±0.42.92±0.59
2大白菜582.2±55.60.75±0.133.4±0.90.42±0.03
3大蒜596.3±70.05.03±0.092.8±0.82.54±0.87
3包菜595.1±60.20.67±0.282.7±0.10.04±0.02
3菠菜543.6±57.00.97±0.192.8±0.70.51±0.05
2香菜1071.5±13.41.90±0.217.5±0.21.02±0.06
3生菜1077.3±16.51.16±0.547.3±0.50.46±0.21
2小白菜1049.5±50.90.42±0.067.6±0.30.12±0.02
2红菜苔1008.2±30.90.94±0.337.8±0.70.18±0.04
3白菜苔1094.2±39.70.78±0.247.8±0.60.24±0.09
均值Mean863.4±44.51.41±0.226.8±0.50.79±0.19
果菜类(N=28) 3苦瓜534.8±50.70.06±0.012.5±0.40.002±0.001
Fruit vegetables3西红柿1015.7±47.6NG7.8±0.50.03±0.01
3南瓜1063.0±5.60.12±0.036.8±0.40.001±0.01
3玉米1094.1±23.90.20±0.017.6±0.40.0003±0.01
3黄瓜1116.0±33.1NG7.7±0.10.004±0.001
2丝瓜582.6±11.20.01±0.0013.1±0.40.002±0.001
3辣椒539.4±65.20.06±0.012.3±0.80.05±0.04
2茄子1115.4±16.40.43±0.0017.6±0.30.29±0.03
3四季豆576.9±55.5NG13.2±18.20.01±0.02
3长豆角561.1±19.40.07±0.013.5±0.60.01±0.01
均值Mean819.9±32.90.10±0.086.2±2.20.04±0.01

根据对各种蔬菜可食部位Pb浓度的均值(表 2)进行层级聚类分析(图 1),可将蔬菜分为4类:大蒜、香菜和苋菜归为Ⅰ类,其Pb浓度最高;包菜、白菜苔、大白菜、空心菜、茄子和小白菜等蔬菜的Pb浓度次之,为Ⅱ类;菠菜、生菜、红菜苔、划为Ⅲ类;四季豆、长豆角、黄瓜、丝瓜、苦瓜、南瓜、玉米、西红柿、辣椒等蔬菜Pb浓度较低,划为Ⅳ类。同理,根据蔬菜Cd浓度均值(表 2)进行层级聚类分析(图 1),可将蔬菜分为3类:大蒜和苋菜归为Ⅰ类,香菜为Ⅱ类,大白菜、生菜、菠菜、小白菜、白菜苔、红菜苔、四季豆、长豆角、黄瓜、丝瓜、苦瓜、南瓜、玉米、西红柿、辣椒、茄子等划为Ⅲ类。由此可知,在矿区种植蔬菜时应选择重金属Pb和Cd浓度较低的蔬菜品种,比如长豆角、四季豆、丝瓜、玉米、黄瓜、辣椒等果菜类蔬菜,即使是在重金属Pb和Cd浓度相对较高的土壤上种植这些蔬菜,其可食部位也没有超标。

2.2 不同蔬菜种类各部位重金属含量

表 3可知,叶菜类蔬菜中根和茎叶部位Pb含量范围分别为3.18—28.47、0.42—5.03 mg/kg,平均含量分别为11.73、1.41 mg/kg;Cd含量范围分别为0.08—5.95、0.04—2.92 mg/kg,平均含量分别为1.58、0.79 mg/kg。果菜类蔬菜中根、茎、叶、果部位Pb含量分别为2.71—13.88、0.22—2.02、0.02—4.77、NG—0.43,平均含量分别为6.36、0.86、1.30、0.10;Cd含量范围分别为0.09—1.37、0.04—0.32、0.01— 0.86、0.0003—0.29 mg/kg,平均含量分别为0.56、0.19、0. 09、0.04 mg/kg。显然,同种蔬菜不同部位重金属含量不同。综上所述,蔬菜中重金属含量顺序一般是根>茎>叶>果,或者根>叶>茎>果。

