生态学报  2014, Vol. 34 Issue (3): 581-588

文章信息

朱凡, 洪湘琦, 闫文德, 宿少锋, 梁小翠, 王志勇
ZHU Fan, HONG Xiangqi, YAN Wende, SU Shaofeng, LIANG Xiaocui, WANG Zhiyong
PAHs污染土壤植物修复对酶活性的影响
Enzymatic activity during phytoremediation of polycyclic aromatic hydrocarbon impacted soil
生态学报, 2014, 34(3): 581-588
Acta Ecologica Sinica, 2014, 34(3): 581-588
http://dx.doi.org/10.5846/stxb201301040020

文章历史

收稿日期:2013-1-4
修订日期:2013-12-10
PAHs污染土壤植物修复对酶活性的影响
朱凡1, 2 , 洪湘琦1, 闫文德1, 2, 宿少锋3, 梁小翠2, 王志勇4    
1. 中南林业科技大学,长沙 410004;
2. 南方林业生态应用技术国家工程实验室, 长沙 410004;
3. 海南林业科学研究所,海口 571100;
4. 湖南省森林植物园,长沙 410000
摘要:PAHs作为一类持久性有机污染物对土壤环境质量产生深刻的影响。选用了中国亚热带城市普遍采用的4个树种(樟树、栾树、广玉兰、马褂木),利用盆栽试验,研究了PAHs污染土壤植物修复对酶活性影响。结果表明,多酚氧化酶活性定量抑制率为-94.98%-16.29%,过氧化氢酶为-76.71%-13.19%,磷酸酶为-49.62%-56.38%。土壤酶活性对PAHs污染的响应受到不同树种的影响。方差分析表明,过氧化氢酶活性在不同污染水平间差异显著,3种酶活性在不同时间下差异性显著,3种酶活性在不同树种×污染水平、不同时间×污染水平二因素作用下差异都不显著。主成分分析表明,PAHs污染对土壤酶活性的影响大于树种的影响,多酚氧化酶和磷酸酶对土壤反映敏感。
关键词PAHs    树种    修复    土壤酶    
Enzymatic activity during phytoremediation of polycyclic aromatic hydrocarbon impacted soil
ZHU Fan1, 2 , HONG Xiangqi1, YAN Wende1, 2, SU Shaofeng3, LIANG Xiaocui2, WANG Zhiyong4    
1. Central South University of Forestry and Technology, Changsha 410004, China;
2. State Key Laboratory of Ecological Applied Technology in Forest Area of South China, Changsha 410004, China;
3. Hainan Forestry Academy of Sciences, Haikou 571100, China;
4. Hunan Forest Botanical Garden, Changsha 410000, China
Abstract:Polycyclic aromatic hydrocarbons (PAHs) are widespread in nature because of several polluting anthropogenic activities. They have been recognized as a potential health risk due to their intrinsic chemical stability, high recalcitrance to different types of degradation and high toxicity to living organisms. Soil enzymes, being in intimate contact with the soil's environment and very sensitive to any ecosystem perturbation, are well suited for assessing the impact of pollution on the soil quality. The aim of this trial was to quantify the responses of soil enzyme activity during the phytoremediation of PAHs impacted soil. Four tree species including Cinnamomum camphora, Magnolia grandiflora, Koelreuteria bipinnata, Liriodendron chinense, from subtropical China, were selected and planted separately in the pots in which soils were treated with diesel oil to three concentration levels of PAHs(L1﹤L2﹤L3). Phosphatase, polyphenol oxidase and hydrogen peroxide activity were evaluated at 0, 3, 6, 9 and 12 months after the PAHs contamination. The resulted showed that the inhibition rates of polyphenol oxidase activity ranged from -94.98% to 16.29%, the inhibition rates of hydrogen peroxide activity ranged from -76.71% to 13.19%, and the inhibition rates of phosphatase activity ranged from -49.62% to 56.38%. Enzymatic activity in PAHs contaminated soils were also affected by different tree species. Analysis of variance indicated that there was a significant difference of hydrogen peroxide activity between different PAHs levels and there were a significant difference of 3 enzyme activities between different times, but all 3 enzyme activities were not significant between interactions of different trees and PAHs levels and between interactions of different times and PAHs levels. Two principal components were extracted from the principal component analysis and their cumulative contribution of variance accounted for 94.19%. The variance contribution rate of PC1 and PC2 were 87.61% and 6.58%, respectively. The correlation coefficients between main substrates and PC1 or PC2 indicated that enzymatic activity was influenced by PAHs and trees together, but the such influence from PAHs contamination was higher than that from the trees. Meanwhile, the principal component analysis also showed the polyphenol oxidase and phosphatase activities impacted by the PAHs and trees were higher than the hydrogen peroxide activity.
Key words: PAHs    trees    phytoremediation    enzyme    

