生态学报  2014, Vol. 34 Issue (7): 1707-1715

文章信息

王银平, 谷孝鸿, 曾庆飞, 谷先坤, 毛志刚
WANG Yinping, GU Xiaohong, ZENG Qingfei, GU Xiankun, MAO Zhigang
控(微囊)藻鲢、鳙排泄物光能与生长活性
Growth and photosynthetic activity of Microcystis colonies after gut passage through silver carp and bighead carp
生态学报, 2014, 34(7): 1707-1715
Acta Ecologica Sinica, 2014, 34(7): 1707-1715
http://dx.doi.org/10.5846/stxb201211151602

文章历史

收稿日期:2012-11-15
修订日期:2013-7-31
控(微囊)藻鲢、鳙排泄物光能与生长活性
王银平1, 2, 谷孝鸿1, 曾庆飞1 , 谷先坤1, 2, 毛志刚1    
1. 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008;
2. 中国科学院大学, 北京 100049
摘要:利用叶绿素荧光技术,通过原位培养滤食性鱼类鲢(Hypophthalmichthys molitrix)、鳙(Aristichthys nobilis)摄食微囊藻(Microcysis)后的排泄物,研究鲢、鳙滤食对藻类光能及生长活性的影响。结果表明,微囊藻经鲢、鳙滤食后,排泄当天,其叶绿素荧光参数PSⅡ最大光能转化效率(Fv/Fm)、PSⅡ潜在光合活性(Fv/Fo)、PSⅡ实际光能转化效率(Yield)和光合电子传递速率(ETR)显著低于对照组(P <0.05),而光化学猝灭(qP)和非光化学猝灭(NPQ)显著高于对照组(P <0.05)。随后,微囊藻的光合活性逐渐恢复,鲢、鳙组的Fv/FmFv/Fo、Yield和qP分别在第3天和第5天开始呈上升趋势,至实验结束时显著高于对照组,其中鲢组高于鳙组。而NPQ呈下降趋势,第13 d极显著低于对照组(P <0.01)。原位培养期间,鲢、鳙组藻细胞密度和叶绿素a(Chl a)浓度呈增长趋势,且鲢组明显高于鳙组;鳙组藻类游离胞外多糖含量增长幅度高于鲢组。实验结束时,鲢、鳙组浮游藻类总生物量分别为对照组7.78、6.55倍,绿藻(Chlorophyta)和硅藻(Bacillariophyta)相对生物量增加,但微囊藻贡献率达93%以上。相关性分析显示,鲢组藻细胞密度、Chl a浓度和胞外多糖含量与Fv/FmFv/Fo、Yield、ETR、qP均极显著正相关(P <0.01),而与NPQ呈极显著负相关(P <0.01)。鳙组藻细胞密度、Chl a浓度和胞外多糖含量仅与ETR呈极显著正相关(P <0.01),与NPQ呈极显著负相关(P <0.01)。可见,鲢、鳙单次滤食未对微囊藻造成生理上的致命损伤,藻类由于超补偿生长,其光合及生长活性在短期恢复并显著增强,有潜在加速水体富营养化可能,鲢、鳙增殖放流以控制蓝藻水华的措施值得商榷。
关键词叶绿素荧光    微囊藻    鲢鳙    排泄物    胞外多糖    
Growth and photosynthetic activity of Microcystis colonies after gut passage through silver carp and bighead carp
WANG Yinping1, 2, GU Xiaohong1, ZENG Qingfei1 , GU Xiankun1, 2, MAO Zhigang1    
1. Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiangsu, Nanjing 210008, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Proliferation of cyanobacteria is a global problem in eutrophic freshwater ecosystems. Silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) have been considered effective in suppressing cyanobacterial blooms in eutrophic lakes. Long-term observations in Lake Donghu and Lake Qiandaohu documented that silver carp and bighead carp can efficiently suppress Microcystis blooms. However, the introduction of silver carp and bighead carp into blooming waters not always brings about the expected result, namely a decrease in phytoplankton biomass. Some ponds stocked with planktivorous carp have been reported to show an increase in phytoplankton biomass. One of the reasons may come from that the photosynthetic activity of Cyanobacteria after gut passage remains unaffected or even increases. In order to test the effect of silver carp and bighead carp's digest on Microcystis, chlorophyll fluorescence technique was employed. Chlorophyll fluorescence technique provides a swift, accurate, and nondestructive way for assessing the efficiency of photochemical conversion and it has become an increasingly powerful tool widely used in the study of photosynthesis. In our study, the growth and photosynthetic activity of Cyanobacteria after passage through the intestines of silver carp and bighead carp were compared with those taken directly from Lake Taihu during a 13-day in situ dialysis culture. The hypothesis for experiment reported in the study was that cyanobacteria in excretions might retain photosynthetic activity after gut passage. The aim of this work was to prove viability of the digested phytoplankton using multi-fluorescence parameters in comparison to the untreated water bloom from the same source population.Chlorophyll fluorescence parameters (including maximal optical quantum efficiency of PSⅡ(Fv/Fm), Potential activity of PSⅡ(Fv/Fo), effective optical quantu yield of PSⅡ(Yield), PSⅡ-driven electron transport rate (ETR), photochemical quenching (qP) and nonphotochemical quenching (NPQ)) were determined by PAM fluorimeter (Dual-PAM-100), and phytoplankton community structure and biomass were determined at the same time. The results indicated that Fv/Fm, Fv/Fo, Yield and ETR reduced significantly after passage through silver carp and bighead carp (P <0.05), whereas qP and NPQ significantly increased (P <0.05). After the first three to five days of reduced activity after excretion by silver carp and bighead carp, the metabolic activity of cyanobacteria recovered and rose significantly higher(P <0.01) than the levels in the control population. The Fv/Fm, Fv/Fo, Yield and qP values were significantly higher in silver carp and bighead carp groups than in the control at the end of culture (P <0.01), while NPQ was significantly lower on the 13rd day (P <0.01). The phytoplankton cell density and chlorophyll a content of silver carp group were growing faster than that of bighead carp group. The extrtracellular exopolysaccharide (EPS) of bighead carp group was higher than that of silver carp group during culture. At the end of the experiment, the total biomass of phytoplankton showed a 6-to 8-fold increase of growth in the two fish groups compared to the control. The relative biomass of green algae (Chlorophyta) and diatom (Bacillariophyta) increased a little, and their biomass was low when compared to cyanobacteria (93% of the total phytoplankton biomass). Moreover, EPS production was also stimulated after the passage through silver carp and bighead carp. The correlation analysis showed that the phytoplankton cell density, chlorophyll a and EPS concentrations in silver carp group showed significantly positive correlation with Fv/Fm, Fv/Fo, Yield, ETR and qP (P <0.01), but significantly negative with NPQ (P <0.01). In bighead carp group, the phytoplankton cell density, chlorophyll a and EPS concentrations were only significantly positive (P <0.01) with ETR and significantly negative (P <0.01) with NPQ. It was obviously that silver carp and bighead carp digestion do not cause fatal injury to Microcystis. And the Microcystis might exhibit over-compensatory growth resulting from fish digestion during cultivation. The increase in photosynthesis and growth of living cells after passage through the gut of silver carp and bighead carp may be one of the factors affecting the formation and maintenance of water blooms. Therefore, the use of silver carp and bighead carp as biological manipulation tool for cyanobacterial blooms control in lakes need more discussion.
Key words: chlorophyll fluorescence    microcystis    silver carp and bighead carp    faeces    extrtracellular exopolysaccharide    

