生态学报  2014, Vol. 34 Issue (6): 1429-1435

文章信息

梁太波, 尹启生, 张艳玲, 谢剑平, 王宝林, 蔡宪杰, 过伟民, 王建伟
LIANG Taibo, YIN Qisheng, ZHANG Yanling, XIE Jianping, WANG Baolin, CAI Xianjie, GUO Weimin, WANG Jianwei
施用纳米碳对烤烟氮素吸收和利用的影响
Effects of nanocarbon application on nitrogen absorption and utilization of flue-cured tobacco
生态学报, 2014, 34(6): 1429-1435
Acta Ecologica Sinica, 2014, 34(6): 1429-1435
http://dx.doi.org/10.5846/stxb201210231469

文章历史

收稿日期:2012-10-23
修订日期:2013-3-4
施用纳米碳对烤烟氮素吸收和利用的影响
梁太波, 尹启生, 张艳玲, 谢剑平 , 王宝林, 蔡宪杰, 过伟民, 王建伟    
中国烟草总公司郑州烟草研究院, 郑州 450001
摘要:为明确纳米碳在提高烤烟氮素吸收利用方面的效果,在盆栽条件下,研究了纳米碳不同用量对烤烟根系生长发育、干物质积累和氮素吸收利用的影响。结果表明,在常规肥料中添加纳米碳能够促进烤烟根系生长发育,明显提高烟株根系活力和单株根系生物量,增加植株干物质积累量。施用纳米碳增加了烤烟植株成熟期各器官氮素含量和积累量,而未明显影响氮素在植株不同器官的分配。施用纳米碳不仅增加了植株对肥料氮的吸收量,还增加了对土壤氮的吸收量,这与其促进烤烟根系生长发育、提高根系吸收能力有密切关系。纳米碳无论做基肥还是做追肥,均显著提高了氮肥利用率,提高幅度分别达到14.44%和9.62%,有效降低了氮素土壤残留和损失。
关键词烤烟    纳米碳    氮素吸收    氮素利用    
Effects of nanocarbon application on nitrogen absorption and utilization of flue-cured tobacco
LIANG Taibo, YIN Qisheng, ZHANG Yanling, XIE Jianping , WANG Baolin, CAI Xianjie, GUO Weimin, WANG Jianwei    
Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China
Abstract:With the improvement of the agricultural technology, especially the application of chemical fertilizers, the crop yields have greatly increased in the past few decades. Nitrogen application is one of the most important measures to increase yield and improve quality in tobacco production. Although nitrogen supply drives productivity, excessive nitrogen fertilizers and irrational application have become the serious problems in many fields. The residual nitrogen in the soil caused not only the decrease of nitrogen use efficiency, but also the increasing risk of environmental pollution. Thus, improving fertilizer nitrogen use efficiency and reducing fertilizer losses are significant to the agricultural development and environmental protection.

Nanomaterials have some particular properties such as surface effect, volume effect, quantum size effect, and so on, which macro materials do not have. Nanotechnology has become one of the hot topics in the scientific research field because of its wide applications. Many studies found that nanomaterial can enhance crop seed germination and promote plant growth. And chemical fertilizer utilization rate can be increased by nanomaterial application in soil. Tobacco is an important economic crop in our country, and excessive fertilization occurs occasionally in tobacco production. A recent study has shown that carbon nanotubes induce growth enhancement of tobacco cells. However, to date, only few reports exist on the effects of nanomaterial on tobacco growth and nutrient absorption. So this study was conducted to determine the effects of nanocarbon on nitrogen absorption, assimilation and use efficiency of tobacco plant using 15N tracer technique, to provide theory basis for nanocarbon research and application. A pot culture experiment was carried out with tobacco cultivar Zhongyan100 in the greenhouse of Zhengzhou Tobacco Research Institute. Four treatments (T1, T2, T3, T4) were set up and each treatment had 15 pots. Eight pots of T1 and T3 treatment were used for 15N tracer experiment. Plant organ and soil samples were taken for analysis at the resettling growth stage, vigorous growth stage and maturity stage.