图 1 基于不同蔬菜重金属Pb和Cd浓度均值的聚类分析结果 Fig. 1 Cluster analysis based on mean concentrations of Pb and Cd in different vegetables
表 3 不同蔬菜种类各部位重金属含量 Table 3 Contents of heavy metals in different organs of different vegetable types
蔬菜类型
Vegetable
types
蔬菜部位
Different
parts
Pb/ (mg/kg) Cd/ (mg/kg)
范围
Range
几何均值
Geometric
mean
中值
Median
平均值
±标准差
Mean ±SD
范围
Range
几何均值
Geometric
mean
中值
Median
平均值
±标准差
Mean ±SD
NG为未检出; SD是标准差
叶菜类(N=29)3.18—28.4711.7211.7311.73±2.850.08—5.951.551.561.58±0.05
(Leaf vegetables)可食部位0.42—5.031.381.401.41±0.220.04—2.920.770.750.79±0.07
果菜类 2.71—13.886.276.356.36±2.420.09—1.370.550.560.56±0.02
(N=28)0.22—2.020.850.850.86±0.360.04—0.320.190.180.19±0.02
(Fruit 0.02—4.771.301.281.30±0.710.01—0.860.080.090.09±0.02
vegetables)可食部位 NG—0.430.0970.0980.10±0.080.0003—0.290.030.040.04±0.01

不同蔬菜中同种重金属含量也不同。蔬菜可食部位重金属Pb、Cd含量顺序为叶菜类>果菜类,叶菜类更容易富集重金属Pb、Cd,这与其他研究结果类似[33]

3 讨论 3.1 不同蔬菜品种对重金属的富集能力分析

本文采用富集系数(即蔬菜可食部位中某污染物含量与土壤中该污染物含量的比值)来评价蔬菜对重金属的富集能力[34, 35]。一般来说,蔬菜对重金属的富集系数越小,表明其吸收重金属的能力越差,抗土壤重金属污染的能力较强。表 4表示,蔬菜对Pb的富集系数在0—0.0084之间,对Cd的富集系数在0—0.8952之间。大蒜对Pb和Cd的富集系数最高,分别为0.0084和0.8952;黄瓜、西红柿和四季豆等果菜类的富集系数最小,几乎为0。2类蔬菜中重金属Pb、Cd富集系数的顺序相同,叶菜类>果菜类,与图 1分析结果一致。另外,2类蔬菜对重金属Pb、Cd的富集能力大小依次为Cd > Pb,这与林君锋等的研究结果类似[36]

表 4 不同种类蔬菜中重金属的富集系数 Table 4 Bioaccumulation factors of heavy metals in different vegetable types
蔬菜类型
Vegetable types
样品数
Samples
蔬菜种类
Vegetable
重金属的富集系数
Bioaccumulation
factors of heavy metals
PbCd
叶菜类(N=29)3空心菜0.00080.0719
Leaf vegetables3苋菜0.00190.3817
2大白菜0.00130.0228
3大蒜0.00840.8952
3包菜0.00110.0132
3菠菜0.00180.1843
2香菜0.00180.1368
3生菜0.00110.0633
2小白菜0.00040.0154
2红菜苔0.00090.0234
3白菜苔0.00070.0305
平均值0.0018 0.1671
果菜类(N=28)3苦瓜0.00010.0008
Fruit vegetables3西红柿0.00000.0036
3南瓜0.00010.0002
3玉米0.00020.00004
3黄瓜0.00000.0005
2丝瓜0.000020.0007
3辣椒0.00010.0217
2茄子0.00040.0381
3四季豆0.00000.0009
3长豆角0.00010.0029
平均值0.00010.0070
3.2 蔬菜中重金属与土壤中重金属相关性分析

表 5表明,土壤中Pb与Cd,土壤中Pb与蔬菜中Pb、Cd之间均呈正相关;另外,蔬菜中重金属Pb和Cd之间存在极显著正相关性,说明它们之间具有同源关系或复合污染。此结论与朱书法等关于土壤与蔬菜中重金属Pb含量相关性的研究结果类似[37]

表 5 蔬菜重金属与土壤重金属相关关系 Table 5 Correlations between the contents of heavy metals in vegetables and those in soils
项目ItemPbCdPbCd
采用Pearson相关分析,双侧检验,**表示P < 0.01,*表示P < 0.05; 土: Soil; 菜: Vegetable
Pb土soil10.278(n=21)0.305(n=18)0.180(n=21)
Cd土soil10.138(n=18)-0.032(n=21)
Pb菜vegetable10.906* *(n=18)
Cd菜vegetable1
3.2 蔬菜中重金属与土壤中重金属相关性分析

表 5表明,土壤中Pb与Cd,土壤中Pb与蔬菜中Pb、Cd之间均呈正相关;另外,蔬菜中重金属Pb和Cd之间存在极显著正相关性,说明它们之间具有同源关系或复合污染。此结论与朱书法等关于土壤与蔬菜中重金属Pb含量相关性的研究结果类似[37]

