生态学报  2014, Vol. 34 Issue (6): 1361-1370

文章信息

金敏娜, 林欣大
JIN Minna, LIN Xinda
保幼激素在昆虫中的分子作用机理
Molecular mechanisms of the insect juvenile hormone
生态学报, 2014, 34(6): 1361-1370
Acta Ecologica Sinica, 2014, 34(6): 1361-1370
http://dx.doi.org/10.5846/stxb201306061380

文章历史

收稿日期:2013-6-6
修订日期:2013-10-12
保幼激素在昆虫中的分子作用机理
金敏娜, 林欣大     
中国计量学院生命科学学院, 浙江省生物计量与检验检疫重点实验室, 杭州 310018
摘要:随着分子生物学技术的快速发展,对生态环境中各类生物的研究,包括对生物某些特定基因结构和功能的研究等逐步拓展和加深。保幼激素(Juvenile Hormone,JH)是由咽侧体(Corpus Allatum,CA)分泌的,在昆虫发育、变态和生殖过程中起重要作用的激素。目前对JH信号传导途径的作用机理还不十分清楚。现有研究表明,Kruppel homolog-1(Kr-h1)是一种含C2H2锌指结构的转录因子,处于保幼激素信号途径下游,在保幼激素信号通路中起着重要作用。已报道的Kr-h1基因的功能主要包括:调控幼虫生长发育和变态,与蜜蜂的觅食行为密切相关,参与果蝇幼体神经细胞的形成等等。对就近十年来Kr-h1基因的特性和功能研究作一个综述以了解不同昆虫中保幼激素的分子作用机制,为开发生物农药奠定理论基础,也为维护良好的生态环境作出理论贡献。
关键词生态环境    保幼激素    信号通路    Kruppel homolog-1    锌指结构    
Molecular mechanisms of the insect juvenile hormone
JIN Minna, LIN Xinda     
College of Life Sciences, China Jiliang University, Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou 310018, China
Abstract:Following the rapid development of molecular biology techniques, many studies have been carried out of specific gene structures and functions, including those in ecological environments. Juvenile hormone (JH) is an important insect hormone that regulates insect larval development, reproduction, and metamorphosis, although the molecular mechanism behind this remains unclear. The transcription factor Kruppel-homolog 1(Kr-h1) acts downstream of the JH receptor and plays a key role in the JH signaling pathway. It has been identified in over 21 insect species, and sequence analysis has shown it to contain 2-8 C2H2-type zinc-finger motifs, which are highly conserved among Kr-h1 proteins. We previously found that zinc-fingers Zn2-Zn7 are more conserved than others in all insect species we compared. Interestingly, we found that the jewel wasp Nasonia vitripennis only contains two zinc-fingers, Zn4 and Zn7, while the body louse Pediculus humanus corporis contains all zinc-fingers except Zn7. As N. vitripennis and P. humanus were the only two parasitoids among the 21 insect species examined, it is possible that zinc fingers might be lost during evolution. Studies in Drosophila melanogester, Bombyx mori, Tribolium castaneum, and Frankliniella occidentalis revealed that Kr-h1 is required for embryonic development and metamorphosis, and that its down-regulation results in development of the precocious phenotype. Knockdown of Kr-h1 by RNAi in the brown planthopper Nilaparvata lugens showed that this gene is required for normal wing and external genitalia development. Kr-h1 is also involved in neuron development, the regulation of photoreceptor maturation, larval growth, insect development and metamorphosis, and the formation of Drosophila melanogaster neurons. In addition, it controls the foraging behavior of honey bees through affecting the expression of the cGMP-mediated activation of protein kinase G. The expression of Kr-h1 is induced by JH and its mimics. The Bombyx mori juvenile hormone response element (bmJHRE), located 141 bp upstream of Kr-h1, includes an E-box with the sequence CACGTG. bmJHRE was found in the genomic sequence of all seven insect species that we previously analyzed, and the E-box was highly conserved in all species (100%). The E-boxes of Tribolium castaneum Kr-h1(TcKr-h1) and Apis mellifera Kr-h1(AmKr-h1) are close to the Kr-h1 promoter, while those of Bombyx mori Kr-h1(BmKr-h1), Acyrthosiphon pisum Kr-h1(ApKr-h1), Drosophila melanogester Kr-h1(DmKr-h1), Nasonia vitripennis Kr-h1(NvKr-h1), and Nilaparvata lugens Kr-h1(NlKr-h1) are not. JH also interacts with the hormone ecdysone (Ecd), and research from D. melanogaster, B. mori, and T. castaneum suggests that Kr-h1 is a key factor in the JH-Ecd interaction. JH mimics methoprene treatment, which increases the expression of Kr-h1 while reducing that of Broad (B), a transcription factor located downstream of Ecd and its receptor that plays an important role in the ecdysone signaling pathway. This indicates that Br expression might be inhibited by Kr-h1. Although much progress has been made in understanding insect hormone signaling pathways, several key questions still remain. For example, what is the role of Kr-h1 in linking the JH and Ecd signaling pathways? How many other genes form a close connection in the JH signaling cascade? This review highlights the characteristics and functions of Kr-h1 that have been elucidated during the past decade. It also summarizes our understanding of the molecular mechanism of JH, establishes a theoretical basis for the development of biological pesticide, and contributes theoretically to the maintenance of a good ecological environment.
Key words: ecological environment    juvenile hormone    signaling pathway    krü    ppel-homolog 1    zinc finger    RNA interference    
1 保幼激素(Juvenile Hormone,JH) 及其受体