土壤环境质量不仅与土壤的理化性质有关,而且与土壤生物学性质关系密切。由于土壤微生物与酶活性比土壤理化性质对土壤质量的变化能做出更快速地响应,所以土壤微生物和酶在污染物生态毒理[1, 2]、污染监测评价[3, 4, 5, 6]和修复[7, 8]等方面的研究受到普遍关注。

PAHs是一类持久性有机污染化合物,已严重威胁到土壤环境质量。近年来,关于土壤酶与有机污染物之间的关系各国学者做了较多研究,如张晶[9]等研究长期灌溉含多环芳烃污水对稻田土壤酶活性的影响,发现PAHs含量与脱氢酶和脲酶活性呈极显著正相关,与多酚氧化酶活性呈显著正相关;Wyszakowska等[10]研究了种植燕麦对柴油污染土壤酶活性的影响,结果发现柴油显著抑制了脱氢酶和脲酶的活性,但对酸性磷酸酶和碱性磷酸酶活只有轻微影响。还有一些研究表明加氧酶[11]、脱氢酶[12]、木质素降解酶[13]也参与了PAHs的降解过程。这些结果通过酶的时间变幅来证实酶能够较灵敏地反映出胁迫环境下土壤生态系统的早期预警,但是酶与PAHs的相关关系还会受到土壤类型、污染物的种类和含量以及实验条件的影响[14, 15, 16]

植物修复污染土壤是一种公认的经济、实用绿色技术,植物在修复过程中,除了PAHs对土壤酶活性产生影响外,还会受到成活或死亡根系释放的有机物质的影响[17],使得酶活性变得较为复杂。关于PAHs污染土壤植物修复过程中土壤酶活性变化的研究还比较少见[18, 19],而且明确植物与污染物对酶活性影响的研究就更不多见了。为准确表征植物和PAHs对酶活性的影响程度,本研究选用中国亚热带城市普遍采用的4个树种:樟树(Cinnamomum camphora)、广玉兰(Magnolia grandiflora)、栾树(Koelreuteria bipinnata)和马褂木(Liriodendron chinense),人工配制土壤PAHs污染的3个梯度水平(L1﹤L2﹤L3),以过氧化氢酶、多酚氧化酶、磷酸酶为研究对象,比较分析污染土壤植物修复过程中土壤酶活性的差异和动态,探讨酶活性与PAHs和不同树种之间的关系,为丰富应用土壤酶作为土壤质量综合评价指标提供理论依据。

1 材料与方法 1.1 试验地概况

试验依托于城市森林生态湖南省重点实验室。试验地设在湖南省长沙市中南林业科技大学城市生态站内(东经112°48′,北纬28°03′)。当地年平均气温16.8 ℃,最高气温40.6 ℃,最低气温-12 ℃,年平均降雨量1400 mm。无霜期为270—300 d,日照时数年均1677.1 h,属典型的亚热带湿润季风气候。试验在面积为22 m × 6 m的不锈钢框架结构的温室内进行。

1.2 试验设计

试验土壤为湖南省株洲市夕阳红苗圃园土壤,土壤没有PAHs污染的历史。土壤自然风干,过5 mm筛,待用。供试土壤和加入污染物后土壤的基本性质见表 1.