表 5 蔬菜重金属与土壤重金属相关关系 Table 5 Correlations between the contents of heavy metals in vegetables and those in soils
项目ItemPbCdPbCd
采用Pearson相关分析,双侧检验,**表示P < 0.01,*表示P < 0.05; 土: Soil; 菜: Vegetable
Pb土soil10.278(n=21)0.305(n=18)0.180(n=21)
Cd土soil10.138(n=18)-0.032(n=21)
Pb菜vegetable10.906* *(n=18)
Cd菜vegetable1
3.3 蔬菜中重金属的健康风险评估

根据USEPA[31]WHO[32]推荐的参考暴露剂量(RfD),当人体平均日摄入量(CDI)超出RfD,即HQ蔬菜> 1时,表明污染物可引起人体的健康风险;HQ蔬菜值越大,表明该污染物对人体健康风险越大。表 6表示,对果菜类蔬菜而言,Pb和Cd的日摄入量(CDI)均小于USEPA的日参考暴露剂量RfD,Pb和Cd暴露风险指数分别为0.005和0.07,HQ蔬菜< 1。对叶菜类蔬菜而言,Pb和Cd的日摄入量(CDI)均大于USEPA的日参考暴露剂量RfD,Pb和Cd暴露风险指数分别为1.70和3.73,HQ蔬菜> 1。显然,食用叶菜类的重金属健康风险较高,食用果菜类蔬菜的重金属健康风险较低。此结果与杨胜香等关于蔬菜重金属健康风险评价的类似研究结论相同[38]。根据本研究区域蔬菜和农田环境质量现状污染水平,重金属Pb和Cd通过蔬菜途径对当地居民带来的健康风险很高,可能给人体健康带来潜在危害。应该对研究区域居民食用的蔬菜予以关注,建议在当地种植一些食用部位Pb和Cd含量较低的果菜类蔬菜。

4 结论

(1)湘南某矿区附近土壤中Pb和Cd均超出国家土壤Ⅱ级标准值,而且苋菜、空心菜、大蒜、生菜、白菜苔、红菜苔等叶菜类蔬菜中Pb和Cd含量超过国家食品卫生标准限值,叶菜类蔬菜Pb和Cd浓度高于果菜类蔬菜。建议在当地种植一些苦瓜、黄瓜、玉米、丝瓜等未超过国家食品卫生标准的果菜类蔬菜。

表 6 食用蔬菜的重金属摄入量及健康风险 Table 6 Intake and health risk of heavy metal through vegetables consumption
蔬菜类型
Vegetable types
重金属
Heavy metals
CDI/(μg kg-1 d-1)
Concentration daily intake
RfD/(μg kg-1 d-1)
Reference dose
HQ
Health quotient
叶菜类Leaf vegetablesPb5.943.51.70
Cd3.731.03.73
果菜类Fruit vegetablesPb0.023.50.005
Cd0.071.00.070

(2)同种蔬菜不同部位重金属含量不同,顺序一般为根>茎>叶>果,或者根>叶>茎>果。不同蔬菜同种重金属含量也不同,顺序一般为叶菜类>果菜类。

(3)2类蔬菜中Pb、Cd的富集系数顺序为:叶菜类>果菜类;其中大蒜的富集系数最大,黄瓜和玉米的最小。2类蔬菜对Pb、Cd的富集能力大小顺序为Cd > Pb。

(4)蔬菜中Pb和Cd之间存在极显著正相关性,说明它们之间具有同源关系或复合污染。

(5)通过计算蔬菜中重金属健康风险可知,叶菜类蔬菜的Pb和Cd的HQ蔬菜值大于1,具有健康风险;而果菜类蔬菜的Pb和Cd均小于1,不存在健康风险。Pb和Cd通过叶菜类蔬菜途径对当地居民的健康风险较高。