保幼激素(Juvenile Hormone,JH)是由昆虫咽侧体分泌的重要激素[1],其主要功能包括保持幼虫的特性、维持前胸腺和促进卵巢成熟,调控昆虫的发育、变态和生殖等过程[2, 3, 4]。近年来随着分子生物学的不断发展,一些国内外研究团队以果蝇(Drosophila melanogaster)、赤拟谷盗(Tribolium castaneum)和德国小蠊(Blattella germanica)等为研究对象,借助RNA干扰和蛋白互作等技术在JH受体鉴定、JH调控昆虫胚后发育、生殖过程及JH与蜕皮激素(Ecd)的相互作用等方面做了大量的研究工作。例如,在红椿(Pyrrhocoris apterus)中,JH可以阻止由Ecd引起的幼虫变态,从而维持蜕皮后的幼虫状态。在沙蟋(Gryllus firmus)的研究中,发现JH与沙蟋的翅型分化有关。戴华国等还通过褐飞虱(Nilaparvata lugens)若虫体背点滴保幼激素类似物烯虫酯(Methoprene)来证实褐飞虱翅型分化的敏感期是3龄末4龄初[5]。但Daimon等在家蚕(Bombyx mori)的dimolting(mod)突变体(缺少P450环氧酶而不能合成JH)中,发现在2龄幼虫过后仍能发育成为早熟蛹[6]。这个结果暗示家蚕早期低龄幼虫对保幼激素缺失不敏感,因此,JH可能还有其他功能或作用机制[7]

1.1 JH受体

了解保幼激素分子作用的机制,很大程度上受限于JH受体的鉴定。在过去的20多年里国内外研究者对JH受体的克隆与鉴定做了大量的实验和研究[8, 9]

早在1986年Wilson等在Met突变体果蝇对JH抗性研究中,发现过量的JH处理可以诱导果蝇幼虫生成假瘤(pseudotumor),而Met突变体对这种诱导作用的耐受能力远比正常果蝇强[10]methoprene-tolerant(Met)属于bHLH-PAS转录因子基因家族[11, 12],在果蝇对保幼激素类似物烯虫酯的抗性研究中,也有发现Met突变体对烯虫酯的耐受能力比正常果蝇强[13],并且Met突变体抑制烯虫酯诱导功能的发挥,制约雌性果蝇卵黄发育。Miura等人研究表明JH能强烈而特异性地结合Met,并迅速诱导Met进行转录[14]。离体转录翻译的果蝇Met与JHIII有生理水平上的亲和力,反之JHIII也可以诱导Met进行转录、翻译合成JH受体蛋白Met。以上结果表明Met是最有可能的JH受体。

然而Pursley等发现Met基因缺失的突变体果蝇除了产卵延后、生殖力下降以外,胚后发育一切正常,这就与Met作为JH受体应有的表型相矛盾的。进一步研究发现Met有一个旁系同源基因Germ cell-expressed(Gce)[15]MetGce具有部分的功能重叠性,Gce能明显提高Met突变体对烯虫酯的敏感性,只有两个基因的双突变体才会有致死性[16],并且Gce与JHIII也有生理水平上的亲和力[17]。此外,对赤拟谷盗Met基因进行RNA干扰发现化蛹提前而形成早熟蛹,这种表型与JH缺失的表型相似,也为Met是JH受体的说法提供有力的证据[18]。就目前而言,JH受体包括Met和Gce[19, 20]

1.2 JH受体相关蛋白

在果蝇的研究中发现bHLH-PAS(basic Helix-Loop-Helix-Per/Arnt/Sim)与核受体(如Met和Gce)结合形成异源二聚体,作为主要成分参与保幼激素信号通路[19, 21, 22]。在伊蚊(Aedes)的研究中发现MET和cycle (CYC)都属于bHLH-PAS转录因子,两者结合形成的二聚体,再与bHLH-PAS转录激活物steroid receptor coactivator (SRC/FISC)结合形成MET/CYC/FISC聚合物,将JH信号传递给下游应答基因Kr-h1Hairy,从而引起幼虫的生理反应[11]。Sang等猜想MET可以招募不同的DNA结合域bHLH-PAS来发挥作用[11]

2 Kr-h1基因

JH从咽侧体分泌后,与载体蛋白形成复合体,经血循环到达细胞核,与核受体(Met、Gce等)或相关复合物特异性结合,进而对JH信号进行转换并启动细胞内特定基因Krüppel-homolog 1(Kr-h1)转录,最终影响昆虫生长发育和引起相关形态等的变化[23]。早在1896年,Schuh等在果蝇中发现了Krüppel(Kr)基因,该基因编码的蛋白是一类具有锌指结构域的转录因子,并且通过原位杂交在果蝇基因组和真核生物中发现Krüppel有多种同源基因(Krüppel-homologous gene),经过克隆、分析及鉴定,结果显示Krüppel-homologous gene具有调控果蝇生长发育的作用[24]。后来在果蝇研究中的表明Kr-h1基因参与JH信号传导途径,并发挥其生理功能。随后鉴定了JH受体Met和Gce,并且发现Kr-h1处于它们的下游,从而逐步形成了JH-Met(协同Gce)-Kr-h1调控模式,开始了Kr-h1研究的新篇章,被广泛应用于全变态和不全变态昆虫的研究中。Kr-h1基因影响神经细胞分化,调控胚胎、蜕皮等发育过程,球菜叶蛾(Agrotis ipsilon)AiKr-h1基因与雄性幼虫的性行为成熟密切相关,借助德国小蠊(Blattella germanica)Kr-h1基因,可以探索昆虫不全变态发育和全变态发育的差异[25]