表1 土壤的基本情况 Table 1 General situation of the studied soil
处理TreatmentpH总有机碳/(g/kg)
Total organic carbon
全氮/(g/kg)
Total nitrogen
土壤含水量/%
Water content
原土5.0112.651.1833.2
L15.0119.061.3518.3
L24.9823.361.2916.7
L34.8646.261.1617.0

试验采用南方城市常见的绿化树种樟树、栾树、广玉兰和马褂木,为一年生实生苗,来源于长沙黄兴镇苗木基地。

PAHs用市售0号柴油代替。多环芳烃在柴油中比例为18%—20%,国内外研究中也经常选择柴油模拟PAHs污染[9, 20, 21]。将0号柴油按照比例与风干过筛的土壤混合,土油充分拌匀后,薄层平铺置于露天环境,使得土壤充分吸附柴油,保证试验期间污染物含量的稳定性。48 h后分装到圆形塑料盆(Φ40cm×H25cm)中,每盆装12kg污染土,装土前,盆钵底部圆孔铺一层落叶,以防止浇灌时水分渗透造成水溶性PAHs流失。

本研究设计4个处理:①L0:不加污染物,种植物;②L1:加2g/kg柴油,种植物;③L2:加10g/kg柴油,种植物;④L3:加50g/kg柴油,种植物;⑤CK:加污染物,不种植物,含CK1(加2g/kg柴油), CK2(加10g/kg柴油) CK3(加50g/kg柴油)。除了对照(CK),每种处理下都分别种植4种苗木,每盆只种1株,每个处理每种苗木3次重复。试验总共57盆。

试验期间盆栽放置在温室中培育,随意摆放,每月将盆栽位置随机移动一次,尽量使每盆植物的微环境保持一致,室内温度因开窗对流基本与环境温度保持一致,平时用自来水浇灌,保持所有供试苗木盆内土壤田间持水量在50%左右。试验于2006年10月开始进行,配制好的污染土壤装盆前取一次样(2006年10月),随后种上植物,分别于3个月(2007年1月)、6个月(2007年4月)、9个月(2007年7月)、12个月(2007年10月)对土壤采样。每次取样时距离树基部5cm处从土层表面直达盆底,其间避免根受伤,每次每盆取土样约1kg。

1.3 试验方法 1.3.1 土壤样品的制备

将盆中所取土壤充分混匀,风干后过2mm筛,用于酶活性的测定。

1.3.2 土壤指标测定

土壤酶活性:过氧化氢酶—高锰酸钾滴定法,过氧化氢酶活性以20min后1g土壤的0.lN高锰酸钾的毫升数表示(0.1N KMnO4/g)。磷酸酶—磷酸苯二钠比色法,磷酸酶活性以2h后100g土壤中P2O5的毫克数表示(mg P2O5/100g)。多酚氧化酶—邻苯三酚比色法,多酚氧化酶活性以3h后100g土壤中紫色没食子素的毫克数表示[22]

土壤含水量用烘干法;土壤pH值用电位法测定(水浸);土壤有机质用重铬酸钾水合加热法;土壤全氮凯氏定氮法[23]

1.4 数据处理

为定量动态描述PAHs的抑制作用,采用酶活性抑制率予以表征[24],负值表示激活作用,正值表示抑制作用。计算公式如下:

酶活性抑制率=(1-A/A0)×100%

式中,A为PAHs污染土壤酶活性,A0为对照(CK)酶活性。

数据经Excel软件基础处理后,用SPSS14.0进行方差分析,用Sigmaplot10.0作图,用CANOCO4.5进行主成分分析。

2 结果 2.1 修复过程中土壤酶的时间动态变化

酶活性在植物修复PAHs污染土壤过程中的动态变化结果见图1。过氧化氢酶、多酚氧化酶活性随着时间推移表现出逐渐升高后又下降的过程,磷酸酶活性随着时间推移表现出逐渐降低过程。与种植植物无污染处理(L0)相比,过氧化氢酶活性3个月后在L1、L3污染水平下均高于L0,多酚氧化酶活性仅在9个月时在L1、L2、L3污染水平下高于L0,磷酸酶活性6个月后在L1、L2、L3污染水平下均高于L0,且种植植物无污染处理下过氧化氢酶和多酚氧化酶活性随时间推移变化幅度小。这说明污染物PAHs对土壤酶有激活作用。

图1 植物修复PAHs污染土壤酶活性随时间变化 Fig. 1 The change of enzymatic activities during phytoremediation of PAHs impacted soils over time
2.2 修复过程中土壤酶活性抑制率

为定量描述在PAHs污染下土壤酶活性的响应变化,我们将3个污染水平下的酶活性与无植物加污染物的土壤酶活性(CK)对比,如表 2所示,过氧化氢酶活性定含量抑制率在-76.71%—13.19%之间,其中3个月L3水平下,抑制率最小(-76.71%),在污染土壤3个月L2水平下,抑制率最大(13.19%);多酚氧化酶活性定含量抑制率在-94.98%—16.29%之间,其中6个月L3水平下,抑制率最小(-94.98%),在污染土壤12个月L3水平下,抑制率最大(16.29%);磷酸酶活性定含量抑制率在-49.62%—56.38%之间,其中6个月L1水平下,抑制率最小(-49.62%),在污染土壤12个月L3水平下,抑制率最大(56.38%)。过氧化氢酶活性在L1水平下始终表现出受到抑制,在L2和L3水平得到激活;多酚氧化酶在污染初期就开始得到激活,直到12个月后激活作用才消失;磷酸酶在污染初期活性均受到抑制,然后被激活,但随即又表现出抑制。

表2 植物修复PAHs污染土壤酶活性抑制率比较 Table 2 The comparison of enzymatic activities inhibition rate during phytoremediation of PAHs impacted soils
处理时间
(月)
Treatment time
(months)
过氧化氢酶活性抑制率/%
Inhibition rate of hydrogen
peroxide activity
多酚氧化酶活性抑制率/%
Inhibition rate of polyphenol
oxidase activity
磷酸酶活性抑制率/%
Inhibition rate of
phosphatase activity
CKL1L2L3 CKL1L2L3 CKL1L2L3
3010.3613.19-76.710-70.1-52.15-24.07033.6717.0922.94
6011.75-3.73-50.340-62.829.83-94.980-49.62-21.34-8.7
900.54-10.03-28.070-78.71-0.67-26.590-31.232.165.97
1200.97-53.04-3.5405.93-1.9616.2900.5329.6956.38

同样地,为掌握种植不同植物土壤酶活性对PAHs污染响应,计算出同一树种不同污染水平的酶活性抑制率见表 3,栽培樟树和广玉兰的污染土壤中,过氧化氢酶和多酚氧化酶活性表现为激活,磷酸酶的活性为受到抑制;栽培栾树的污染土壤中,过氧化氢酶活性被激活,而多酚氧化酶和磷酸酶的活性在L1水平下激活,在L2和L3水平下均受到抑制;栽培马褂木的污染土壤中,过氧化氢酶、多酚氧化酶和磷酸酶活性被激活受到抑制。可见,土壤酶活性对PAHs污染的响应受到不同树种的影响。

表3 不同树种修复PAHs污染酶活性的抑制率 Table 3 The inhibition rate of enzymatic activities in PAHs impacted soils by different trees remediation
污染水平
Contaminated levels
樟树
Cinnamomum camphora
栾树
Koelreuteria bipinnata
广玉兰
Magnolia grandiflora
马褂木
Liriodendron chinense
过氧化氢酶L19.77-20.060.926.30
Hydrogen peroxideL2-22.66-44.59-25.42-6.35
L3-66.98-52.05-49.00-28.83
多酚氧化酶L1-65.20-34.38-21.36-82.21
Polyphenol oxidaseL2-18.3821.40-43.48-16.52
L3-33.039.69-52.56-23.17
磷酸酶phosphataseL118.24-2.697.48-19.67
L25.434.3512.24-0.13
L320.0016.2326.4613.54
2.3 土壤酶与PAHs的关系