为了控制藻类水华,经典生物操纵理论提出利用浮游动物遏制藻类[1]。然而,对于蓝藻水华严重爆发的水体,浮游动物根本不能有效摄食这种藻类,因此有学者提出放养滤食性鲢(Hypophthalmichthys molitrix)、鳙(Aristichthys nobilis)直接牧食水华蓝藻的非生物操纵理论,以此达到控制蓝藻生产力、消除蓝藻水华的目的[2]。在蓝藻水华期间,鲢、鳙肠内微囊藻含量占食物总量的80%—100%[3],对浮游藻类具有良好的控制作用[4, 5];但也有研究表明,鲢、鳙对水华蓝藻(微囊藻)的消化利用率只有25%—30%[6],排泄物中大量的活性藻类直接参与到水体的营养物质再循环,可能引起水华藻类生物量的激增[7, 8]

鲢、鳙属于典型的滤食性鱼类,对食物的选择取决于摄食时食物的可得性和颗粒物大小,颗粒小于鲢、鳙鳃耙间距的藻则不能有效被鲢鳙摄食,且鱼肠中藻是否被消化很大程度上取决于藻的种类。Datta等将从鲢、鳙排泄物中提取出的微囊藻在过滤的湖水中培养,4 d后发现生物量增加了7—8倍[9]。微囊藻被鲢摄食后,没有造成生理上的破坏,最终以单细胞存在[10]。Kolmakov等研究了鲫鱼、鲢排泄物中蓝藻的生长速率、生物量及潜在光合活性;Jan c ˇ ula等比较了罗非鱼、鲢排泄物中蓝藻光合反应慢补偿面积(SCA),均得到了一致的研究结果,即微囊藻经鲢代谢后其生长速率和光合活性增强[11, 12]。可见,鲢、鳙排泄物很有可能对藻类激增做出直接贡献,而目前这方面的研究还较少。已有研究多集中在对单个叶绿素荧光参数的室内模拟研究,不能完全还原藻类生长环境和保证藻类同水体间营养物质信息的交换。

植物叶绿素荧光动力学技术能够快速灵敏、无损伤地反映PSⅡ的状况以及植物对光能的吸收、传递、耗散、分配等潜在特点,是研究植物光合生理方法及植物与逆境胁迫关系的理想探针[13, 14]。本研究借助藻类叶绿素荧光技术,研究微囊藻被鲢、鳙摄食后,其叶绿素荧光活性、叶绿素a浓度(Chl a)、细胞密度及胞外多糖含量的变化,探讨滤食鱼类控藻的生态后效,以期为生物控藻可行性研究提供理论基础。