近年来对Kr-h1的研究逐渐增多,除了家蚕、黑腹果蝇、蜜蜂(Apis mellifera)和赤拟谷盗之外,通过NCBI检索还发现了疟蚊(Anopheles gambiae)、 埃及伊蚊(Aedes aegypti)、致倦库蚊(Culex quinquefasciatus) 、红火蚊(Solenopsis invicta)、拟暗果蝇(Drosophila pseudoobscura)、蚂蚁(Camponotus floridanus)、 吸血红椿(Rhodnius prolixus)[23]、红椿(Pyrrhocoris apterus)[23]、 熊蜂(Bombus terrestris)、苜蓿切叶蜂(Megachile rotundata)、球菜夜蛾[26]等昆虫均有Kr-h1Kr-h1同源基因。

2.1 Kr-h1基因的结构

最早是从果蝇中分离出了Kr-h1的突变体等位基因,分别是kr-h2kr-h5,发现这些基因都是蛹致死因子,与kr-h1并没有互补关系,突变位点位于远离Kr-hα启动子或者在第一个内含子的起始端[27]

早在1986年,Schun等人就提出Kr-h1翻译后的氨基酸是一种含有2个Cys和2个His的锌指结构,Kr-h1基因的原初转录产物存在可变剪接,主要有3种剪接产物:Kr-h1αKr-h1βKr-h1λ[24]Kr-h1αKr-h1λ主要调控昆虫的蛹期变态及幼虫-蛹的过程[28];而Kr-h1β在胚胎中含量极其丰富,在昆虫的胚胎发育及卵-幼虫的发育过程中起到主要调控作用[27, 29]。现有研究表明Kr-h1蛋白是一种含C2H2锌指结构的转录因子,处于保幼激素受体Met下游。根据NCBI上的信息,查询结果显示目前为止拥有完整的8个锌指结构(Zn1—Zn8)的Kr-h1基因共有18个。将这18个Kr-h1基因和克隆的褐飞虱Kr-h1翻译后进行氨基酸序列比对(图 1),结果显示8个锌指结构保守性存在明显差异,Zn1和Zn8的保守性较低,Zn2—Zn7的保守性相对较高。此外8个锌指的长短差别很大,尤其是Zn4特别短,其次是Zn7(图 1)。

此外,还找到了两个Kr-h1全长基因,分别是人头虱(Pediculus humanus corporis )的PhcKr-h1基因和丽蝇蛹集金小蜂的(Nasonia vitripennis)NvKr-h1基因。将这两个基因翻译成氨基酸后与上述的 19种Kr-h1蛋白进行比较分析,结果发现所有所有Kr-h1蛋白均有Zn4,因此猜想该锌指的功能最为普遍,此外还发现人头虱的Kr-h1蛋白除了Zn7外其余锌指都有,而丽蝇蛹集金小蜂的Kr-h1蛋白只有Zn4和Zn7(图 2)。非常有意思的是人头虱和丽蝇蛹集金小蜂都属于寄生类昆虫,所以推测Kr-h1基因的锌指结构可能在这两种昆虫的长期进化过程中出现部分退化,表现出Kr-h1锌指蛋白个数的缺失,从另一方面来说,也可能8个锌指结构在结构上有一定的冗余性。总而言之,根据Kr-h1锌指蛋白基因的分布情况分析不同物种Kr-h1的差异,有助于更清晰地了解该基因的结构功能与特点。

图 1 Kr-h1蛋白8个锌指结构的系统发育分析 Fig.1 Phylogenic analysis of 8 Zinc fingers from Kr-h1 protein DmKr-h1:Drosophila mojavensis (XP_002002302.1); NlKr-h1: Nilaparvata lugens (KF414525); FoKr-h1: Frankliniella occidentalis (BAJ41257.1); DmelKr-h1: Drosophila melanogaster (NP_477467.1), BmKr-h1: Bombyx mori (BAL04727.1), BgKr-h1: Blattella germanica (CCC55948.1); TcKr-h1: Tribolium castaneum (NP_001129235.1),AmKr-h1: Apis mellifera(NP_001011566.1); SiKr-h1: Solenopsis invicta (EFZ20948.1); RpKr-h1: Rhodnius prolixus (AEW22980.1); PaKr-h1: Pyrrhocoris apterus (AEW22979.1); MrKr-h1: Megachile rotundata (XP_003704983.1); CqKr-h1: Culex quinquefasciatus (XP_001863529.1); CfKr-h1: Camponotus floridanus (EFN62423.1); BtKr-h1: Bombus terrestris (ACX50259.1); AfKr-h1: Apis florae (XP_003692418.1); AgKr-h1: Anopheles gambiae (XP_318706.4); AaKr-h1: Aedes aegypti (XP_001655162.1); AiKr-h1: Agrotis ipsilo (AEL97587.1)
图 2 Kr-h1蛋白锌指分布图 Fig.2 Zinc fingersdistribution of Kr-h1 proteins Drosophila mojavensis (Dmoj,XP_002002302.1); Nilaparvata lugens(Nl); Frankliniella occidentalis (Fo,BAJ41257.1), Drosophila melanogaster (Dm,NP_477467.1); Bombyx mori (Bm,BAL04727.1); Blattella germanica (Bg,CCC55948.1); Tribolium castaneum (Tc,NP_001129235.1);Apis mellifera (Am,NP_001011566.1);Solenopsis invicta (Si,EFZ209 48.1);Rhodnius prolixus (Rp,AEW22980.1); Pyrrhocoris apterus (Pa,AEW22979.1);Megachile rotundata (Mr,XP_003704983.1); Culex quin- quefasciatus(Cq,XP_001863529.1); Camponotus floridanus (Cf,EFN62423.1); Bombus terrestris (Bt,ACX50259.1); Apis florae (Af,XP_003692418.1); Anopheles gambiae(Ag,XP_318706.4);Aedes aegypti (Aa,XP_001655162.1); Agrotis ipsilo (Ai,AEL97587.1); 2: Pediculus humanus corpori- s (Phus,XP_002428656.1); 3: Nasonia vitripennis (Nv,ABQ84984.1)
2.2 Kr-h1基因的功能