The results showed that nanocarbon application promoted root growth, increased root biomass and root vigor, and increased dry matter accumulation of tobacco plant. At maturity stage, compared with T1, the dry matter accumulation of root, stem and leaf increased 6.73%, 19.17%, 7.92% (T3) and 9.12%, 12.44%, 3.89% (T4), respectively. Nanocarbon application increased nitrogen content and nitrogen accumulation amount, without effect on nitrogen distribution of different organs of flue-cured tobacco. At vigorous growth stage and maturity stage, the plant nitrogen uptake, 25.29%-34.62% of which derived from fertilizer and 65.38%-74.01% from soil. Nanocarbon application increased nitrogen absorption amount both from soil and fertilizer, which attributed to strong root absorption ability. The total nitrogen uptake increased by 14.11% and 15.63% at vigorous growth stage and maturity stage by the nanocarbon application. Nanocarbon application increased nitrogen utilization rate by 14.44% (base fertilizer) and 9.62%(top dressing), respectively. Meanwhile, the residual ratio and loss ratio decreased significantly by the nanocarbon application, which had great benefit of decreasing nitrogen loss. Therefore, nanocarbon is suitable for making new fertilizer and using in tobacco production.

Key words: flue-cured tobacco (Nicotiana tabacum L.)    nanocarbon    nitrogen absorption    nitrogen utilization    

在我国农业生产中,肥料的大量投入在提高农产品产量和品质方面发挥了重要作用。然而,随着肥料使用量的不断增加,其负面效应不断显现,肥料利用率低、经济效益下降等问题日益突出。据估计,我国氮肥利用率仅为30%左右,远低于世界发达国家[1]。提高肥料利用效率,减少肥料损失,对我国农业的健康发展和人类生存环境的保护都有着重要意义[2]。纳米技术是20世纪80年代兴起的一项新技术,基本涵义是在纳米(10-9—10-7m)尺度范围内对物质进行认识和改造。纳米材料具有小尺寸效应、表面界面效应和量子尺寸效应等许多传统材料不具备的特性[3, 4]。近年来,纳米材料被逐步应用到农业生产领域,其在促进植物生长发育、提高肥料利用率方面的作用受到人们极大关注[5, 6, 7]。研究表明,纳米材料能够调节植物基因表达,刺激种子萌发和根系生长[8, 9]。同时,纳米材料能够调节植物体内多种酶的活性,改善植物光合性能,提高作物产量[10, 11, 12]。此外,由纳米材料研制的纳米增效肥料在减少肥料的流失、提高肥料利用率方面展现出良好效果[13, 14, 15, 16]

烤烟是我国重要的经济作物,在烤烟生产中过量施肥现象时有发生。提高烤烟植株对营养元素的吸收,减少肥料投入,对增加农民收入和生态环境保护都有重要意义。室内培养研究发现,适宜浓度的碳纳米管能够促进烟草细胞生长[8],然而关于纳米材料对烤烟养分吸收利用的研究尚鲜见报道。为此,进行了不同纳米碳施用量对烤烟生长发育和氮素吸收积累的影响试验,以期为纳米碳在烤烟生产中的应用提供依据。

1 材料与方法 1.1 试验材料

试验于2011年4月至8月在郑州烟草研究院温室内进行,供试土壤质地为壤土,有机质、速效氮、速效磷、速效钾含量分别为15.10 g/kg,87.16 mg/kg,44.27 mg/kg,96.37 mg/kg。土壤过筛后装盆,每盆装土15 kg(盆钵直径30cm,高25 cm),供试烤烟品种为中烟100。供试肥料:硝酸铵(含N35%)、硝酸钾(含N13%,K2O 45%)、硫酸钾(含K2O 50%)、磷酸二氢钾(含P2O5 52%,K2O 34%)等,纳米碳由北京华龙肥料技术有限公司提供。

1.2 试验设计

试验设4个处理,分别为:T1,对照(不施用纳米碳);T2,纳米碳用量为肥料总重量的0.1%;T3,纳米碳用量为肥料总重量的0.3%;T4,纳米碳用量为肥料总重量的0.5%。根据烤烟需肥规律,每处理均按照氮磷钾N ∶ P2O5 ∶ K2O=1 ∶ 0.8 ∶ 3(纯氮2.1g/盆)的比例施用肥料。施肥方法:各处理所需氮素的70%以硝酸铵形式连同磷、钾肥一起作为基肥在移栽前施入,剩余30%的氮素以硝酸钾形式在移栽后30d作为追肥施入,纳米碳与肥料混合均匀后随肥料同时施入。每处理15次重复,4月28日移栽,其他管理措施同大田栽培。