1 材料与方法 1.1 材料与实验设计

依托太湖湖泊生态系统研究站原有试验场地,构建规格为1 m×1 m×1.5 m(长×宽×高)敞口式聚乙烯不透水围隔9个(鲢组、鳙组和对照组各3个),围隔内为经200 μm筛网预滤的湖水。实验用鲢(体重(84.8±2.3) g,体长(17.7±1.2) cm)、鳙(体重(76.6±1.7) g,体长(17.2±1.5) cm)购于中国水产科学研究院淡水渔业研究中心,实验前驯化喂养7 d,并进行7—10 d微囊藻摄食驯化。实验开始时,将饥饿72 h的健壮鲢、鳙分别放入微囊藻水华严重的围隔中,每组10条,对照组不放鱼。

待排泄稳定,分别收集围隔内漂浮的条状排泄物,用去离子水缓缓冲洗排泄物表面附着物后转入盛有经0.2 μm滤膜预滤湖水的锥形瓶中超声振荡打匀,随后等量移取至透析袋中(截流分子量14 KD,半周长150 mm),透析袋分别悬挂在对应围隔中进行原位渗透培养。对照组透析袋中加入未被摄食的经超声震荡的微囊藻悬浮液。实验期间,每天定时摇动透析袋4次,每2 d取样测定藻类叶绿素荧光参数、叶绿素a和胞外多糖浓度、藻细胞密度,培养周期13 d。于实验第1天,第7天和第13天取样进行藻种鉴定。

1.2 叶绿素荧光参数测定

利用德国Walz公司生产的双通道PAM-100荧光仪,按照梁英等[15]的方法对藻类叶绿素荧光参数进行测定。暗适应15—20 min后测量,进行淬灭分析,选取达到稳定后的荧光值进行统计分析。

叶绿素荧光的主要参数包括:基础荧光Fo,最大荧光Fm,可变荧光Fv,光下基础荧光F′o,光下最大荧光F′m,光下可变荧光F′v,最大光能转化效率Fv/Fm,PSⅡ潜在活性(Fv/Fo),实际光能转化效率(Yield),光合电子传递速率(ETR),光化学淬灭(qP),非光化学淬灭(NPQ)。

1.3 叶绿素a、细胞密度及胞外多糖测定

叶绿素a浓度:经热乙醇法[16]提取后,利用紫外分光光度计比色测定后计算得出。

细胞密度:前期培养阶段,将藻群体用超声波击散均匀后稀释成不同梯度,分别测定各梯度藻液在680 nm处的吸光度(A680),同时采用流式细胞仪测出各梯度相应的细胞密度,即可得到细胞密度(C,个/mL)和A680之间的线性关系C=A×A680+B。实验期间,自接种之日起,每天同一时间取样,同样方法测定吸光度。

游离胞外多糖浓度:取10 mL藻液,12000 r/min离心20 min用Whatman GF/C滤膜抽滤后,将上清液移入截留分子量为3500的透析袋中,加去离子水透析72 h,并用磁力搅拌器搅拌,每12 h换1次去离子水。透析结束后,取透析过的多聚糖样品1 mL于试管中,利用蒽酮硫酸法[17]对游离胞外多糖(EPS)含量进行测定。

1.4 藻类形态鉴定与细胞计数

取混合定量样品100 mL,用鲁格试剂固定后,经36—48 h沉淀,浓缩至10 mL。将浓缩水样充分摇匀后,吸出0.1 mL置于0.1 mL计数框内,在高倍显微镜下观察100—200个视野(重复3次),以确定浮游植物的种类和数量[18]

1.5 数据处理

文中数据方差及相关分析采用Excel、SPSS Statistics 17.0软件进行,利用Sigmaplot 12.0软件完成作图。

2 结果与分析 2.1 鲢、鳙滤食对微囊藻叶绿素荧光参数的影响

微囊藻经鲢、鳙摄食后,叶绿素荧光参数Fv/FmFv/Fo、Yield和ETR与对照组相比,均有所降低(图 1)。鳙组藻类初始值Fv/FmFv/Fo极显著低于对照组(P<0.01),分别为对照组的82.6%和70.0%,ETR初始值为对照组的81.8%,鲢组藻类初始ETR显著低于对照组(P<0.05);而鲢、鳙组初始qPNPQ显著高于对照组(P<0.05)。鲢、鳙组藻类初始值Chl a浓度、细胞密度及胞外多糖含量均极显著低于对照组(P<0.01)。鳙组藻类各初始值总体上均低于鲢组,但相差较小,仅Chl a浓度及细胞密度显著低于鲢组(P<0.05),但鳙组藻类NPQ却显著高于鲢组(P<0.05)。排泄物藻类培养期间,鳙组藻类的Fv/FmFv/FoETR前期下降,第5天降至实验期间最小值,随后迅速增长,第13天极显著高于对照组(P<0.01);鲢组藻类的Fv/FmFv/FoETR 仅在初期有所下降,从第3天开始恢复增长,后期均极显著高于对照组(P<0.01),且鲢组藻类Fv/FmFv/Fo在第4—8天极显著高于鳙组(P<0.01),随着后期鳙组藻类活性恢复,鲢、鳙组之间的差距逐渐缩小。鲢组藻类Yield实验期间总体高于鳙组,实验第5天时,鲢组藻类的Yield与鳙组差值达到实验期间最大值,未达到显著水平。鲢组藻类qP一直上升,且始终高于鳙组,后期达到显著水平(P<0.05),鳙组藻类qP总体上介于鲢组与对照组之间,仅第3天低于对照组。鳙组藻类NPQ前期略低于鲢组,后期却显著高于鲢组(P<0.05),鲢、鳙组藻类NPQ前期极显著高于对照组(P<0.01),后期极显著低于对照组(P<0.01)。