研究发现,在果蝇[27]、赤拟谷盗[30]等全变态发育昆虫的胚胎期和幼虫期,Kr-h1基因胚胎发育和胚后幼虫蜕皮发育过程中表达比较活跃,蛹期则几乎消失或不表达。在西花蓟马(Frankiniella occidentalis)[31]、 德国小蠊[32]等不全变态发育昆虫中,Kr-h1基因在胚胎和早期若虫期表达活跃,在若虫末期表达非常低。因此在昆虫成虫即将形成的分界段,Kr-h1的表达非常低甚至消失,暗示该基因的主要功能发挥在胚胎及幼虫(或若虫)时期。

迄今为止有关Kr-h1基因的功能研究主要集中在以下几个方面:调控昆虫生长发育、促进神经元细胞的形成以及影响蜜蜂的觅食行为和雄性球菜夜蛾的性行为成熟(表 1)。

2.2.1 调控生长发育及变态

近年来,通过各种分子生物学手段探究该基因的功能。通过荧光定量PCR技术检测Kr-h1在果蝇的胚胎及早期幼虫生长发育阶段的表达水平,结果显示该基因的表达量在胚胎和幼虫中表达量高,并且DmKr-h1在变态发育过程中起到重要的调控作用[27, 28, 33]。也有大量研究表明DmKr-h1通过JH受体Met和Gce传递保幼激素信号,维持幼虫形态,调控幼虫的生长发育与变态[16, 19]

Hiroto等在家蚕(Bombyx mori)的研究中发现Kr-h1基因在家蚕的4龄末5龄初时期(V0)表达量很高,在5龄后1d(V1)时期表达量低下,在5龄后2d(V2)时期表达量更低[34]。随着家蚕幼虫的不断发育,BmKr-h1的表达明显下降,这说明BmKr-h1具有调控幼虫生长发育的功能。有实验者通过对赤拟谷盗和西花蓟马的研究来初步分析Kr-h1基因在完全变态发育和不完全变态发育两类昆虫中的功能[32]。赤拟谷盗的生长发育属于完全变态发育,TcKr-h1的功能类似于DmKr-h1BmKr-h1,起到调控胚胎发育、早期幼虫生长发育及后期变态过程的作用[30, 35]。西花蓟马Kr-h1在胚胎期转录水平非常高,幼虫和前蛹期较低,蛹期则相当低,这表明FoKr-h1可能在胚胎、幼虫及蛹等阶段起着调控作用[31]

此外,不少研究者通过改变外源保幼激素或保幼类似物的浓度来处理家蚕早期幼虫,引发幼虫额外蜕皮形成超龄幼虫或提前成熟化蛹[28]。从分子水平上来说,家蚕的这些形态变化与Kr-h1的变化有关,即Kr-h1的表达水平在一定程度上决定了幼虫的蜕皮与变态发育。用吡丙醚(pyriproxyfen)处理家蚕幼虫,前蛹和早期蛹虽然能发育成蛹但最终死亡[31]。利用RNAi技术将德国小蠊倒数第二龄或第三龄若虫的Kr-h1表达水平下调,结果导致早熟成虫的形成[32, 36]

表 1 Kr-h1基因的功能 Table 1 Function ofKr-h1 gene
物种Species分类Category功能Function 参考文献
References
调控Regulation 行为Behavior
果蝇 Drosophila melanogaster双翅目Diptera调控胚胎和幼虫发育,促使光感受器(神经细胞)的成熟 Embryonic and larvae development, regulate the maturation of photoreceptor[16, 19, 27, 28, 33, 37, 38]
家蚕 Bombyx mori鳞翅目Lepidoptera调控早期幼虫发育及变态过程Early larvae developmentand metamorphosis[34, 39]
球菜夜蛾 Agrotis ipsilon鳞翅目Lepidoptera促使性行为成熟 Maturation of sexual behavior[26]
赤拟谷盗 Tribolium castaneum鞘翅目Coleoptera调控早期幼虫发育,维持幼虫形态及阻止变态Early larvae development,maintain larva morphology,metamorphosis[30]
德国小蠊 Blattella germanica蜚蠊目Blattaria影响翅和背部腺体的发育Development of wings and dorsal glands[32]
西花蓟马 Frankliniella occidentalis缨翅目Thysanoptera调控幼虫生长发育和变态过程Larvae development and metamorphosis[31]
蜜蜂 Apis mellifera膜翅目Hymenoptera与觅食行为有关 Foraging behavior[40, 41]
褐飞虱 Nilaparvata lugens同翅目Homoptera影响翅型和外生殖器的发育Development of wings and genitals