结合盆栽试验,在T1和T3处理中分别取8盆进行15N示踪试验。同位素肥料分别为15N双标记的硝酸铵(丰度10%)和15N标记的硝酸钾(丰度10%),由上海化工研究院提供。其中,第1、2、3、4盆,基肥施用标记15N的硝酸铵肥料,追肥施用普通硝酸钾肥料;第5、6、7、8盆,基肥施用普通硝酸铵肥料,追肥施用标记15N的硝酸钾肥料。其他管理措施与盆栽试验保持一致。

1.3 样品采集与测定

在烟叶生长团棵期(移栽后35d)、旺长期(移栽后60d)、成熟期(移栽后85d)分别取样,每处理取代表性植株2—3株。操作时先用水小心冲出根系,然后将烟株按根、茎、叶各器官分开并称其鲜重,于70℃烘箱中烘至恒重后,测定干物质量。

样品粉碎后用浓H2SO4-H2O2消化,半微量凯氏定氮法测定土壤、植株含氮量。根系活力用TTC还原法测定[17]15N样品采用ZHT2O2型质谱仪分析15N丰度,由河北省农林科学院理化所分析。

计算公式:

植株从肥料中吸收的氮素百分数(NDFF)

NDFF= (植株样品中15N原子百分超-0.366) 肥料中15N原子百分超×100

植株从土壤中吸收的氮素百分数(NDFS)

NDFS= 100-植株从肥料中吸收的氮素百分数NDFF

肥料氮素利用率%=植株吸氮量×NDFF/施氮量

植株各器官氮素积累量= 各器官干物质重×各器官氮素含量

1.4 数据处理

数据分析采用Excel 2010 程序和DPS v7. 05 统计分析软件进行。

2 结果与分析 2.1 根系生物量和根系活力

图 1可以看出,在烤烟生长发育的3个关键时期(团棵期、旺长期和成熟期),与对照(T1)比较,施用纳米碳均不同程度地增加了植株根系生物量,成熟期增加幅度分别达到9.78%,18.53%和21.04%。3个纳米碳处理比较,在烟株团棵期,以T3处理根系生物量最高;在烟株生育后期以T4处理根系生物量相对较高。说明施用纳米碳有利于促进烤烟根系生长发育,增加根系生物量,但不同纳米碳用量的效果存在差异。由图 1还可以看出,施用纳米碳能够不同程度提高烤烟根系活力。与对照(T1)比较,在团棵期和旺长期,3个纳米碳处理根系活力均显著增加,且以T3处理增加幅度最大。在成熟期,T3和T4处理根系活力显著高于T1和T2处理。

图 1 施用纳米碳对烤烟根系生物量和根系活力的影响 Fig. 1 Effects of nanocarbon application on the biomass and vigor of tobacco root
2.2 干物质积累量

表 1看出,在烤烟生长发育进程中,施用纳米碳均不同程度促进了烤烟植株各器官生长发育,增加干物质积累量,尤以T3和T4处理相对较好。在成熟期,与对照(T1)相比,T3处理根茎叶干物质积累量分别增加6.73%、19.17%和7.92%;T4处理分别增加9.12%、12.44%和3.89%。可见,适宜的纳米碳用量有利于促进烤烟植株生长发育,增加干物质积累量。

表1 不同处理对烤烟干物质积累量的影响 Table 1 Effect of different treatments on dry matter accumulation of flue-cured tobacco
处理 Treatment团棵期 Resettling growth stage 旺长期 Vigorous growth stage 成熟期 Maturity stage
根 Root/ (g/株)茎 Stem/ (g/株)叶 Leaf/ (g/株) 根 Root/ (g/株)茎 Stem/ (g/株)叶 Leaf/ (g/株) 根 Root/ (g/株)茎 Stem/ (g/株)叶 Leaf/ (g/株)
同列数据中不同小写字母表示差异达5%显著水平
T11.80c 2.00c7.00c7.50a14.65b30.85b15.90b55.93b70.56b
T21.95bc2.40b7.20c7.65a15.70ab32.20ab16.02b59.93ab72.60ab
T32.20b2.70a8.80b7.75a16.60a33.85ab16.97a66.65a76.15a
T42.50a2.60a10.00a7.50a15.00b32.75a17.35a62.89ab73.29ab
2.3 成熟期不同器官氮素积累和分配