图 1 鲢、鳙排泄物培养期间藻类叶绿素荧光参数随时间的变化 Fig. 1 Time dependent course of cyanobacteria photosynthetic activity after passage through the digestive tract of fish compared with colonies in control phytoplankton samples

相关分析表明(表 1),鲢、鳙组藻Fv/Fo均与细胞密度呈正相关关系,鲢组达到极显著水平(P<0.01),而鳙组相关性不显著。鲢组藻类Fv/Fm及Yield与细胞密度、Chl a浓度呈极显著正相关(P<0.01)。鲢、鳙组藻细胞密度、Chl a浓度、EPS含量均与叶绿素荧光ETRqP呈极显著正相关(P<0.01),而与NPQ极显著负相关(P<0.01)。

表1 鲢、鳙排泄物培养期间藻类细胞密度、Chl a浓度、EPS含量与叶绿素荧光参数之间的相关分析 Table 1 Correlation analysis of phytoplankton cell density、chlorophyll a and extrtracellular exopolysaccharide concentration with chlorophyll fluorescence parameters in the control and experimental cultures
组别 Group指标 Index叶绿素荧光参数 Chlorophy ll fluorescence parameters
Fv/FoFv/FmYieldETRqPNPQ
潜在光合活性(Fv/Fo): Potential Activity; 最大光能转化效率(Fv/Fm): Maximal Optical Quantum Efficiency; 实际光能转化效率(Yield): Effective Optical Quantu yield; 光合电子传递速率(ETR): Electron Transport Rate; 光化学猝灭(qP): Photochemical Quenching; 非光化学猝灭(NPQ): Nonphotochemical Quenching; 叶绿素a(Chl a): Chlorophyll a; 游离胞外多糖(EPS): Extrtracellular exopolysaccharide; **表示相关性极显著(P<0.01);*表示相关性显著(P<0.05)
对照组细胞密度-0.802*-0.772*-0.672*0.5730.3570.042
Chl a0.1330.1290.60.267-0.686*0.028
EPS-0.725*-0.693*-0.369*-0.587*-0.328*0.714*
鳙组细胞密度0.630.5750.3970.907* *0.717*-0.916* *
Chl a0.694*0.6360.470.879* *0.484-0.815* *
EPS0.716*0.673*0.477*0.96* *0.751* *-0.971* *
鲢组细胞密度0.865* *0.864* *0.783* *0.886* *0.905* *-0.832* *
Chl a0.759* *0.741* *0.692* *0.888* *0.644* *-0.729* *
EPS0.893* *0.896* *0.842* *0.875* *0.833* *-0.844* *
2.2 鲢、鳙滤食对藻类Chl a浓度、细胞密度及EPS含量的影响

鲢、鳙滤食对藻类Chl a浓度影响见图 2。对照组Chl a浓度在200—230 μg/L之间波动,且初期高于鲢、鳙组。鲢组藻类Chl a浓度在初期、末期增幅较大,实验期间(除第5天)总体高于鳙组。鳙组藻类Chl a浓度增速平缓。后期鲢组藻类Chl a浓度极显著高于鳙组(P<0.01),最大相差108.4 μg/L。对照组Chl a浓度仅与qP呈显著负相关(P<0.05),鲢组藻类Chl a浓度与除NPQ外的叶绿素荧光参数呈极显著正相关(P<0.01),而鳙组藻类Chl a浓度仅与ETR正相关达到极显著水平(P<0.01)。

图 2 鲢、鳙排泄物培养期间藻类细胞密度、Chl a浓度及EPS含量随时间变化 Fig. 2 TimePhytoplankton cell density,Chl a and extrtracellular exopolysaccharide concentrations in the control and experimental cultures

鲢、鳙滤食对藻类细胞密度的影响见图 2。对照组藻类细胞密度在实验期间呈现上升趋势,但一直在(1—2)×106个/mL之间变化。鲢、鳙组藻类细胞密度培养期间增长迅速,第9天开始,鲢组藻类细胞密度极显著高于鳙组(P<0.01),第9天相差最大为1.65×106 个/mL,均极显著高于对照组(P<0.01),实验结束时藻类细胞密度分别为对照组的3.9、3.2倍。相关分析表明,鳙组藻类细胞密度分别与ETRNPQ呈极显著正相关和负相关(P<0.01),而鲢组藻类细胞密度除与NPQ呈极显著负相关外(P<0.01),与其他叶绿素荧光参数均呈极显著正相关关系(P<0.01)。