方差分析(表 4)表明, 在PAHs不同污染水平间,过氧化氢酶活性差异性显著(P<0.05),而多酚氧化酶和磷酸酶活性差异性不显著;在不同树种下,3种酶活性差异性不显著;在不同时间下,3种酶活性差异性显著(P<0.05);3种酶活性在不同树种×污染水平二因素作用下差异都不显著,同样,3种酶活性在不同时期×污染水平二因素作用下差异也不显著。

表4 植物修复PAHs污染土壤酶活性的方差分析 Table 4 Analysis of variance of enzymatic activities during phytoremediation of PAHs impacted soils
项目
Items
土壤酶
Enzyme
平方和
Sum of square
自由度
Variance
均方
Mean square
FP
*表示达到0.05显著水平 *P<0.05
污染水平过氧化氢酶1.627290.0483.5580.043*
Contaminated level多酚氧化酶13920.129494.30.580.567
磷酸酶7868.40229274.0530.8560.436
树种Different trees过氧化氢酶2.843470.0562.210.10
多酚氧化酶58473.47471291.3780.760.523
磷酸酶14047.4747309.9330.4410.725
时间过氧化氢酶0.761140.01312.270.001*
Different times多酚氧化酶7245.52514169.0338.2160.003*
磷酸酶3940.7861414.37666.0310.00*
不同树种×污染水平过氧化氢酶0.4380.050.990.458
Different trees×多酚氧化酶3660.48457.50.390.923
Contaminated level磷酸酶401.1850.10.140.996
不同时间×污染水平过氧化氢酶0.1280.0150.290.956
Different time×多酚氧化酶2761.48345.21.820.151
Contaminated level磷酸酶258.8832.40.490.846
2.4 主成分分析

为了更好地分析PAHs污染和树种与酶活性之间的复杂关系,对3种土壤酶活性进行了主成分分析。根据提取的主成分个数一般要求累计方差贡献率达到85%的原则[25],共提取了2个主成分,累计贡献率达94.19%。其中第1主成分(PC1)的方差贡献率为87.61%,第2主成分(PC2)为6.58%(图2)。结果表明,L1、L2、L3、L0和CK1、CK2均分布在PC1轴上的正方向,但L3和CK3分布在PC2轴上的负方向。可见,PAHs高浓度污染与低浓度污染对土壤酶活性的影响产生了差异,而且种植植物(L0)和无植物的对照(CK)对酶活性影响差异不大。

图2 植物修复PAHs污染土壤酶活性的主成分分析 Fig. 2 Principal component analysis for enzymatic activities during phytoremediation of PAHs impacted soils