表 2可以看出,与对照T1相比,施用纳米碳处理不同程度增加了烤烟根系和叶片氮素含量,而对茎器官氮素含量无显著影响。由于干物质积累量增加,纳米碳处理T2、T3和T4成熟期各器官氮素积累量均有所增加,尤以T3和T4处理效果显著。氮素积累在各器官中的分配比例处理间无显著差异。可见,施用纳米碳能够不同程度促进烤烟植株氮素吸收,提高根系和叶片氮素含量和积累量,但并未影响植株氮素在不同器官中的分配。

表2 成熟期烤烟植株不同器官氮素积累与分配 Table 2 Effect of different treatments on nitrogen accumulation and distribution among different organs of tobacco plant at maturity stage
处理 Treatment含量 Content /% 积累量 Accumulation amount /(mg/株) 比例 Ratio /%
根Root茎Stem叶Leaf 根Root茎Stem叶Leaf 根Root茎Stem叶Leaf
T12.02b1.16a2.91b321.18b648.81c2053.30b10.62c21.46a67.92a
T22.02b1.15a3.01ab323.60b689.20b2185.26b10.12bc21.55a68.33a
T32.26a1.13a3.10ab383.45a753.12a2360.63a10.96ab21.53a67.50a
T42.30a1.17a3.20a399.05a735.84a2345.17a11.47a21.14a67.39a
2.4 烤烟植株对不同来源氮素的吸收

15N示踪试验结果(表 3)表明,在旺长期和成熟期,植株积累的氮素25.29%—34.62%来自于肥料,65.38%—74.01%来自于土壤。与旺长期相比,成熟期T1和T3处理烤烟植株对土壤氮的吸收比例增加,而肥料氮比例减少。说明随生育期推后,肥料氮在植株氮素积累中的贡献降低。处理间比较,在成熟期,来自肥料氮所占的比例,T1和T3无显著差异;来自土壤氮所占比例,处理间亦无明显差异。

表3 施用纳米碳对烤烟吸收不同来源氮素的影响 Table 3 Effects of nanocarbon application on tobacco nitrogen uptake from different sources
生育期 Growth stage处理 Treatment总吸氮量 TNUA /(mg/株)来自肥料的氮NDFF 来自土 壤的氮NDFS
来自追肥的氮NDFTF 来自追肥的氮NDFTF 来自追肥的氮NDFTF
吸收量 NUA /(mg/株)吸收比例 NUR /% 吸收量 NUA /(mg/株)吸收比例 NUR /% 吸收量 NUA /(mg/株)吸收比例 NUR /% 吸收量 NUA /(mg/株)吸收比例 NUR /%
TNUA: total nitrogen uptake amount; NUA: nitrogen uptake amount; NUR: nitrogen uptake ratio; NDFF: nitrogen derived from fertilizer; NDFBF: nitrogen derived from basal fertilizer; NDFTF: nitrogen derived from topdressing fertilizer; NDFS: nitrogen derived from soil
旺长期Vigorous T11404.23b291.23a20.74a194.90a13.88a486.13a34.62a918.10b65.38b
growth stageT31602.42a297.07a18.54a173.63b10.84b470.70a29.37b1131.72a70.63a
成熟期T13022.55b499.36b16.52a285.01b9.43a784.37b25.95a2238.18b74.05a
Maturity stageT33494.92a571.54a16.35a312.44a8.94a883.98a25.29a2610.94a74.71a

就烤烟对氮素的吸收量而言,在旺长期,施用纳米碳后植株积累氮素来自土壤的氮和植株总吸氮量均显著增加。在成熟期,来自肥料的氮、来自土壤的氮和植株总吸氮量均表现为T3>T1。施用纳米碳处理不仅增加了植株对肥料氮的吸收量,还增加了对土壤氮的吸收量,这与其促进了烤烟根系生长发育、提高了根系的吸收能力有密切关系。