在褐飞虱的Kr-h1研究中发现,NlKr-h1在胚胎、1龄及2龄若虫中的表达量相对较高(Jin等未发表资料)。利用RNAi技术将3龄若虫的NlKr-h1沉默,结果发现成虫的足、翅和生殖器发育明显异常。此外NlKr-h1在大脑、翅、中肠及卵巢中表达活跃,推测NlKr-h1在胚胎发育、若虫生长及成虫成熟具有重要的调控作用。

2.2.2 促进神经元细胞形成

有研究表明,Kr-h1参与果蝇幼体神经系统发育,促使光感受器的发育和成熟[37]。在果蝇幼体的蘑菇体神经元细胞中,无论是处于初始分化阶段还是神经突形成阶段,DmKr-h1表达量均下调,这表明神经元形态发生时期DmKr-h1表达下调为其正常发育所需[37]。Duportets等人在球菜夜蛾雄性虫体的研究中发现,AiKr-h1在不同组织中均有不同程度的表达,其中在腿部、胸部、大脑、触角叶中的表达量比触角、翅膀及腹部中高,尤其在脑部表达较高,因此怀疑AiKr-h1与幼体神经元形成有一定联系[26]

2.2.3 影响行为

Fussnecker等研究发现Kr-h1基因也与蜜蜂的觅食行为有关[40]AmKr-h1在蜜蜂的脑部大量表达。工蜂是主要觅食群体,通过荧光定量PCR检测到工蜂体内AmKr-h1的表达水平远高于生育蜂群。研究结果表明AmKr-h1启动子有应答大脑中cGMP信号传导的元件,AmKr-h1基因影响cGMP介导蛋白激酶G(Protein Kinase G,PKG)的激活[42]。有意思的是,Duportets等的研究发现AiKr-h1可能与雄性球菜夜蛾的性行为成熟有关[26]

2.3 Kr-h1基因的调控 2.3.1 JH或JH类似物(JHA)对Kr-h1表达的影响

近年来国内外研究者们纷纷表明JH可能通过JH受体基因Met及其下游基因Kr-h1发挥其维持幼虫形态或抑制变态的作用[31, 39, 42, 43, 44, 45]。用JH及JHA处理家蚕幼虫,并通过qPCR检测不同龄期幼虫体内BmKr-h1的表达水平,结果发现当JH或JHA浓度增加,将引起家蚕幼虫额外蜕皮而形成超龄幼虫;若人为降低保幼激素含量,则会导致幼虫提前化蛹,即“小”蛹。此外关于果蝇和赤拟谷盗JH信号通路的研究中,证实Kr-h1是一种重要的JH信号传递介质,并且随着JH的变化而影响转录水平[45, 46]

用JHA和对照组丙酮(Acetone)处理家蚕幼虫V3(5龄后3d的幼虫),结果发现Kr-h1的表达量在JHA处理后的V3体内与V0时期一样高,而在丙酮处理后的V3体内表达量非常低,说明在JH存在的条件下家蚕Kr-h1基因仍能正常表达而不受龄期的影响[34]。用吡丙醚(Pyriproxifen)处理西花蓟马和捕食性蓟马(Haplothrips brevitubus),结果表明吡丙醚可以诱导Kr-h1的表达[31]

因此,JH及JHA可以诱导Kr-h1基因表达,Kr-h1接收由JH受体Met传递的JH信号,调控其自身的转录表达。

3.3.2 Kr-h1上游调控元件

先前已经在云杉卷叶蛾(Choristoneura fumiferana)保幼激素酯酶(JH esterase)的启动子(Promoter)区域发现了一个30 bp的保幼激素反应元件(CfJHRE)[47]。Kayukawa等对家蚕Kr-h1基因的调控作了较深入的研究,发现在BmKr-h1 上游2 kb附近有一个大小为141 bp的保幼激素应答元件kJHRE,该元件包含有一段CACGTG序列,称之为E-box。bHLH-PAS家族转录因子BmMet2接受JH信号并与另一个bHLH-PAS家族转录因子BmSRC2作用形成二聚体(JH/BmMet2/BmSRC2),从而JH/BmMet2/BmSRC2定位在kJHRE元件上,并激活BmKr-h1[46]。值得一提的是,结合已发表资料参考文献[46],通过序列比对发现,在果蝇、赤拟谷盗、蜜蜂、丽蝇蛹集金小蜂、豌豆蚜(Acyrthosiphon pisum)以及褐飞虱Kr-h1基因的上游均含有E-box(图 3)。其中目前研究发现TcKr-h1AmKr-h1的E-box距离Kr-h1启动子比较近,而BmKr-h1ApKr-h1DmKr-h1 NvKr-h1 NlKr-h1的E-box距离启动子相对较远。

图 3 Kr-h1基因的部分上游调控序列 Fig.3 Partial sequence of Kr-h1 upstream region
3 Kr-h1与Broad complex (BrC)的互作关系 3.1 JH和Ecd的互作

