生态学报  2014, Vol. 34 Issue (24): 7329-7337

文章信息

董春华, 曾闹华, 高菊生, 刘强, 徐明岗, 文石林
DONG Chunhua, ZENG Naohua, GAO Jusheng, LIU Qiang, XU Minggang, WEN Shilin
长期有机无机肥配施对稻田杂草生长动态的影响
Effects of long-term organic and inorganic fertilizer combined application on weed growth dynamic in paddy field
生态学报, 2014, 34(24): 7329-7337
Acta Ecologica Sinica, 2014, 34(24): 7329-7337
http://dx.doi.org/10.5846/stxb201303140422

文章历史

收稿日期:2013-03-14
网络出版日期:2014-03-19
长期有机无机肥配施对稻田杂草生长动态的影响
董春华1, 2, 3, 曾闹华3, 高菊生2, 3 , 刘强1, 徐明岗3, 文石林2, 3    
1. 湖南农业大学资源环境学院, 长沙 410128;
2. 中国农业科学院农业资源与农业区划研究所 祁阳农田生态系统国家野外试验站, 祁阳 426182;
3. 中国农业科学院农业资源与农业区划研究所, 农业部作物营养与施肥重点开放实验室, 北京 100081
摘要:利用中国农业科学院红壤实验站红壤稻田长期定位试验,于2011年研究了在以无机肥(化肥NPK)与有机肥(M)氮磷钾养分等量条件下,长期有机无机肥配施水稻生育期间杂草种类和生物量变化.结果表明:30a后,早稻和晚稻施肥处理中:PK+M处理下杂草种类最多,NPK+M处理下杂草种类和优势杂草种类较少,且种类数量稳定,早稻和晚稻杂草种类数量前者比后者分别高出19.7%和9.8%;施肥处理中:两季杂草总生物量NPK+M处理最高,NP+M处理最低,且NPK+M、NK+M、PK+M和CK处理比NP+M处理分别高出31.3%、26.5%、8.3%和5.6%,早稻NPK+M处理杂草总生物量和浮生杂草总生物量最多,NK+M处理湿生杂草总生物量最多,晚稻NK+M处理杂草总生物量和湿生杂草总生物量最多,NPK+M处理浮生杂草总生物量最多;土壤碱解氮和有效磷与杂草总生物量、湿生杂草总生物量、浮生杂草总生物量显著正相关(相关系数依次分别为0.508*和0.578* *、0.552*和0.453*、0.410*和0.802* *),pH值与三者显著负相关(相关系数依次分别为-0.516*、-0.531*和-0.698*).土壤pH受土壤有效磷和碱解氮及其他因子的共同作用对杂草总生物量产生影响.通过施肥措施调节土壤适宜 pH 及碱解氮和有效磷含量,能有效调控农田中湿生和浮生杂草生长,使杂草种类和生物量在农业生产中达到有益平衡.
关键词长期试验    有机无机配施    稻田    杂草动态    
Effects of long-term organic and inorganic fertilizer combined application on weed growth dynamic in paddy field
DONG Chunhua1, 2, 3, ZENG Naohua3, GAO Jusheng2, 3 , LIU Qiang1, XU Minggang3, WEN Shilin2, 3    
1. College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China;
2. Qiyang Agro-ecosystem of National Field Experimental Station, Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Chinese Academy of Agricultural Sciences, Qiyang country 426182, China;
3. Key Laboratory of Crop Nutrition and Fertilization, Ministry of Agriculture of China, Institute of Agricultural Resources and Regional Planning CAAS, Beijing 100081, China
Abstract:Long-term located fertilization test has been conducted to evaluate how fertilization affects the growth and yield of crops particularly rice over 30 years in the Red Soil Field Experimental Station, Chinese Academy of Agricultural Sciences, Qi Yang, China. However, how and why However, how and why fertilization influences the growth of crops in the field particularly in the paddy field has not been assessed. Consequently, an investigation was carried out in a double-rice paddy field to study the species and biomass of weeds found in rice (Oryza sativa L.) growth season after 30-year combined application of organic and chemical fertilizer with the same application rates of nitrogen (N), phosphorus (P), and potassium (K) contained in organic and chemical fertilizer in 2011. Results indicated that in both rice growth season among all fertilizer treatments, compared with other treatments, long-term application of PK+M resulted in the most species number of weeds, and the species number of weeds in early rice was 19.7% higher than that in late rice, the combined application of NPK+M showed in the fewest species number of weeds which was stable in number, and the species number of weeds in early rice was 9.8% higher than that in late rice. In the current investigation, results also demonstrated in the fewest species number of dominant weeds. Among all fertilizer treatments, the highest total biomass of weeds was founding the treatment of the combined application of NPK+M while the lowest biomass was obtained in the treatment of the combined application of NP+M in both rice growth season, subsequently, the biomass in the treatments of NPK+M, NK+M, PK+M and CK was 31.3%, 26.5%, 8.3% and 5.6% higher than the treatment of NP+M, respectively, The highest total biomass of weeds and floating weeds were found in the treatment of combined application of NPK+M while the highest total biomass of wet weeds in early rice growth season was viewed in the treatment of the combined application of NK+M, and the highest total biomass of weeds and wet weeds was found in the treatment of the combined application of NK+M, comparatively, the highest total biomass of floating weeds was obtained in the treatment of the combined application of NPK+M in late rice growth season. In the present study, soil alkali-hydrolyzable N and available P were found to be significantly positively correlated with total dry biomass of weeds, wet weeds and floating weeds (r=0.508 and r=0.578, r=0.552 and r=0.453, r=0.410 and r=0.802, the same of P <0.05, respectively), whereas they were found negative correlation with soil pH (r=-0.516, r=-0.531 and r=-0.698, the same of P <0.05, respectively). Soil pH was commonly affected by the soil available P, alkali-hydrolyzable N and other factors, where soil directly affects on the total dry biomass of weeds. By fertilization to maintain proper soil pH and contents of alkali-hydrolyzable N and available P, the growth of wet weeds and floating weeds in red soil paddy of south China could effectively be managed, to keep the beneficial balance between the weed species and biomass in agricultural practice.
Key words: long-term located fertilization experiment    combined application of organic and chemical fertilizer    red paddy field    weeds dynamic    