2.5 氮肥利用率

利用15N示踪技术可计算出不同处理的氮肥利用率(表 4)。可以看出,T1和T3处理烤烟对氮肥的利用率,基肥为35.67%和40.82%,追肥为47.50%和52.07%,两个处理追肥利用率均明显高于基肥。与T1相比,T3处理基施氮肥利用率提高14.44%;追施氮肥利用率提高9.62%。从器官来看,与T1相比,T3处理茎和叶片肥料利用率基肥和追肥均显著提高,而根系肥料利用率无显著差异。初步分析认为,施用纳米碳处理的氮肥利用率提高,可能与纳米碳颗粒的高表面能提高了肥料中氮素的有效性有关。

表4 施用纳米碳对氮肥利用率的影响 Table 4 Effects of nanocarbon application on nitrogen utilization rate
施肥期 Fertilization time处理 Treatment吸收Uptake/% 土壤残留率 Residual ratio/%损失率 Loss ratio/%
根Root茎Stem叶Leaf合计Total
基肥BFT14.12a7.11b24.44b35.67b21.78a42.55a
T33.80a8.96a28.06a40.82a20.05a39.13b
追肥TFT14.84a9.89b32.77b47.50b10.00a42.50a
T34.84a11.53a35.70a52.07a9.03b38.89b

表 4还可以看出,两个处理氮肥土壤残留率追肥均显著低于基肥;而氮肥的损失率基肥和追肥之间无明显差异。处理之间比较,施用纳米碳处理T3无论是基肥还是追肥,土壤残留率和损失率均有不同程度降低,这可能与该处理根系发育好、氮肥利用率较高有关。

3 结论与讨论 3.1 纳米碳对烤烟生长发育的影响

纳米碳作为一种具有高表面能的小尺度纳米材料,在影响生物代谢、促进作物生长发育方面的良好效果已在多种作物上显现[18, 19]。本试验结果表明,在普通肥料中加入纳米碳能不同程度地促进烤烟植株生长发育,增加烟株干物质积累量,这与刘键[16]、武美燕[20]等人在水稻、小麦上的研究结果相似。同时研究发现,纳米碳促进烤烟植株生长发育的效果在烤烟生育前期更为显著,说明纳米碳能够促进烤烟植株早发、快长,从而有利于提高烟叶产量。施用纳米碳明显增加烤烟根系生物量、提高根系活力,是其促进植株生长发育的重要原因。

3.2 纳米碳对烤烟氮素吸收和氮肥利用率的影响

研究表明,纳米材料能够促进植物对氮磷钾等养分的吸收[21, 22, 23]。本试验条件下,施用纳米碳处理不仅增加了植株对肥料氮的吸收量,还增加了对土壤氮的吸收量,这与其促进了烤烟根系生长发育、提高了根系的吸收能力有密切关系。施用纳米碳能够不同程度促进烤烟植株氮素吸收,提高根系叶片氮素含量和积累量,但并未影响植株氮素在各器官的分配。

施入土壤中的肥料氮一般有3个去向:作物吸收、土壤残留和损失。有报道指出,肥料施入土壤后,约有39%—53%被烟株吸收利用[24]。本试验条件下,施入土壤的氮素35.67%—52.07%被植株吸收利用。纳米碳无论做基肥还是做追肥,均显著提高了氮肥利用率,使氮素土壤残留率和损失率均有不同程度降低。这可能是因为纳米碳作为一种小尺度、高表面能活性的纳米颗粒,能够与土壤中的养分离子形成聚合物,提高了营养元素的有效性,促进了植株对养分的吸收和利用。然而,仅从纳米碳的吸附性能角度无法完全解释其促进作物生长和养分吸收的机理。张夫道等[22]利用纳米胶结包膜材料制作缓释肥料,通过溶解或溶胀作用使胶粘剂分子与肥料分子相互扩散形成胶结接头,在提高肥料利用率方面取得良好效果。然而,本研究中纳米碳提高烤烟肥料利用率的作用机理可能与之有所不同。研究表明,纳米碳具有较高的比表面能和电催化性能,遇水后能够变成导体,可以提高土壤电动电位。植物根系对养分的吸收,涉及了复杂的电化学过程,纳米碳可能参与并影响了这一过程。同时,在烤烟生长发育过程中,纳米碳作为肥料的载体可充分吸附结合在根系表面,促进了根系对养分的吸收和根系生物量的增加。也有研究认为,纳米材料可以改变水的结构,提高其活性,在水不断被植物吸收的过程中可以携带大量营养元素进入植物体内,达到营养植物的目的[25]。研究已证实,某些形态的纳米材料如碳纳米管能够被植物吸收,然而由于缺乏有效的检测手段,纳米材料在土壤中的行为和迁移规律尚不清楚[26]。因此,关于纳米材料促进作物养分吸收的机理和在土壤环境中的行为规律,有待于进一步研究。