鲢、鳙滤食对藻类EPS含量的影响见图 2。对照组藻类EPS含量在实验期间变化不大;鲢、鳙组藻类EPS含量初期基本不变,后期增长迅速;末期时鳙组藻类EPS含量极显著高于鲢组(P<0.01),最大相差25.0 mg/L,且均极显著高于对照组(P<0.01)。相关分析表明,对照组藻类EPS含量与NPQ呈显著正相关关系(P<0.05),与其它叶绿素荧光参数显著正相关(P<0.05);鳙组藻类EPS含量与叶绿素荧光参数之间的相关关系与对照组相反;鲢组藻类EPS含量与NPQ呈极显著负相关(P<0.01),而与其它叶绿素荧光参数极显著正相关(P<0.01)。

2.3 鲢、鳙滤食对藻种类的影响

原位培养期间藻类群落结构和生物量变化如表 2所示。试验初期对照组微囊藻占藻类总生物量的72.0%,经滤食后,鲢、鳙组微囊藻生物量分别占总浮游藻类的65.8%和59.3%,小型藻类生物量所占比例上升。排泄物培养期间,浮游藻类生物量急剧增加,实验结束时,鲢、鳙组浮游藻类总生物量分别为对照组的7.78、6.55倍,其中以微囊藻的增速最为明显,对总浮游藻类生物量增长的贡献率达到95%以上。

表2 鲢、鳙排泄物原位培养期间藻类群落结构和生物量变化 Table 2 The variation of phytoplankton community structure and biomass during in situ incubation
种类 Species第1天 (mg/L) 第7天 (mg/L) 第13 天 (mg/L)
对照组鳙组鲢组 对照组鳙组鲢组 对照组鳙组鲢组
蓝藻门Cyanophyta
微囊藻Microcysis spp.3.471.982.4115.8898.87114.8413.78101.46121.11
水华鱼腥藻Anabaena flos-aquae0.090.080.081.692.642.871.543.473.54
伪鱼腥藻Pseudanabaena sp.00.040.020.120.280.230.110.350.32
平裂藻Merismopedia sp.0.170.1400.370.530.570.290.650.54
隐藻门Cryptophyta
啮蚀隐藻Cryptomonas erosa000.0100.010.050.010.080.16
隐藻Cryptomonas spp.0.090.070.090.130.310.330.140.390.41
硅藻门Bacillariophyta
针杆藻Synedra acusvar00000.070.1100.180.22
星杆藻Asterionella sp.0.010.080.040.010.130.2200.350.44
脆杆藻Fragilaria spp.0.670.650.650.440.390.370.240.330.42
绿藻门Chlorophyta
斜生栅藻Scenedesmus obliqnus0.280.290.220.330.430.260.420.530.19
纤维藻Ankistrodesmus sp.0000.010.030.030.010.080.14
十字藻Crucigenia spp.0.01000.010.060.0400.040.12
盘星藻Pediastrum spp.00.020.050.030.120.220.010.520.33
衣藻Chlamydomonas sp.00000.01000.010.03
弓形藻Schroederia spp.0.010.050.0200.10.2100.010.32
丝藻Ulothrix000.0100.050.120.020.110.47
微芒藻Micractinium sp.0.020.040.060.030.210.320.040.220.55
总生物量Total biomass4.823.443.6619.05104.24120.7916.61108.78129.31
微囊藻生物量/总生物量% Microcysis biomass/Total biomass71.9957.5665.8583.3694.8595.0782.9693.2793.66
3 讨论

鲢、鳙滤食藻类并对其生长起到一定抑制,说明鲢、鳙在一定程度上能够控制藻类的爆发。刘健康等通过东湖3次原位围隔实验研究发现,东湖中已经消失14a的微囊藻水华重新出现在无鱼围隔中[2],由此推断微囊藻消失是由于鱼类放养率增大,若使微囊藻从强大的牧食压力下释放出来,水华会重新出现。闫玉华等指出鲢、鳙排泄物中存在大量未消化的蓝藻[19],而这些蓝藻细胞是否会直接参与群体的增殖尚需进一步研究证实[20]