杂草是农业生态系统的重要组成部分,与作物在光照和水肥等方面竞争激烈,是制约作物产量的重要因子[1, 2, 3, 4]。人们过去对杂草的研究更多地注重其危害性和防治途径,甚至对杂草予以根除,造成其生物多样性大大降低。近年来,杂草的生物多样性在农业生态系统中的作用逐渐得到重视[5, 6]。有研究表明:保持农田一定的杂草生物多样性,在保护天敌、控制害虫、防止土壤侵蚀、促进养分循环、维持生态系统功能的正常发挥和保持生态平衡等方面有着不可忽视的作用[7, 8]

农田管理措施能对田间杂草的种群组成及其生物多样性产生影响[9, 10]。其中,施肥作为重要的农田管理措施之一,对农田生物多样性及其杂草组成的影响,国内报道较少,国外研究结果也很不一致[11, 12, 13, 14]

研究长期不同施肥条件下农田杂草种群组成及其生物多样性的变化意义重大[15],在更好地为田间杂草的管理提供理论依据的同时,找到既能让作物高产,又能让田间维持较高生物多样性的施肥方法。李昌新等[16]研究表明,有机肥施用和秸秆还田对冬闲田春冬季杂草群落调控效应显著,而且调控效应强弱与施肥时期和方式关系密切。李儒海等[17]和张学友等[18]研究证实,单施化肥(平衡施用N、P、K肥)、化肥配施猪粪、化肥配施夏季、秋季和全年秸秆处理均能显著改变田间杂草群落的组成,改变某些杂草在群落中的优势地位,从而抑制其发生危害程度。黄爱军等[19]研究表明,通过合理施肥和秸秆还田措施,可对稻油复种模式中春季杂草群落进行有效调控。南方是我国双季稻粮食主产区,农业生态环境开发潜力巨大。为此,本文通过对中国农业科学院红壤实验站双季稻区有机无机肥配施的长期定位试验进行研究,通过监测不同有机无机配施模式下早晚稻杂草群落特征,以期阐明长期有机无机肥配施对南方红壤稻田生态系统的影响,并为稻田杂草多样性的管理提供理论依据和技术参考。