参考文献
[1] Yan X, Jin J Y, He P, Liang M Z. Recent advances in technology of increasing fertilizer use efficiency. Scientia Agricultura Sinica, 2008, 41(2): 450-459.
[2] Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X. Nutrient use efficiencies of major cereal crops in china and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924.
[3] Borm P J, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E. The potential risks of nanomaterials: a review carried out for ECETOC. Particle and Fibre Toxicology, 2006, 14(3): 11-35.
[4] Zhang Z T, Lin Y H, Tang Z L, Zhang J Y. Nanometer materials & nanotechnology and their application prospect. Material Engineering, 2000, (3): 42-48.
[5] Fang G D, Si Y B. Effects of nanoscale Fe3O4 on microbial communities, enzyme activities and 2, 4-D degradation in red soil. Scientia Agricultura Sinica, 2011, 44(6): 1165-1172.
[6] Lin S, Reppert J, Hu Q, Hudson JAS, Reid M L, Ratnikova T A, Rao A M, Luo H, Ke P C. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small, 2009, 5(10): 1128-1132.
[7] Liu Q L, Chen B, Wang Q L, Shi X L, Xiao Z Y, Lin J X, Fang X H. Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters, 2009, 9(3): 1007-1010.
[8] Khodakovskaya M V, Silva K, Biris A S, Dervishi E, Villagarcia H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano, 2012, 6(3): 2128-2135.
[9] Alia D S, Castillo-Michel H, Hernandez-Viezcas J A, Diaz B C, Jose R, Peralta-Videa J R, Gardea-Torresdey J L. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber(cucumis sativus) plants. Environmental Science & Technology, 2012, 46(14): 7637-7643.
[10] Hong F S, Yang P, Gao F Q, Liu C, Zheng L, Yang F, Zhou J. Effect of nano-anatase TiO2 on spectral characterization of photosystem Ⅱ particles from spinach. Chemical Research in Chinese Universities, 2005, 21(2): 196-200.
[11] Hong F S, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang Ping. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 2005, 105(1/3): 269-279.
[12] Lu C M, Zhang C Y, Wen J Q, Wu G R, Tao M X. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 2002, 21(3): 168-171.
[13] Liu A X, Lu Q M, Cao Y J, Liao Z W, Xu Q H. Effects of composite nanomaterials on rice growth. Plant Nutrition and Fertilizer Science, 2007, 13(2): 344-347.
[14] Cao Y J, Liu A X, Liao Z W, Li Y H. Preliminary study on effects of nanomaterials on phosphor nutrition of maize. Ecology and Environment, 2006, 15(5): 1072-1074.
[15] Xiao Q, Zhang F D, Wang Y J, Zhang J F, Zhang S Q. Effects of slow/controlled release fertilizers felted and coated by nano-materials on crop yield and quality. Plant Nutrition and Fertilizer Science, 2008, 14(5): 951-955.
[16] Liu J, M J, Zhang Z M, Liu W Z, Guo Z D. Application effect of fertilizer added with nano carbon on rice. Phosphate & Compound Fertilizer, 2011, 26 (6): 76-77.
[17] Zhao S J, Liu H S, Dong X C. Techniques of plant physiological experiment. Beijing: Chinese Agricultural Scientech Press, 2002: 47-48.