参考文献
[1] Zhou Z Y, Fan Y P, Wang M J. Heavy metal contamination in vegetables and their control in China. Food Reviews International, 2000, 16(2): 239-255.
[2] Wang Q R, Dong Y, Cui Y, Liu X. Instances of soil and crop heavy metal contamination in China. Soil and Sediment Contamination, 2001, 10(5): 497-510.
[3] Cao H B, Chen J J, Zhang J, Zhang H, Qiao L, Men Y. Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China. Journal of Environmental Sciences, 2010, 22(11): 1792-1799.
[4] Hu C H, Jiang J H, Zhou W B. Risk evaluation and sources Analysis of heavy metals in vegetable field soil of rural area around Poyang lake. Scientia Geographica Sinica, 2012, 32(6): 771-776.
[5] Lei M, Zeng M, Zheng Y M, Liao B H, Zhu Y G. Heavy metals pollution and potential ecological risk in paddy soils around mine areas and smelting areas in Hunan Province. Acta Scientiae Circumstantiae, 2008, 28(6): 1212-1220.
[6] Liao B H, Guo Z H, Probst A, Probst J L. Soil heavy metal contamination and acid deposition: experimental approach on two forest soils in Hunan, Southern China. Geoderma, 2005, 127(1/2): 91-103.
[7] Guo Z H, Zhu Y G. Contamination and available contents of heavy metals in soils in the typical mining and smelting circumjacent districts. Ecology and Environment, 2004, 13(4): 553-555.
[8] Zhou H, Zeng M, Liu J, Liao B H. Investigation and evaluation of Pb, Cd, Zn contamination in soybean planting soils of 4 typical mine zones in Hunan Province, China. Journal Agro-Environment Science, 2011, 30(3): 476-481.
[9] Liao B H, Liu J, Zhou H, Zeng M, Huang Y X, Zhou X H, Zeng Q R. Effects of Cd stress on physiological and ecological indicators and their differences of soybean plants at different growth stages. China Environmental Science, 2010, 30(11): 1516-1521.
[10] Cui Y J, Zhu Y G, Zhai R H, Chen D Y, Huang Y Z, Qiu Y, Liang J Z. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environment International, 2004, 30(6): 785-791.
[11] Pan P, Yang J C, Deng S H, Jiang H M, Zhang J F, Li L L, Shen F. Proceedings and prospects of pesticides and heavy metals contamination in soil-plant system. Journal of Agro-Environment Science, 2011, 30(12): 2389-2398.
[12] Fang F M, Wang L L, Xie H F, Wang H D. Enrichment characteristic and health risk assessment of heavy metals in vegetables in Sanshan District, Wuhu City, China. Journal of Agro-Environment Science, 2010, 29(8): 1471-1476.
[13] Zou R, Shen D, Bai X F, Li X X. Research progress on physiological effect of heavy metals in vegetables and their accumulation rule. China Vegetables, 2011, (4): 1-7.
[14] Alam M G M, Snow E T, Tanaka A. Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Science of the Total Environment, 2003, 308(1/3): 83-96.
[15] Yao C X, Chen Z L, Zhang J, Hou J, Liu W, Xu Y Z, Lu J D. Heavy metal contents and evaluation of vegetable and soil in Pudong, Shanghai city. Chinese Journal of Soil Science, 2005, 36(6): 884-887.
[16] Xie Z M, L J, Xu J M, Ye L J, Wang B L. Evaluation on environmental quality of Pb, Zn and Cu contents in vegetable plantation soils and vegetables in Hangzhou Suburb. Environmental Science, 2006, 27(4): 742-747.