JH和Ecd是调控昆虫发育和变态的两种最为重要的激素[48, 49],两者之间相互作用、相互影响。Wang等人采用蜕皮激素和保幼激素类似物处理三眠蚕,结果用保幼激素类似物处理后的三眠蚕比正常的大,成为超龄幼虫,而蜕皮激素处理后的三眠蚕提前蜕皮,继而因不完全蜕皮致死[48]。有研究发现果蝇与家蚕和赤拟谷盗不同,外源保幼激素处理不能诱导幼虫额外蜕皮形成超龄幼虫,但持续给幼虫喂食高浓度的保幼激素将导致预成虫腹部发育异常[50]。JH可以通过调控或者抑制Ecd来影响昆虫的变态发育过程[51],所以说JH和Ecd是在昆虫生长发育和成虫发育时期的两种重要信号传递者,调控昆虫的生长发育、蜕皮及成虫的成熟。

3.2 Kr-h1Br的互作

Br(BrC)是蜕皮激素的转录因子基因,通过蜕皮激素受体复合物传递蜕皮信号至Br,引起该基因大量转录并促使幼虫蜕皮或变态。Br在蜕皮激素信号传导途径中扮演着重要的角色,也是连接保幼激素与蜕皮激素信号通路的节点。

在果蝇的研究中发现JH通过Met和Gce传递信号,促使DmKr-h1基因表达上调,而DmKr-h1却抑制DmBr的表达[16]。家蚕的BmKr-h1可以延迟Bombyx mori Br (BmBr)基因的表达,BmKr-h1BmBr有抑制作用[31, 52]。用吡丙醚处理西花蓟马和捕食性蓟马,研究结果发现吡丙醚可以诱导FoKr-h1的表达,而FoKr-h1抑制Frankliniella occidentalis Br(FoBr)的表达。FoKr-h1在胚胎、幼虫及前蛹期均有不同程度的表达,直到蛹期才停止表达,而与此同时FoBr则进行大量转录和表达。遗憾的是,在蓟马中缺乏RNAi技术而未能进一步明确FoKr-h1FoBr的功能[31]

图 4 Kr-h1(JH信号)和 Br(Ecd信号)的互作关系 Fig.4 Interaction between Kr-h1(JH signaling)and Br(Ecd signaling).

研究还发现赤拟谷盗Kr-h1Br也有类似的相互作用机制[45, 53]TcKr-h1 在蛹期前均有表达,而蛹期后未见表达。通过RNA干扰等研究发现TcKr-h1Tribolium castaneum Met(TcMet)下游基因,在蛹期TcMet的调控并由TcMet传递保幼激素信号,促使幼虫维持形态。有意思的是,在保幼激素类似物Methoprene处理后,TcKr-h1Tribolium castaneum Br(TcBr)表达量出现了相反的趋势,表现出TcKr-h1TcBr基因的抑制作用。TcKr-h1是作为JH应答基因,在JH信号传达途径中联系TcMet,并且对蜕皮激素信号传导途径中TcBr基因有抑制作用,因此TcKr-h1TcBr可能是联系保幼激素和蜕皮激素两大信号通路的关键基因。

虽然在家蚕、黑腹果蝇及赤拟谷盗中Kr-h1Br均有抑制作用(图 4),但是这种说法尚待进一步研究明确,因此Kr-h1Br在保幼激素和蜕皮激素信号传导中的分子作用机制待进一步研究[50]

4 结论与展望

综上所述,通过多方面、多角度地挖掘JH及其相关的分子研究:JH应答基因(反应元件)、JH受体鉴定及其相关蛋白研究、JH与Ecd的交互作用等,逐步了解转录因子Kr-h1的特性与功能。目前已经证实了JH是通过JH受体基因Met调控下游基因Kr-h1,并引起相应的生理学反应,当然在JH的这一信号通路中还涉及诸多蛋白或转录因子的协助。JH-Met-Kr-h1的调控模式是一个比较复杂的过程但是至少现在比较肯定的是Kr-h1可以传递保幼激素信号并调控昆虫早期生长发育和变态。

总言之,Kr-h1的研究还有不少问题亟需回答。例如Kr-h1Br如何搭建桥梁,连接JH和Ecd信号传导途径?上游保幼激素反应元件核心区域E-box与启动子的距离,与Kr-h1的功能是否有关?有什么样的关联?Kr-h1和哪些相关基因形成紧密联系的级联反应?对Kr-h1的深入研究必将有助于我们更加清晰的了解JH作用的分子机制,相信在不远的将来可以研制出更为安全的生物农药,维护生态环境安全,同时也有助于解决农业害虫危害造成的大量粮食损失问题。