从土壤酶活性的点在影响因子箭头及其延长线的投影点可以表示看出,多酚氧化酶(Po)和磷酸酶(Ph)活性受污染和树种影响较大,过氧化氢酶(Dy)活性受影响较小。

3 讨论

(1)土壤酶作为土壤的组成部分,在物质转化和污染土壤修复等过程中发挥着重要作用。过氧化氢酶是在生物呼吸和有机物的生物化学氧化反应过程中形成的,对土壤有机质分解和转化起着重要作用,同时它能促进 H2O2分解,也常被用作PAHs引起的氧化胁迫生物标志物[26];多酚氧化酶是一种诱导酶,催化土壤中酚类物质氧化生成醌,常作为土壤氧化势的表征[16];磷酸酶属于水解酶,在土壤磷循环中起着催化作用,也常被用来评价土壤管理和土壤污染[27]。土壤酶主要来源于土壤微生物,然而植物在生长过程中不断分泌无机离子和有机化合物,不仅能为土壤微生物生命活动提供能源使其聚集在根系周围,而且能够极大地改变“根-土壤”界面的物理化学环境[28, 29],导致酶数量和种类的改变;同时污染物进入到土壤中会引起土壤中各微生物种群活细胞数量及组成结构的变化,导致土壤中的微生物在生理代谢方面做出响应[30],最终影响到土壤酶活性,因此土壤酶活性与微生物、植物和污染物三者都有关系,使得活性变化较为复杂。本研究发现,同为种植植物下PAHs污染和无污染(L0)的对比(图1),可以看出PAHs对酶有激活作用;从不同污染水平角度分析(表 2),发现3种酶活性均有不同程度的响应;方差分析和主成分分析均表明植物对酶活性的影响小于污染产生的影响。综上所述,在植物修复过程中,土壤酶活性对污染反应更为敏感。

(2)污染土壤的修复过程是一个长期复杂的生态过程[31],土壤从受损状态逐渐复原,必然伴随着一系列生物学指标的变化。本研究结果显示PAHs污染土壤经过植物修复1年结果表明磷酸酶和多酚氧化酶对土壤污染反映敏感,但修复6个月的结果表明过氧化氢酶和多酚氧化酶对土壤污染反映敏感[21],马恒亮[18]等研究认为在35天小麦/苜蓿套作期间,过氧化氢酶和多酚氧化酶的活性可以作为监测关键酶。因此多酚氧化酶可以作为修复过程中土壤环境质量的指示者,过氧化氢酶和磷酸酶可以分别在修复过程不同时间段来指示土壤质量[32]。当然,只采用土壤酶活性作为评价土壤生态毒性的唯一指标还不全面,应结合其他生态毒性评价方法表征污染土壤健康状况[33]

4 结论

(1)树种修复PAHs污染土壤过程中,过氧化氢酶和多酚氧化酶活性表现出逐渐升高又下降的过程,磷酸酶活性表现逐渐降低过程。与种植植物无污染处理相比,表明污染物PAHs对土壤酶有激活作用,方差分析表明,过氧化氢酶活性在不同污染水平间差异显著,3种酶活性在不同时间下差异显著。

(2)土壤酶活性对PAHs污染的响应受到不同树种的影响,但受树种影响差异不显著。

(3)主成分分析表明,在植物修复过程中土壤酶活性对污染反应更为敏感。多酚氧化酶可以作为修复过程中土壤环境质量的指示者,过氧化氢酶和磷酸酶可以分别在修复过程不同时间段来指示土壤质量。