本研究原位培养鲢、鳙排泄物,发现藻类叶绿素荧光及生长活性初始值降低,鳙组藻类初始生长及光合活性低于鲢组,而胞外多糖含量却相反,这一定程度上与鲢、鳙的消化器官有关。鳙消化道各段细长的肠绒毛,均匀分布的粘液细胞延长了藻细胞在鳙鱼肠内停留时间,数量大且发达的消化细胞有利于对滤食藻类进行消化吸收,而鲢消化道肠绒毛短粗,粘液细胞小,中后段数量很少,降低了其消化吸收能力[21],由此可知鲢对藻类的损伤不及鳙。鲢、鳙组藻类Fv/FmFv/Fo在实验前期下降,说明鲢、鳙滤食使PSⅡ反应中心受损,继而电子传递受阻,阻止藻细胞同化力的形成,进一步影响对碳的同化与固定,最终抑制光合作用的原初反应。实验组qP下降表明,电子由PSⅡ的氧化侧向PSⅡ反应中心传递受阻,用于进行光合作用的电子减少,以热或其他形式耗散的光能增加。NPQ实验初期处于较高水 平,这说明卡尔文循环活性受抑制的程度增大,PSⅡ的潜在热耗能量增强。这都说明藻类受滤食伤害后,自我保护机制加强。鲢、鳙组藻类叶绿素荧光参数(除NPQ外)值经过短暂的下降后开始恢复,说明鲢、鳙组藻类经过短时间的适应性调节后,PSⅡ开放的反应中心比例增加,并且随着时间延长,光合电子链的传递速率得到一定程度恢复,从而维持正常的光合反应。同时NPQ下降到较低水平,说明藻细胞的卡尔文循环活跃,能量利用率开始提高,光合反应恢复正常状态,这与其他叶绿素荧光参数的变化趋势吻合。对照组细胞密度、Chl a浓度及EPS含量变化较小,而鲢、鳙组藻类细胞密度与Chl a浓度增长迅速,这与藻的浓度变化结果一致,主要是微囊藻的大量生长所贡献。胞外多糖是藻类胞外多聚物的主要成分,在不适状态下分泌,以对其自身进行保护[22]。藻细胞从第3天开始,大量分泌胞外多糖,进行自身保护,说明鲢、鳙的滤食,对藻细胞造成了损伤,胞外多糖含量在实验末期达到最大值[23]

本研究中,鲢、鳙组藻类被滤食后仍能正常进行光合作用,并且活性一周左右就恢复,细胞密度和Chl a浓度由初期缓慢上升至中后期的快速增加,说明微囊藻生长与光合活性恢复并迅速增强;同时,鲢、鳙组微囊藻胞外多糖在第4天时急剧增加,说明鲢、鳙滤食对藻类生理造成一定伤害,但为非致死性影响。Miura等研究指出鳙摄食蓝藻后,排泄物中蓝藻叶绿素含量与光合活性为原来2倍[24]。Jan c ˇ ula等培养鲢排泄物后,发现藻类生长速率显著提高[12]。藻类生长活性增高,可能是有效利用了鲢、鳙体内活性无机营养元素。Lewin等利用33P标记的活体微囊藻和死微囊藻饲喂拟鲤,发现排泄物中活微囊藻的33P放射活性明显高于死微囊藻,证明了微囊藻非但不能被拟鲤消化吸收,反而还能利用肠道消化物中的磷[25]。藻类被鲢、鳙滤食后,生长活性明显超出原有水平,呈现超补偿生长状态。藻的超补偿生长是指藻类在遭受某种不利的环境因子胁迫后,当该胁迫过程被解除时,其生长速率和生物量等超出未受胁迫的生长水平的现象[26]。鳙摄食对藻类生理上造成轻微伤害,使其对营养及光能等的利用受阻,藻类经鱼摄食后排出,进入原有生境后出现超补偿生长,产生这种现象可能原因有:(1)自然藻类以群体形式存在,鲢、鳙滤食后藻以单细胞存在。Topachevskii等指出,微囊藻经过鳙肠后,微囊藻群体表面黏液胶鞘被消化吸收,而藻细胞最终单个存活[27]。单个藻细胞经过机械重组,重新形成小型藻群体。初形成的小型藻群体黏液胶鞘薄,吸收营养元素更快而有利于藻类快速增长。(2)鲢、鳙仅刮食掉附在藻群体表面的细菌。Kamjunke等研究指出,拟鲤滤食仅将微囊藻群体表面附着的共生细菌去除,藻群体部分变小,但没有对单个藻细胞造成生理上的损伤。表面寄生细菌的去除有利于微囊藻细胞更好的接受光照与吸收水体内营养元素,从而刺激了藻细胞生长[28]

绿藻、硅藻及隐藻总生物量实验期间增幅极小,增幅最明显的鲢组中,绿藻、硅藻及隐藻总量分别增加了1.79、0.39 mg/L和0.47 mg/L,而蓝藻总量增加123 mg/L,增幅远高于其它藻类。可见,鲢、鳙滤食对绿藻、硅藻及隐藻没有明显影响,而对蓝藻的生长具有明显促进作用。这说明鲢、鳙对藻类刺激肯定具有种属特异性,即部分藻类被鲢、鳙摄食后能够被彻底消化和抑制,而某些藻类在经过鲢、鳙肠时不会被消化,相反生长受到刺激。鳙对藻类造成的损伤持续时间较鲢长,并且总体上相关参数值较鲢组低,说明这种特异性也可能和鱼的生理构造有关。鲢、鳙滤食后藻类出现超补偿生长,因此一般来说不适宜作为控藻生物[7, 29]。但在特定条件(有限水域,足量优质鲢、鳙)下也能达到控藻效果。陈少莲等[30]指出,鲢、鳙对微囊藻消化吸收率较低,但是对排泄物的二次摄食消化率明显提高。由此可知,在有限的水域,经过多次滤食,鲢、鳙最终能够很好的控制微囊藻的生长。因此,利用鲢、鳙作为生物操纵鱼类来控制水库或湖泊藻类的生长,需人们对水体动植物群落结构及相互关系的了解,并根据湖泊(水库)水体特点及时合理投放鲢、鳙才可达到预期效果。