[18] Khodakovskaya M, Dervishi E, Mahmood M, Yang X, Li Z, Fumiya W, Biris A. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 2009, 3(10): 3221-3227.
[19] Xie Y F, Yao X H. Effects of nano-meter TiO2 on germination and growth physiology of pinus tabulaeformis. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(10): 2013-2018.
[20] Wu M Y, Hao R C, Tian X H, Wang X L, Ma G H, Tang H T. Effects of adding nono-carbon in slow-released fertilizer on grain yield and nitrogen use efficiency of super hybrid rice. Hybrid Rice, 2010, 25 (4): 86-90.
[21] Fan L L, Wang Y H, Shao X W, Geng Y Q, Wang Z C, Ma Y, Liu J. Effects of combined nitrogen fertilizer and nano-carbon application on yield and nitrogen use of rice grown on saline-alkali soil. Journal of Food, Agriculture & Environment, 2012, 10 (1): 558-562.
[22] Zhang F D, Zhao B Q, Zhang J, He X S, Zhang J Q, Shi C Y. The progress and prospect on Nano-fertilizers research. Plant Nutrition and Fertilizer Science, 2002, 8(2): 254-255.
[23] Wang X Y, Wang Y, Tian X H, Ma G H. Effects of NMUrea on nitrogen runoff losses of surface water and nitrogen fertilizer efficiency in paddy field. Transactions of the CSAE, 2011, 27(1): 106-111
[24] Shan D X, Yang S H, Li S Q, Xu J G. Absorption and distribution of nitrogen of flue-cured tobacco with 15N tracer. Soil and Fertilizer Sciences in China, 2007, (2): 43-45.
[25] Liu A X, Liao Z W. Effect of nanomaterial on water clusters. Journal of Anhui Agriculture Science, 2008, 36(36):15780-15781.
[26] Pan B, Xing B. Applications and implications of manufactured nanoparticles in soils: a review. European Journal of Soil Science, 2012, (63):437-456.
[1] 闫湘, 金继运, 何萍, 梁鸣早. 提高肥料利用率技术研究进展. 中国农业科学, 2008, 41(2): 450-459.
[2] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924.
[4] 张中太, 林元华, 唐子龙, 张俊英. 纳米材料及其技术的应用前景. 材料工程, 2000, (3): 42-48.
[5] 方国东,司友斌. 纳米Fe3O4对红壤微生物数量、酶活性及2,4-D降解的影响. 中国农业科学, 2011, 44(6): 1165-1172.
[12] 陆长梅, 张超英, 温俊强, 吴国荣, 陶明煊. 纳米材料促进大豆萌芽、生长的影响及其机理研究. 大豆科学, 2002, 21(3): 168-171.
[13] 刘安勋, 卢其明, 曹玉江, 廖宗文, 徐清辉. 纳米复合材料对水稻生长发育的影响. 植物营养与肥料学报, 2007, 13(2): 344-347.
[14] 曹玉江, 刘安勋, 廖宗文, 黎永洪. 纳米材料对玉米磷营养的影响初探. 生态环境, 2006, 15(5): 1072-1074.
[15] 肖强, 张夫道, 王玉军, 张建锋, 张树清. 纳米材料胶结包膜型缓/控释肥料对作物产量和品质的影响. 植物营养与肥料学报, 2008, 14(5): 951-955.
[16] 刘键,马筠, 张志明, 刘维震, 郭自得. 肥料添加纳米碳在水稻上的施用效果.磷肥与复肥, 2011, 26 (6): 76-77.
[17] 赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2002:47-48
[19] 谢寅峰, 姚晓华. 纳米TiO2对油松种子萌发及幼苗生长生理的影响. 西北植物学报, 2009, 29(10): 2013-2018.
[20] 武美燕, 蒿若超, 田小海, 王晓玲, 马国辉, 汤海涛. 添加纳米碳缓释肥料对超级杂交稻产量和氮肥利用率的影响. 杂交水稻, 2010, 25(4): 86-90.
[22] 张夫道, 赵秉强, 张骏, 何绪生, 张俊清, 史春余. 纳米肥料研究进展与前景. 植物营养与肥料学报, 2002, 8(2): 254-255.
[23] 王小燕, 王燚, 田小海, 马国辉. 纳米碳增效尿素对水稻田面水氮素流失及氮肥利用率的影响.农业工程学报, 2011,27(1):106-111.
[24] 单德鑫, 杨书海, 李淑芹, 许景钢. 15N示踪研究烤烟对氮的吸收及分配.中国土壤与肥料, 2007, (2): 43-45.
[25] 刘安勋, 廖宗文. 纳米材料对水团簇的影响.安徽农业科学, 2008, 36(36): 15780-15781.