参考文献
[1] Andreoni V, Cavalca L, Rao M A, Nocerino G, Bernasconi S, DellAmico E, Colombo M, Gianfreda L. Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 2004, 57(5):401-412.
[2] Jing Y D, He Z L, Yang X E. Microbial and enzymatic effects of Hg stress in soil of rice-vegetable cabbage rotation system.Journal of Soil and Water Conservation, 2009, 23(3):144-147, 172.
[3] Gianfreda L, Bollag J M. Influence of natural and anthropogenic factors on enzyme activity in soil. In: Stotzky G, Bollag J M, editors. Soil Biochemistry, vol. 9. New York:Marcel Dekker, 1996. 123-94.
[4] Nannipieri P, Kandeler E, Ruggiero P. Enzyme activities and microbiological and biochemical processes in soil. In: Burns RP, Dick RP, editors. Enzymes in the Environment Activity, ecology and Applications. New York: Marcel Dekker; 2002.1-33.
[5] Liu M Y. Chang Q R, Qi Y B, An S S. Features of soil enzyme activity under different land uses in Ningnan Mountain area. Chinese Journal of Eco-Agriculture, 2006,14(3):67-70.
[6] Qiu L P, Zhang X C, Zhang J A. Distribution of nutrients and enzymes in Loess Plateau soil aggregates after long-term fertilization. Acta Ecologica Sinica,2006,26(2):364-372.
[7] Sardar A C, Muhammad I K, Shen C F, Tang X J, Muhammad F, Chen L, Zhang C K, Chen Y X. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. Journal of Hazardous Materials, 2010,177 (3):384-389
[8] Chen L, Zhang C K, Chen Y X. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. Journal of Hazardous Materials, 2010, 177:384-389.
[9] Zhang J, Zhang H W, Cong F, Zhang Q, Li X Y, Su Z C, Zhang C G. Effects of long-term PAHs-containing wastewater irrigation on low land rice soil enzyme activities and m icrobial populations. Chinese Journal of Ecology,2007,26(8): 1193-1198.
[10] Wyszakowska Y, Kucharski J, Waldowska E. The influence of diesel oil contamination on soil enzymes activity. ROSTLINN V Y ' ROBA, 2002,48(2):58-62.
[11] Gunsalus I C, Pederson T C, S G Sligar. Oxygenase-catalyzed biological hydroxylations. Annual Review of Biochemistry, 1975, 44: 377-407.
[12] Verrhiest G J, Clément B, Volat B, Montuelle B, Perrodin Y. Interactions between a polycyclic aromatic hydrocarbon mixture and the microbial communities in a natural freshwater sediment. Chemosphere, 2002, 46(2): 187-196
[13] Esposito E, Manfio G, Villas S, Antunes R E, Paulillo S M, Souza J A..Microbiological strategies on remediation of contaminated soil with organochlorides. In: Esposito E ed. Proceedings of the First National Meeting of Environmental Applied Microbiology Campinas, S. P. Brazil: CD-Rom Paper. 1997,1:80.
[14] Kucharski J, Jastrzebska E, Wyszkowska J, Hlasko A. Effect of pollution with diesel oil and leaded petrol on enzymatic activity of the soil. Zeszyty Problemowe Postepow Nauk Rolniczych, 2000,472: 457-464.
[15] Baran S, Bielinska J E, Oleszczuk P. Enzymatic activity in an air field soil polluted with polycyclic aromatic hydrocarbons. Geoderma, 2004, 118: 221-232.
[16] Gianfreda L, Rao M A, Piotrowska A, Palumbob G, Colombob C. Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Science of the Total Environment, 2005, 341: 265-279.
[17] Muratova A, Hübner Th, Tischer S, Turkovskayaa O, Mderc M, Kuschkc P. Plant-rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. International Journal of Phytoremediation, 2003, 5(2):137-151.