参考文献
[1] Zhang L B, Wang Q S, Ding L L, Ren H Q. Controlling of phytoplankton by zooplankton in eutrophic waters. Ecology and Environmental Sciences, 2009, 18(1): 64-67.
[2] Xie P. Silver carp and bighead carp, and their use in the control of algal blooms. Beijing: Science Press, 2003.
[3] Ke Z X, Xie P, Guo L G, Liu Y Q, Yang H. In situ study on the control of toxic Microcystis blooms using phytoplanktivorous fish in the subtropical Lake Taihu of China: A large fish pen experiment. Aquaculture, 2007, 265(1/4): 127-138.
[4] Radke R J, Kahl U. Effects of a filter-feeding fish on phyto-and zooplankton in a mesotrophic reservoir: results from an enclosure experiment. Freshwater Biology, 2002, 47(12): 2337-2344.
[5] Xie P, Liu J K. Studies on the influence of planktivorous fishes (silver carp and bighead carp) on the phytoplankton community in a shallow eutrophic Chinese lake (Donghu lake) using enclosure method. In Annual Report of FEBL for 1990. Beijing: International Academic Publishers, 1991: 14-24.
[6] Zhang G H, Cao W X, Chen Y Y. Effects of fish stocking on lake ecosystems in China. Acta Hydrobiologica Sinica, 1997, 12(3): 271-280.
[7] Mátyás K, Oldal I, Korponai J, Tátrai I, Paulovits G. Indirect effect of different fish communities on nutrient chlorophyll relationship in shallow hypertrophic water quality reservoirs. Hydrobiologia, 2003, 504(1/3): 231-239.
[8] Kolar C S, Chapman D C, Courtenay W R, Housel C M, Williams J D, Jennings D P. Asian carps of the Genus Hypophthalmichthys (Pisces, Cyprinidae) A biological synopsis and environmental risk assessment. Report to U. S. Fish and Wildlife Service per Interagency Agreement, 2005, 94400-3-0128: 62-64.
[9] Datta S, Jana B B. Control of bloom in a tropical lake: grazing efficiency of some herbivorous fishes. Journal of Fish Biology, 1998, 53(1): 12-24.
[10] Gavel A, Maršálek B, Adámek Z. Viability of Microcystis colonies is not damaged by silver carp (Hypophthalmichthys molitrix) digestion. Algological Studies, 2004, 113(1): 189-194.
[11] Kolmakov V I, Gladyshev M I, Eravchuk E S, Chuprov S M, Anishchenko O V, Ivanova E A, Trusova M. Species-specific stimulation of cyanobacteria by silver carp Hypophthalmichthys molitrix (Va. l) Doklady. Biological Science, 2006, 408(1): 223-225.
[12] Jančula D, Míkovcová M, Adámek Z, Maršálek B. Changes in the photosynthetic activity of Microcystis colonies after gut passage through Nile tilapia (Oreochromis niloticus) and silver carp (Hypophthalmichthys molitrix). Aquaculture Research, 2008, 39(3): 311-314.
[13] Cao C H, Sun S C, Wang X K, Liu W L, Liang Y. Effects of manganese concentrations on the chlorophyll fluorescence characteristics and growth of Karenia mikimotoi. Acta Ecologica Sinica, 2010, 30(19): 5280-5288.
[14] Shi X, Tan Y H, Huang L M, Huang X P, Li Y C, Dong Z J. Effects of phosphate stress on the photosynthesis of symbiotic algae on the hermatypic corals. Acta Ecologica Sinica, 2008, 28(6): 2581-2586.
[15] Liang Y, Fen L X, Yin C L, Cao C H. Current status and prospect of chlorophyll fluorescence technique in the study of responses of microalgae to environmental stress. Marine Sciences, 2007, 31(1): 71-76.
[16] Chen Y W, Chen K N, Hu Y H. Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method. Journal of Lake Science, 2006, 18(5): 550-552.
[17] Bermúdez J, Rosales N, Loreto C, Briceo B, Morales E. Exopolysaccharide, pigment and protein production by the marine microalga Chroomonas sp. in semicontinuous cultures. World Journal of Microbiology and Biotechnology, 2004, 20(2): 179-183.