1 材料与方法 1.1 自然条件

试验地点设在湖南省祁阳县官山坪中国农业科学院红壤试验站内,东经111°52′23″,北纬26°45′12″,海拔高度约120 m,年平均温度18.0 ℃,最高温度36.6—40 ℃,≥10.0 ℃的积温5 600 ℃,年降雨量1 250 mm,年蒸发量1 470 mm,无霜期约为300 d,年日照时数1 610—1 620 h,太阳辐射量4 550 MJ/ m2,温、光、热资源丰富。

1.2 供试土壤与试验设计

试验始于1982年,供试土壤为第四纪红土母质发育稻田,土壤质地为壤质粘土,耕层土壤属中低肥力水平。试验开始时土壤肥力状况:有机质含量为19.8 g/ kg,全氮、全磷、全钾含量分别为1.44、0.48、14.20 g/ kg,速效氮、速效磷、速效钾含量分别为82.8、9.6、65.9 mg/ kg,pH值为5.2。

试验选取5个处理:①化肥氮磷钾配施有机肥(NPKM);②化肥氮磷配施有机肥(NPM);③化肥氮钾配施有机肥(NKM);④化肥磷钾配施有机肥(PKM);⑤不施肥(CK)。小区长面积15 m,宽1.8 m,3次重复,随机区组排列,小区均用60 cm(土壤表面以上20 cm,土壤表面以下40 cm)的水泥埂隔离。作物为一年两熟双季稻,肥料施用量见表 1。早稻和晚稻施肥量相等,施肥量为:尿素(N 46%)157.5 kg/ hm2,过磷酸钙(P2O5 12%)450.4 kg/ hm2,氯化钾(K2O 60%)56.3 kg/ hm2,有机肥为腐熟的牛粪22 500 kg/ hm2(折合养分含量:N 72.0 kg/ hm2,P2 O5 56.3 kg/ hm2,K2 O 33.8 kg/ hm2),牛粪养分含量为多年测定的平均值。所有肥料均作底肥一次施入。试验水稻品种为当地常用品种,3—5a更换1次。试验小区采取人工除草,不施用除草剂。

表 1 试验处理及肥料施用量 Table 1 Treatments with different fertilizers (kg/hm2)
处理Treatments肥料施用量 Amount of fertilizer applied*肥料养分含量 Nutrients content in fertilizer*
化肥施用量Chemical fertilizer applied*有机肥用量*Manure applied NP2O5K2O
NP2O5K2O
*每季水稻施肥量; CK: 对照 control, N: 尿素中氮 in urea, P: 过磷酸钙中磷 in calcium superphosphate, K: 氯化钾中钾 in potassium chloride, M: 腐熟的牛粪 decomposed cow dung
CK0000000
M00022 50072.556.333.8
PKM056.333.82250072.5112.667.6
NKM72.5033.82250014556.367.6
NPM72.556.3022500145112.633.8
NPKM72.556.333.822500145112.667.6
1.3 测定项目及方法

于2011年早稻和晚稻生育期间分别采集始分蘖期、分蘖盛期和成熟期3个生育期0—20 cm耕层土壤样测定项目为碱解氮、速效磷、速效钾含量及pH值。早稻土壤样品采集时间分别为5月27日、6月18日和7月15日,晚稻分别为8月15 日、9月10日和10月11日。

在早稻和晚稻上述生育时期,每小区采集有代表性的0.25 m2水面及土壤上杂草样方4个,计数杂草种类后,分为湿生杂草和浮生杂草分别称取干物质量。湿生杂草为生长在稻田土壤上的杂草,维持一定土壤含水量即可生存,主要有鸭舌草(Monochoria vagi-nalis)、牛毛毡(Eleocharis yokoscensis)、异型莎草(Cyperus difformis)、节节菜(Rotala indica)、稗草(Echinochloa crusgalli)、绿藻(Chlorella)和空心莲子草(Alternanthera philoxcroides),浮生杂草为生长在稻田水中的杂草,主要有浮萍(Lemna minor)和四叶萍(Marsilea quadrifolia)[2]

碱解氮用扩散法,速效磷用Olsen法,pH采用水土比为2.5进行,速效钾用1 mol/ L NH4OAc 浸提-火焰光度法[20]