[18] Ma H L, Zhan X H, Zhang X B, Zhou L X. Enzymatic activities of Phenanthrene contaminated soil in wheat and clover intercropping system. Environmental Science, 2009, 30(12):3684-3690.
[19] Wang H J, Zhu N W, Yang C, Dang Z, Wu P X. Effect of soil enzyme activities during bioremediation of crude oil-contaminated. Journal of Agro-Environment Science Soil, 2013, 32(6):1178-1184.
[20] Nielsen T, Jrgensen H E, Larsen J C, Poulsen M. City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects. Science of the Total Environment, 1996, 189/190:41-49.
[21] Zhu F, Tian D L, Yan W D, Wang G J, Liang X C, Zheng W. The response of soil enzymatic activity to PAHs contamination for four urban afforestation species. Acta Ecologica Sinica, 2008,28(9):4195-4202.
[22] Guan S Y. Soil enzyme and its study methods. Beijing: China Agriculture Press, 1986. 309-327.
[23] Liu G S. Soil physical and chemical analysis & description of soil profiles. Beijing: Standards Press of China, 1996. 24-34.
[24] He W X, Huang Y F, Zhu M M, Zhang Y P. Effect of Hg and Cd on soil urease activity. Acta Pedologica Sinica,2002,39(3): 412-420.
[25] Hao L R, Fan Y, Hao Z O. SPSS PracticalStatisticsAnalysis. Beijing: China Water Power Press, 2003.
[26] Lionetto M G, Caricato R, Giordano M E. Integrated use of biomarkers (acetylcholinesterase and antioxidant enzymes activities)in Mytilus galloprovincialis and Mullus barbatus in an Italian coastal marine area. Mar Pollut Bull,2003,46:324-330.
[27] Baran S, Bielinska J E, Oleszczuk P. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma, 2004,118: 221-232.
[28] Singh J S, Raghubanshi A S, Singh R S, Srivastava S C. Microbial biomass acts as a source of plan nutrients in dry tropical forest and savanna. Nature, 1989, 338: 499-500.
[29] Liu Z Y,Li L M,Shi W M. The research method of rhizosphere,Nanjing: Jiangsu Science and Technology Press,1997,284.
[30] Li H, Chen G X, Yang T, Zhang C G. Impacts of petroleum-containingwastewater irrigation on microbial population and enzyme activities in paddy soil of Shenfu irrigation area. Chinese Journal of Applied Ecology, 2005, 16 (7):1355-1359.
[31] Song Y F, Song X Y, Zhang W, Zhou Q X, Sun T H. Issues concerned with the bioremediation of contaminated soils. Environmental Science, 2004, 25(2):129-133.
[32] Margesin R, Walder G, Schinner F. The impact of hydrocarbon remediation (diesel oil and Polycyclic Aromatic Hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnologica, 2000, 20(3/4):313-333
[33] Tang Y S, Wei C F, Yan T M, Yang L Z, Ci E. Biological indicator of soil quality: a review. Soils,2007, 39 (2): 157-163.
[2] 荆延德, 何振立, 杨肖娥. 稻菜轮作制下汞胁迫的土壤微生物学和酶学效应. 水土保持学报,2009, 23(3):144-147, 172.
[9] 张晶, 张惠文, 丛峰, 张勤, 李新宇, 苏振成, 张成刚. 长期灌溉含多环芳烃污水对稻田土壤酶活性与微生物种群数量的影响.生态学杂志,2007,26(8): 1193-1198
[18] 马恒亮, 占新华, 张晓斌, 周立祥. 小麦/苜蓿套作对菲污染土壤酶活性的影响.环境科学, 2009, 30(12):3684-3690.
[19] 王华金, 朱能武, 杨崇, 党志, 吴平霄. 石油污染土壤生物修复对土壤酶活性的影响. 农业环境科学学报, 2013, 32(6):1178-1184.
[21] 朱凡, 田大伦, 闫文德, 王光军, 梁小翠, 郑威. 四种绿化树种土壤酶活性对不同浓度多环芳烃的响应. 生态学报, 2008,28(9):4195-4202.
[22] 关松荫. 土壤酶及其研究方法. 北京:中国农业出版社,1986.309-327.
[23] 刘光崧. 土壤理化性质与剖面描述. 北京:中国标准出版社. 1996.24-34.
[24] 和文祥, 黄英锋, 朱铭莪, 张一平. 汞和镉对土壤脲酶活性的影响.土壤学报, 2002,39(3): 412-420.
[25] 郝黎仁,樊元,郝哲欧. SPSS实用统计分析.北京:中国水利水电出版社, 2003,284.
[29] 刘芷宇,李良谟, 施卫明.根际研究法. 南京: 江苏科学与技术出版社, 1997,220.
[30] 李慧,陈冠雄,杨涛,张成刚. 沈抚灌区含油污水灌溉对稻田土壤微生物种群及土壤酶活性的影响.应用生态学报, 2005,16(7): 1355-1359.
[31] 宋玉芳, 宋雪英, 张薇, 周启星, 孙铁珩. 污染土壤生物修复中存在问题的探讨.环境科学, 2004, 25(2):129-133.
[33] 唐玉姝, 魏朝富, 颜廷梅, 杨林章, 慈恩. 土壤质量生物学指标研究进展. 土壤, 2007, 39 (2): 157-163.