[18] Zheng B H, Tian Z Q, Zhang L, Zheng F D. The characteristics of the Hydrobios' distribution and the analysis of water quality along the West Shore of Taihu Lake. Acta Ecologica Sinica, 2007, 27(10): 4214-4223.
[19] Yan Y H, Zhong C H, Deng C G. Progress of non-traditional bio-manipulation in the controlling of Eutrophication. Journal of Anhui Agriculture Science, 2007, 35(12): 3459-3460.
[20] Zeng Q F, Gu X H, Mao Z G, Zhou L H, Gao H M. Ecological effect of the excretion from silver carp and bighead carp in algal bloom control: A review. Chinese Journal of Ecology, 2010, 29(9): 1806-1811.
[21] Bi B, Sun Z W, Mao T Q, Yin H B, Wang L J. Relationship between digestive tract structure and feeding habits in common carp, grass carp, silver carp and bighead carp. Chinese Journal Fisheries, 2011, 24(1): 26-29.
[22] Ma M R, Li P F, Chen L, Meng F F, Liu Z L. Effects of salinity and nutrient limitation on the growth and exopolysaccharide production of the saltern benthic diatom navicula lanceolata. Transactions of Oceanology and Limnology, 2009, 95(1): 95-102.
[23] Kroen W K, Rayburn W R. Influence of growth status and nutrients on extracellular polysaccharide extrtracellular synthesis by the soil alga Chlamydomonas Mexicana (Chlomphyceae). Journal of Phycology, 1984, 20(2): 253-257.
[24] Miura T, Wang J. Chlorophyll a found in feces of phytoplanktivorous cyprinids and photosynthetic activity. Verhandlungen den International Verein of Limnology, 1985, 22: 2636-2642.
[25] Lewin W C, Kamjunke N, Mehner T. Phosphorus uptake by microcystis during passage through fish guts. Limnology and Oceanography, 2003, 48(6): 2392-2396.
[26] Duan S S, Guo Y F, Liu Z Q, Li A F, Xu N, Zhang Y N, Chen J. Over-compensatory growth of Tetraselmis tetrethele under the stress of nutrients deficiency. Acta Ecologica Sinica, 2003, 23(7): 1297-1304.
[27] Topachevskii A V, Tseeb Y Y, Sirenko L A, Makarov A I. Blooming of water as a result of destroying of processes of regulationin hydrobiocenoses // Telitchenko M M, ed. Biological Self-purification and Forming of Water Quality. Moscow: Nauka Press, 1975: 41-49.
[28] Kamjunke N, Mendonca R, Hardewig I, Mehner T. Assimilation of different cyanobacteria as food and the consequences for internal energy stores of juvenile roach. Journal of Fish Biology, 2002, 60(3): 731-738.
[29] Domaizon I, Devaux J. Experimental study of the impacts of silver carp on plankton communities of eutrophic Villeret reservoir. Aquatic Ecology, 1999, 33(2): 193-204.
[30] Chen S L, Liu X F. Study on the digestion and utilization of fish feces by silver carp and bighead fingerlings. Acta Hydrobiologica Sinica, 1989, 42(3): 250-258.
[1] 张丽彬, 王启山, 丁丽丽, 任洪强. 富营养化水体中浮游动物对藻类的控制作用. 生态环境学报, 2009, 18(1): 64-67.
[2] 谢平. 鲢、鳙鱼与藻类水华控制. 北京: 科学出版社, 2003.
[6] 张国华, 曹文宣, 陈宜瑜. 湖泊放养渔业对我国湖泊生态系统的影响. 水生生物学报, 1997, 12(3): 271-280.
[13] 曹春晖, 孙世春, 王学魁, 刘文岭, 梁英. 锰浓度对米氏凯伦藻叶绿素荧光特性及生长的影响. 生态学报, 2010, 30(19): 5280-5288.
[14] 时翔, 谭烨辉, 黄良明, 黄小平, 李元超, 董志军. 磷酸盐胁迫对造礁石珊瑚共生虫黄藻光合作用的影响. 生态学报, 2008, 28(6): 2581-2586.
[15] 梁英, 冯力霞, 尹翠玲, 曹春晖. 叶绿素荧光技术在微藻环境胁迫研究中的应用现状及前景. 海洋科学, 2007, 31(1): 71-76.
[16] 陈宇炜, 陈开宁, 胡耀辉. 浮游植物叶绿素a测定的“热乙醇法”及其测定误差的探讨. 湖泊科学, 2006, 18(5): 550-552.
[18] 郑丙辉, 田自强, 张雷, 郑凡东. 太湖西岸湖滨带水生生物分布特征及水质营养状况. 生态学报, 2007, 27(10): 4214-4223.
[19] 闫玉华, 钟成华, 邓春光. 非经典生物操纵修复富营养化的研究进展. 安徽农业科学, 2007, 35(12): 3459-3460.
[20] 曾庆飞, 谷孝鸿, 毛志刚, 周露洪, 高华梅. 鲢鳙控藻排泄物生态效应研究进展. 生态学杂志, 2010, 29(9): 1806-1811.
[21] 毕冰, 孙中武, 毛天强, 尹洪滨, 王鲁杰. 鲤、鲢、鳙、草鱼消化道结构与食性的研究. 水产学杂志, 2011, 24(1): 26-29.
[22] 马美荣, 李朋富, 陈丽, 孟飞飞, 刘志礼. 盐度和营养限制对盐田底栖硅藻披针舟形藻生长及胞外多糖产率的影响. 海洋湖沼通报, 2009, 95(1): 95-102.
[26] 段舜山, 郭羽丰, 刘振乾, 李爱芬, 徐宁, 张亚楠, 陈洁. 四列藻在营养限制胁迫下的超补偿生长研究. 生态学报, 2003, 23(7): 1297-1304.
[30] 陈少莲, 刘肖芳. 鲢鳙对鱼粪消化利用的研究. 水生生物学报, 1989, 42(3): 250-258.