1.4 分析方法

数据处理和分析采用Excel 2003、SPSS13.0;不同施肥处理间采用LSD 法进行差异显著性检验(α=0.05)。

2 结果与分析 2.1 长期不同施肥对稻田杂草生长动态的影响 2.1.1 对稻田杂草种类的影响

长期施肥30年后稻田杂草变化明显(表 2)。从表 2可知,早稻杂草种类CK处理最多,其次是NKM处理,NPKM处理最少,CK、PKM、NPM和NKM处理比NPKM种类数量分别高出31.1%、16.4%、13.1%和19.7%,仅NPKM处理杂草种类数量在早稻生育过程中呈下降趋势,其他处理呈大致成先升后降趋势;晚稻杂草种类CK处理最多,其次是NKM处理,NPKM、NKM、NPM和PKM处理分别是CK处理的76.3%、91.3%、86.3%和88.8%,各处理杂草种类数量在晚稻生育过程中大致呈上升趋势。NKM处理杂草种类数量早晚稻都高于其他施肥处理,这说明减少化肥磷的用量可以增加稻田杂草种类,NPKM处理杂草种类数据量早晚稻变化不大,且种类数量非常低,这说明均衡施肥能降低杂草种类,并使杂草种类数量维持稳定。

表 2 2011年水稻生育期田间稻田杂草种类 Table 2 Weed species number at different growing stages of rice in 2011
季别Season处理Treatments杂草种类数Weed species number平均Mean优势杂草 Dominant weed species
分蘖始期Initial tillering stage分蘖盛期Active tillering stage成熟期Maturing stage 分蘖始期Initial tillering stage分蘖盛期Active tillering stage成熟期Maturing stage
*NPKM: 化肥氮磷钾配施有机肥, NKM: 化肥磷钾配施有机肥, NPM: 化肥氮磷配施有机肥, PKM: 化肥磷钾配施有机肥, CK: 不施肥
早稻Early riceNPKM6.7±1.26.0±0.05.7±1.26.1±0.5浮萍L. minor四叶萍M. quadrifolia四叶萍、鸭舌草M. quadrifolia, M. vaginalis
NKM7.0± 1.08.0±0.07.0±1.07.3±0.6浮萍、矮慈姑L. minor, S p Miq鸭舌草、牛毛毡M. vaginalis, E. yokoscensis鸭舌草M. vaginalis
NPM6.0±1.08.7±0.66.0±1.06.9±1.6浮萍、牛毛毡L. minor, E. yokoscensis鸭舌草、牛毛毡M. vaginalis, E. yokoscensis鸭舌草M. vaginalis
PKM7.3±0.67.7±1.26.3±0.67.1±0.7浮萍、矮慈姑L. minor, S p Miq四叶萍、牛毛毡M. quadrifolia, E. yokoscensis四叶萍、鸭舌草M. quadrifolia, M. vaginalis
CK7.7±0.67.7±0.68.7±0.68.0±0.6绿藻Chlorella节节菜、牛毛毡R. indica, E. yokoscensis节节菜、牛毛毡R. indica, E. yokoscensis
晚稻Late riceNPKM5.3±1.26.3±0.66.7±0.66.1±0.7四叶萍M. quadrifolia四叶萍M. quadrifolia四叶萍M. quadrifolia
NKM6.7±0.66.3±2.17.0±0.06.7±0.4四叶萍、鸭舌草M. quadrifolia, M. vaginalis 鸭舌草M. vaginalis鸭舌草、狗牙根M. vaginalis, B. grass
NPM4.7±0.66.0±1.07.3±0.66.0±1.3四叶萍、鸭舌草M. quadrifolia,M. vaginalis四叶萍M. quadrifolia四叶萍、狗牙根M. quadrifolia, B. grass
PKM4.7±1.26.3±0.67.0±1.06.0±1.2四叶萍、鸭舌草M. quadrifolia,M. vaginalis四叶萍M. quadrifolia四叶萍M. quadrifolia
CK8.0±0.08.7±0.68.7±0.68.5±0.4牛毛毡E. yokoscensis节节菜R. indica节节菜、狗牙根R. indica, B. grass
2.1.2 对稻田杂草干物质量的影响

图 1图 7表示的是2011年稻田杂草干物质量的变化。由图 1可知,各施肥处理下,早稻以NPKM处理杂草总干物质量高,NPM处理最低,NPKM、NKM、NPM和PKM处理分别比CK处理高出117.4%、83.5%、61.9%和74.2%;晚稻NKM处理杂草总干物质量高,NPM处理最低,NPKM、NKM、NPM和PKM处理分别是CK处理的76.5%、87.0%、60.1%和65.7%;两季杂草总干物质量以NPKM处理最高,NPM处理最低,NPKM、NKM、PKM和CK处理比NPM处理分别高出31.3%、26.5%、8.3%和5.6%。各施肥处理下,杂草总干物质量都以NPM处理最低,说明长期施肥状态下,钾素的缺乏对杂草总生物量的抑制最大,两季杂草总干物质量NPKM处理最高,说明均衡施肥能提高杂草总生物量。