参考文献
[1] Hang Z J, Li Q R, Zhong Y J, Cao Y. Hormone adjustment of insect development by metamorphosis. Guangdong Sericulture, 2004, 38(2): 42-45.
[2] Hiruma K, Kaneko Y. Hormonal regulation of insect metamorphosis with special reference to juvenile hormone biosynthesis. Current Topics in Developmental Biology, 2013, 103: 73-100.
[3] Shelby J A, Madewell R, Moczek A P. Juvenile hormone mediates sexual dimorphism in horned beetles. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308(4): 417-427.
[4] Riddiford L M, Truman J W, Mirth C K, Shen Y C. A role for juvenile hormone in the prepupal development of Drosophila melanogaster. Development, 2010, 137(7): 1117-1126.
[5] Dai H G, Wu X Y, Wu S W. The change of juvenile hormone titer and its relation with wingdimorphism of brown planthopper, Nilaparvata lugens. Acta Entomologica Sinica, 2001, 44(1): 27-32.
[6] Daimo T, Kozaki T, Niwa R, Kobayashi I, Furuta K, Namiki T, Uchino K, Banno Y, Katsuma S, Tamura T, Mita K, Sezutsu H, Nakayama M, Itoyama K, Shimada T, Shinoda T. Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori. PLoS Genetics, 2012, 8(3): e1002486.
[7] Zhou S T, Guo W, Song J C. Molecular mechanisms of juvenile hormone action. Chinese Journal of Applied Entomology, 2012, 49(5): 1087-1094.
[8] Judith H W. Regulating genes for metamophosis: concepts and results//Proceedings of the International Symposium on Molecular Insect Science. New York: Plenum Press, 1990: 91-98.
[9] Bajgar A, Jindra M, Dolezel D. Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(11): 4416-4421.
[10] Wilson T G, Fabian J. A Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. Developmental Biology, 1986, 118(1): 190-201.
[11] Shin S W, Zou Z, Saha T T, Raikhel A S. bHLH-PAS heterodimer of methoprene-tolerant and Cycle mediates circadian expression of juvenile hormone-induced mosquito genes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(41): 16576-16581.
[12] Li M, Mead E A, Zhu J S. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(2): 638-643.
[13] Charles J P, Iwema T, Epa V C, Takaki K, Rynes J, Jindra M. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 21128-21133.
[14] Miura K, Oda M, Makita S, Chinzei Y. Characterization of the Drosophila Methoprene-tolerant gene product. FEBS Journal, 2005, 272(5): 1169-1178.
[15] Pursley S, Ashok M, Wilson T G. Intracellular localization and tissue specificity of the Methoprene-tolerant (Met) gene product in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2000, 30(8/9): 839-845.
[16] Abdou M A, He Q Y, Wen D, Zyaan O, Wang J, Xu J J, Baumann A A, Joseph J, Wilson T G, Li S, Wang J. Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. Insect Biochemisty and Molecular Biology, 2011, 41(12): 938-945.
[17] Baumann A, Fujiwara Y, Wilson T G. Evolutionary divergence of the paralogs Methoprene tolerant (Met) and germ cell expressed (gce) within the genus Drosophila. Journal of Insect Physiology, 2010, 56(10): 1445-1455.
[18] Godlewski J, Wang S L, Wilson T G. Interaction of bHLH-PAS proteins involved in juvenile hormone reception in Drosophila. Biochemical and Biophysical Research Communications, 2006, 342(4): 1305-1311.
[19] Bernardo T J, Dubrovsky E B. The Drosophila juvenile hormone receptor candidates methoprene-tolerant (MET) and germ cell-expressed (GCE) utilize a conserved LIXXL motif to bind the FTZ-F1 nuclear receptor. Journal of Biological Chemistry, 2012, 287(10): 7821-7833.
[20] Abdou M, Peng C, Huang J H, Zyaan O, Wang S, Li S, Wang J. Wnt signaling cross-talks with JH signaling by suppressing Met and gce expression. PLoS One, 2011, 6(11): e26772.
[21] Lindebro M C, Poellinger L, Whitelaw M L. Protein-protein interaction via PAS domains: role of the PAS domain in positive and negative regulation of the bHLH/PAS dioxin receptor-Arnt transcription factor complex. EMBO Journal, 1995, 14(14): 3528-3539.
[22] Travis J B, Edward B D. Molecular mechanisms of transcription activation by juvenile hormone: A critical role for bHLH-PAS and nuclear receptor proteins. Insects, 2012, 3(1): 324-338.
[23] Jindra M, Palli S R, Riddiford L M. The juvenile hormone signaling pathway in insect development. Annual Review of Entomology, 2013, 58(1): 181-204.
[24] Schuh R, Aicher W, Gaul U, Côte S, Preiss A, Maier D, Seifert E, Nauber U, Schuroder C, Kemler R, Jckle H. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a Drosophila segmentation gene. Cell, 1986, 47(6): 1025-1032.
[25] Huang J H, Lozano J, Belles X. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013, 1830(1): 2178-2187.
[26] Duportets L, Bozzolan F, Abrieux A, Maria A, Gadenne C, Debernard S. The transcription factor Krüppel homolog 1 is linked to the juvenile hormone-dependent maturation of sexual behavior in the male moth, Agrotis ipsilon. General and Comparative Endocrinology, 2012, 176(2): 158-166.
[27] Beck Y, Pecasse F, Richards G. Krüppel-homolog is essential for the coordination of regulatory gene hierarchies in early Drosophila development. Developmental Biology, 2004, 268(1): 64-75.
[28] Minakuchi C, Zhou X F, Riddiford L M. Krüppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster. Mechanisms of Development, 2008, 125(1/2): 91-105.