[17] Xie H, Liao X Y, Chen T B, Lin J Z. Arsenic in plants of farmland and its healthy risk: a case study in an As-contaminated site in Dengjiatang, Chenzhou City, Hunan province. Geographical Research, 2005, 24(1): 151-159.
[18] Song B, Gao D, Chen T B, Huang Z C, Zheng Y M, Lei M, Zheng G D, Yang J, Liao X Y. A survey of chromium concentrations in vegetables and soils in Beijing and the potential risks to human health. Acta Scientiae Circumstantiae, 2006, 26(10): 1708-1715.
[19] Chen T B, Song B, Zheng Y M, Huang Z C, Lei M, Liao X Y. A survey of lead concentrations in vegetables and soils in Beijing and their health risks. Scientia Agricultura Sinica, 2006, 39(8): 1589-1597.
[20] Wang X F, Luo L Q. Uptake of heavy metal in vegetables grown in Pb-Zn-Ag mine, Nanjing. Ecology and Environmental Science, 2009, 18(1): 143-148.
[21] Hu J L, Wu F Y, Wu S C, Sun X L, Lin X G, Wong M H. Phytoavailability and phytovariety codetermine the bioaccumulation risk of heavy metal from soils, focusing on Cd-contaminated vegetable farms around the Pearl River Delta, China. Ecotoxicology and Environmental Safety, 2013, 91(1): 18-24.
[22] Song B, Zhang X H, Meng D L, Zhong X M. Lead concentrations and contamination assessment in vegetables and soils in Guilin. Research of Environmental Sciences, 2012, 25(10): 1155-1160.
[23] Liu H Y, Probst A, Liao B H. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environment, 2005, 339(1/3): 153-166.
[24] Lu R K. Methods of Agricultural Chemical Analysis in Soil. Beijing: China Agriculture Press, 2000: 334-335, 478-478, 488-488.
[25] The Chinese Ministry of Public Health. GB14935-94 Tolerance Limit of Lead in Foods. Beijing: Standards Press of China, 1994.
[26] The Chinese Ministry of Public Health. GB15201-94 Tolerance Limit of Cadmium in Foods. Beijing: Chinese Standard Press, 1994.
[27] Tripathi R M, Raghunath R, Krishnamoorthy T M. Dietary intake of heavy metals in Bombay city, India. Science of the Total Environment, 1997, 208(3): 149-159.
[28] Chen H, Liu Z Q, Li G H. A study of the establishment and evaluation method of the soil risk guideline of contaminated sites. Hydrogeology and Engineering Geology, 2006, 33(2): 84-88.
[29] Feng Z M, Shi D F. Chinese food consumption and nourishment in the latest 20 years. Resources Science, 2006, 28(1): 2-8.
[30] Zhang L, Zhang X C. Interactions of nitrogen with water and light in the growth of plant. Agricultural Research in the Arid Areas, 2003, 21(1): 43-46.
[31] USEPA. Risk-based Concentration Table. Philadelphia: United States Environmental Protection Agency, 2000.
[32] WHO (World Health Organization). Evaluation of certain food additives and contaminants (41st Report of the Joint FAO/WHO Expert Committee on Food Additives). Geneva: WHO Technical Report Series, No. 837, 1993.
[33] Song B, Chen T B, Zheng Y M, Huang Z C, Zheng G D, Luo J F. A survey of cadmium concentrations in vegetables and soils in Beijing and the potential risks to human health. Acta Scientiae Circumstantiae, 2006, 26(8): 1343-1353.