图 1 不同季别杂草总干物质量 Fig. 1 Total weeds dry biomass in deferent rice seasons *NPKM: 化肥氮磷钾配施有机肥, NKM: 化肥磷钾配施有机肥, NPM: 化肥氮磷配施有机肥, PKM: 化肥磷钾配施有机肥, CK: 不施肥;同一柱状图上不同字母表示差异显著

图 2可知,早稻各生育时期杂草干物质总量NPKM处理最高,CK处理最低,且在始分蘖期、分蘖盛期和成熟期NPKM处理杂草干物质总量比CK处理分别高出76.8%、289.7%和63.5%。由图 3可知,晚稻始分蘖期、分蘖盛期和成熟期杂草干物质总量最低的分别是PKM、NPM和PKM处理,各生育时期CK处理均最高,且同一生育时期比PKM、NPM和PKM处理分别高出63.8%、68.6%和119.1%。

图 2 早稻不同生育时期杂草干物质总量 Fig. 2 Total weeds dry biomass in three stages of early rice
图 3 晚稻不同生育时期杂草干物质总量 Fig. 3 Total weeds dry biomass in three stages of late rice

不同处理下稻田湿生杂草干物质量(图 4图 5)和浮生杂草干物质量(图 6图 7)差异明显。各施肥处理中,早稻和晚稻各生育时期湿生杂草干物质量都以NKM处理最高,PKM处理普遍最低,说明磷肥和氮肥的施用与湿生杂草生物量关系密切;各施肥处理中,早稻和晚稻各生育时期浮生杂草干物质量都以NKM处理最低,NPKM处理最高,其次是PKM处理,这说明有机无机平衡施肥中,磷素和氮素与稻田浮生杂草生长关系密切。

图 4 早稻不同生育时期湿生杂草干物质总量 Fig. 4 Wet weeds dry biomass in three stages of early rice
图 5 晚稻不同生育时期湿生杂草干物质总量 Fig. 5 Wet weeds dry biomass in three stages of late rice
图 6 早稻不同生育时期浮生杂草干物质总量 Fig. 6 Floating weeds dry biomass in three stages of early rice

通过比较图 4图 6图 5图 7,同一时期湿生杂草生物总量与浮生杂草生物总量呈消长变化,这充分说明浮生杂草与湿生杂草间抑制和竞争作用激烈。

图 7 晚稻不同生育时期浮生杂草干物质总量 Fig. 7 Floating weeds dry biomass in three stages of late rice

方差分析结果(表 3)表明,施肥和生育时期2个因素都对稻田杂草生物量产生显著影响,且施肥与生育时期之间有着显著的交互作用。其中以生育时期对稻田杂草总干物质量的影响最大。

表 3 施肥、水稻季别、生育时期3因素对杂草干物质总量的影响 Table 3 Effects of fertilization, rice season and growing stages on total dry mass of weeds
偏差来源 Source偏差平方和 Type III Sum of Squaresdf均方Mean Square效应项与误差项均方比FP
a. R2=0.866 (修正R2=0.542); *F:施肥 Fertilizer;S:水稻季别 Rice season;G:生育时期 Growing stage
F2563.42988.42.670.0377
G18531.2118531.2559.700.0000
S334.2655.71.680.2086
F×G1303.92652.019.690.0002
F×S94.7194.72.860.1165
G×S264.71222.10.670.7538
误差Error500.5683.42.520.0817
总变异Total65.4232.70.990.4008
2.2 长期不同施肥后土壤有效养分及pH与杂草生长的关系

相关分析(表 4)表明,土壤不同养分含量变化对杂草生长有显著影响。土壤碱解氮与杂草总干物质量显著正相关,有效磷与杂草总干物质量极显著正相关,速效钾、pH与杂草总干物质量极显著负相关;土壤中速效氮含量对湿生杂草生长的促进作用较大,浮生杂草对土壤有效磷含量变化非常敏感,增加土壤有效磷含量能促进浮生杂草生长,但pH与浮生杂草干物质量极显著负相关。