[29] Pecasse F, Beck Y, Ruiz C, Richards G. Krüppel-homolog, a stage-specific modulator of the prepupal ecdysone response, is essential for Drosophila metamorphosis. Developmental Biology, 2000, 221(1): 53-67.
[30] Minakuchi C, Namiki T, Shinoda T. Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Developmental Biology, 2009, 325(2): 341-350.
[31] Minakuchi C, Tanaka M, Miura K, Tanaka T. Developmental profile and hormonal regulation of the transcription factors broad and Krüppel homolog 1 in hemimetabolous thrips. Insect Biochemisty and Molecular Biology, 2011, 41(2): 125-134.
[32] Lozano J, Belles X. Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Scientific Reports, 2011, 1: 163-169.
[33] Benevolenskaya E V, Frolov M V, Birchler J A. Krüppel homolog (Kr-h) is a dosage-dependent modifier of gene expression in Drosophila. Genetical Research, 2000, 75(2): 137-142.
[34] Hiroto M, Kakei M, Iwami M, Sakurai S. Hormonal regulation of the death commitment in programmed cell death of the silkworm anterior silk glands. Journal Insect Physiology, 2012, 58(12): 1575-1581.
[35] Sheng Z T, Xu J Q, Bai H, Zhu F, Palli S R. Juvenile hormone regulates vitellogenin gene expression through insulin-like peptide signaling pathway in the red flour beetle, Tribolium castaneum. Journal of Biological Chemistry, 2011, 286(49): 41924-41936.
[36] Belles X. Origin and evolution of insect metamorphosis //Encyclopedia of Life Sciences (ELS). Chichester: John Wiley & Sons, Ltd., 2011.
[37] Fichelson P, Brigui A, Pichaud F. Orthodenticle and Krüppel homolog 1 regulate Drosophila photoreceptor maturation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(20): 7893-7898.
[38] Shi L, Lin S W, Grinberg Y, Beck Y, Grozinger C M, Robinson G E, Lee T. Roles of Drosophila Krüppel-homolog 1 in neuronal morphogenesis. Developmental Neurobiology, 2007, 67(12): 1614-1626.
[39] Feyereisen R, Jindra M. The silkworm coming of age-early. PLoS Genetics, 2012, 8(3): e1002591.
[40] Fussnecker B, Grozinger C. Dissecting the role of Kr-h1 brain gene expression in foraging behavior in honey bees (Apis mellifera). Insect Molecular Biology, 2008, 17(5): 515-522.
[41] Martins J R, Nunes F, Cristino A S, Simes Z, Bitondi M. The four hexamerin genes in the honey bee: structure, molecular evolution and function deduced from expression patterns in queens, workers and drones. BMC Molecular Biology, 2010, 11: 23-42.
[42] Shpigler H, Patch H M, Cohen M, Fan Y L, Grozinger C M, Bloch G. The transcription factor Krüppel homolog 1 is linked to hormone mediated social organization in bees. BMC Evolutionary Biology, 2010, 10: 120-132.
[43] Zhang Z L, Xu J J, Sheng Z T, Sui Y P, Palli S R. Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, methoprene tolerant. Journal of Biological Chemistry, 2011, 286(10): 8437-8447.
[44] Jindra M, Charles J P, Iwema T, Iwema T, Epa V C, Takaki K, Konopova B, Smykal V, Rynes J. Signaling through the JH receptor Met and the repressor of metamorphosis Kr-h1 is common to insects//24th International Congress of Entomology. Daegu, 2012.
[45] Parthasarathy R, Tan A J, Palli S R. bHLH-PAS family transcription factor methoprene-tolerant plays a key role in JH action in preventing the premature development of adult structures during larval-pupal metamorphosis. Mechanisms of Development, 2008, 125(7): 601-616.
[46] Kayukawa T, Minakuchi C, Namiki T, Togawa T, Yoshiyama M, Kamimura M, Mita K, Imanishi S, Kiuchi M, Ishikawa Y, Shinoda T. Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(29): 11729-11734.
[47] Kethidi D R, Perera S C, Zheng S, Feng Q L, Krell P, Retnakaran A, Palli S R. Identification and characterization of a juvenile hormone (JH) response region in the JH esterase gene from the spruce budworm, Choristoneura fumiferana. Journal of Biological Chemistry, 2004, 279(19): 19634-19642.
[48] Wang H B, Ali S M, Moriyama M, Iwanaga M, Kawasaki H. 20-hydroxyecdysone and juvenile hormone analog prevent precocious metamorphosis in recessive trimolter mutants of Bombyx mori. Insect Biochemistry and Molecular Biology, 2012, 42(2): 102-108.
[49] Zera A J. Evolutionary genetics of juvenile hormone and ecdysteroid regulation in Gryllus: a case study in the microevolution of endocrine regulation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2006, 144(3): 365-379.
[50] Zhou X, Riddiford L M. Broad specifies pupal development and mediates the 'status quo’ action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development, 2002, 129(9): 2259-2269.
[51] Ye G Y, Hu C, Gong H. Effects of juvenile hormone and ecdysteroid on ovarian development of the Japanese oak silkworm Antheraea yamamai. Journal of Zhejiang Agricultural University, 1999, 25(3): 276-280.
[52] Piulachs M D, Pagone V, Bellés X. Key roles of the Broad-Complex gene in insect embryogenesis. Insect Biochemistry and Molecular Biology, 2010, 40(6): 468-475.
[53] Suzuki Y, Truman J W, Riddiford L M. The role of Broad in the development of Tribolium castaneum: implications for the evolution of the holometabolous insect pupa. Development, 2008, 135(3): 569-577.
[1] 黄志君, 李庆荣, 钟仰进,曹阳. 昆虫变态发育的激素调控. 广东蚕业, 2004, 38(2): 42-45.
[5] 戴华国, 吴晓毅, 武淑文. 褐飞虱体内保幼激素滴度变化及其与翅型分化的关系. 昆虫学报, 2001, 44(1): 27-32.
[7] 周树堂, 郭伟, 宋佳晟. 保幼激素的分子作用机制研究. 应用昆虫学报, 2012, 49(5): 1087-1094.
[51] 叶恭银, 胡萃, 龚和. 保幼激素和蜕皮激素对天蚕卵巢发育的影响. 浙江农业大学学报, 1999, 25(3): 276-280.