[34] Yue Z H, Zhang F Q, Hu R Z, Hu R Z, Wang C H, Li W L. Migration and accumulation of heavy metals and fin garden soils and vegetables. Journal of Hunan Agricultural University: Natural Sciences, 1992, 18(4): 929-936.
[35] Zheng Y M, Song B, Chen T B, Huang Z C, Lei M, Liao X Y, Chen H, Zheng G D. A survey of copper concentrations in vegetables and soils in Beijing and their health risk. Journal of Agro-Environment Science, 2006, 25(5): 1093-1101.
[36] Zheng N, Wang Q C, Zheng D M. Transfer characteristics of mercury, lead, cadmium, zinc and cuprum from soil to vegetable around zinc smelting plant. Environmental Sciences, 2007, 28(6): 1349-1354.
[37] Zhu S F, Dong T Y, Jiang Y. Correlation of the heavy metal content in soil and vegetable from Luoyang suburban vegetable field. Journal of Anhui Agricultural Sciences, 2008, 36(3): 837-839.
[38] Yang S X, Yi L B, Liu J, Wang H, Suo Y Y. Heavy metals concentrations and health risk in vegetables grown on Mn and Pb/Zn mineland in Huayuan County, West Hunan Province, China. Journal of Agro-Environment Science, 2012, 31(1): 17-23.
[4] 胡春华, 蒋建华, 周文斌. 环鄱阳湖区农家菜地土壤重金属风险评价及来源分析. 地理科学, 2012, 32(6): 771-776.
[5] 雷鸣, 曾敏, 郑袁明, 廖柏寒, 朱永官. 湖南采矿区和冶炼区水稻土重金属污染及其潜在风险评价. 环境科学学报, 2008, 28(6): 1212-1220.
[7] 郭昭辉, 朱永官. 典型矿冶周边地区土壤重金属污染及有效性含量. 生态环境, 2004, 13(4): 553-555.
[8] 周航, 曾敏, 刘俊, 廖柏寒. 湖南4个典型工矿区大豆种植土壤Pb Cd Zn污染调查与评价. 农业环境科学学报, 2011, 30(3): 476-481.
[9] 廖柏寒, 刘俊, 周航, 曾敏, 黄运湘, 周细红, 曾清如. Cd胁迫对大豆各发育阶段生长及生理指标的影响. 中国环境科学, 2010, 30(11): 1516-1521.
[11] 潘攀, 杨俊诚, 邓仕槐, 姜慧敏, 张建峰, 李玲玲, 沈飞. 土壤-植物体系中农药和重金属污染研究现状及展望. 农业环境科学学报, 2011, 30(12): 2389-2398.
[12] 方凤满, 汪琳琳, 谢宏芳, 王海东. 芜湖市三山区蔬菜中重金属富集特征及健康风险评价. 农业环境科学学报, 2010, 29(8): 1471-1476.
[13] 邹日, 沈镝, 柏新富, 李锡香. 重金属对蔬菜的生理影响及其富集规律研究进展. 中国蔬菜, 2011, (4): 1-7.
[15] 姚春霞, 陈振楼, 张菊, 侯晶, 刘伟, 徐益章, 陆建忠. 上海市浦东新区土壤及蔬菜重金属现状调查及评价. 土壤通报, 2005, 36(6): 884-887.
[16] 谢正苗, 李静, 徐建明, 叶兰军, 王碧玲. 杭州市郊蔬菜基地土壤和蔬菜中Pb、Zn和Cu含量的环境质量评价. 环境科学, 2006, 27(4): 742-747.
[17] 谢华, 廖晓勇, 陈同斌, 林鉴钊. 污染农田中植物的砷含量及其健康风险评估——以湖南郴州邓家塘为例. 地理研究, 2005, 24(1): 151-159.
[18] 宋波, 高定, 陈同斌, 黄泽春, 郑袁明, 雷梅, 郑国砥, 杨军, 廖晓勇. 北京市菜地土壤和蔬菜铬含量及其健康风险评估. 环境科学学报, 2006, 26(10): 1707-1715.
[19] 陈同斌, 宋波, 郑袁明, 黄泽春, 雷梅, 廖晓勇. 北京市菜地土壤和蔬菜铅含量及其健康风险评估. 中国农业科学, 2006, 39(8): 1589-1597.
[20] 王晓芳, 罗立强. 铅锌银矿区蔬菜中重金属吸收特征及分布规律. 生态环境学报, 2009, 18(1): 143-148.
[22] 宋波, 张学洪, 蒙冬柳, 钟雪梅. 桂林市菜地土壤和蔬菜铅含量调查与污染评价. 环境科学研究, 2012, 25(10): 1155-1160.
[24] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业出版社, 2000: 334-335, 478-478, 488-488.
[25] 中华人民共和国卫生部. GB14935-94食品中铅限量卫生标准. 北京: 中国标准出版社, 1994.
[26] 中华人民共和国卫生部. GB15201-94食品中镉限量卫生标准. 北京: 中国标准出版社, 1994.
[28] 陈华, 刘志全, 李广贺. 污染场地土壤风险基准值构建与评价方法研究. 水文地质工程地质, 2006, 33(2): 84-88.
[30] 张丽, 张兴昌. 植物生长过程中水分、氮素、光照的互作效应. 干旱地区农业研究, 2003, 21(1): 43-46.
[33] 宋波, 陈同斌, 郑袁明, 黄泽春, 郑国砥, 罗金发. 北京市菜地土壤和蔬菜镉含量及其健康风险分析. 环境科学学报, 2006, 26(8): 1343-1353.
[34] 岳振华, 张富强, 胡瑞芝, 王翠红, 李武陵. 菜园土中重金属和氟的迁移累积及蔬菜对重金属的富集作用. 湖南农业大学学报: 自然科学版, 1992, 18(4): 929-937.
[35] 郑袁明, 宋波, 陈同斌, 黄泽春, 雷梅, 廖晓勇, 陈煌, 郑国砥. 北京市菜地土壤和蔬菜中铜含量及其健康风险. 农业环境科学学报, 2006, 25(5): 1093-1101.
[36] 郑娜, 王起超, 郑冬梅. 锌冶炼厂周围重金属在土壤-蔬菜系统中的迁移特征. 环境科学, 2007, 28(6): 1349-1354.
[37] 朱书法, 董铁有, 姜勇. 洛阳市郊区蔬菜地土壤-蔬菜中重金属含量的相关性研究. 安徽农业科学, 2008, 36(3): 837-839.
[38] 杨胜香, 易浪波, 刘佳, 王辉, 索悠扬. 湘西花垣矿区蔬菜重金属污染现状及健康风险评价. 农业环境科学学报, 2012, 31(1): 17-23.