表 4 早稻和晚稻生育期间土壤有效养分及pH与杂草干物质量的相关关系 Table 4 Correlations of available nutrient contents (mg/kg) and soil pH with dry mass of weeds (g/ 0.25m2) during early and late rice season
土壤养分Soil nutrient杂草总干物质量Total weed dry massr湿生杂草干物质量Wet weed dry massr浮生杂草干物质量Floating weed dry massr
碱解氮Alkali-hydrolyzable Ny=3.3757x+101.440.508*y=2.3246x+120.240.552*y=2.2185x+135.620.410*
有效磷Available Py=2.6422x+8.61610.578* *y=2.6534x+25.6090.453*y=6.724x+2.55780.802* *
速效钾Available Ky=-2.6397x+224.11-0.441* *y=-4.3701x+227.19-0.650* *y=0.3276x+165.710.039
pHy=-0.0142x+6.228-0.516* *y=-0.0143x+6.096-0.531*y=-0.0478x+6.2517-0.698* *

表 5可知,直接通径系数以土壤pH和碱解氮较大,表明二者对杂草总干物质量直接影响最大。pH值对杂草总干物质量的影响为负效应,但经过其他因子影响,对杂草总干物质量的间接效应皆起到了正作用,而且其间接效应最大,但最终表现为极显著负效应;土壤碱解氮和有效磷对杂草总干物质量的直接和间接影响皆为正效应,且影响作用较大。因此调控土壤pH值和碱解氮、有效磷含量能有效控制稻田杂草生物量。

表 5 土壤有效养分及pH对杂草总干物质量的影响 Table 5 Effects of available nutrient contents (mg/kg) and pH of paddy soil on dry mass (g/0.25m2) of weeds
因素Factorr直接通径Direct path间接通径Indirect path
碱解氮Alkali-hydrolyzable N有效磷Available KpH合计total
碱解氮Alkali-hydrolyzable N0.5080.2170.1114-0.0004-0.08870.0222
有效磷Available P0.5780.3290.16890.0794-0.18670.0616
速效钾Available K-0.441-0.0690.0001-0.01670.0074-0.0092
pH-0.516-0.3430.14020.19460.03660.3714
3 讨论

牛粪等有机肥养分含量丰富,但肥效缓慢,结合无机化肥施用,在保证作物前期养分供给的同时更能体现其养分的后继供给能力,然而农业生产中偏施无机氮肥和磷肥,忽视钾肥,以及过多施用化肥而忽视有机肥,造成水稻农田养分不平衡的现象普遍存在[21]

本试验进行30a后,早稻和晚稻NPKM处理下不仅杂草种类少,而且早晚稻杂草种类数量较稳定,优势杂草种类较少,这可能与施肥中无机化肥养分是否平衡有关,NKM处理中的杂草种类数量就明显增加,这个结果与前人的研究基本一致[17]。施肥处理中,NPKM处理两季杂草生物量最高,其次是NKM处理,最低是NPM处理,这说明养分平衡施肥能提高杂草总生物量,不施化肥磷对杂草总量影响较少,不施化肥钾对杂草总量抑制较大;晚稻杂草总干物质量以CK处理最高,这可能是因为,CK处理下水稻长势稀疏,透光性强,增加了杂草的光合作用而导致杂草生物量增加,这充分说明,光照对杂草生物量增加有显著效应,相关分析结果显示,土壤氮素更多地影响湿生杂草生长,土壤磷素极显著影响浮生杂草生长,同时,从图 1图 7中,也可以发现浮生杂草与湿生杂草的强烈竞争更主要的体现在光照方面。不同处理不同生育期杂草种类数量不一样,出现不同优势杂草群落,杂草生物量也不一样,这可能是因为不同施肥模式下农田生态环境和养分状况等不同,进而影响作物与杂草以及杂草与杂草之间的竞争关系,而使杂草群落趋势演变不一致,同时也可能是因为杂草对养分利用具有选择性,进而影响杂草生长,也可能与杂草生育周期有关[22, 23],当然生育期间的气候条件差异也是引起杂草干物质量差异的原因之一,尤其是杂草之间及杂草与水稻之间对光照的竞争值得进一步研究。

本研究借助长期定位试验,发现长期有机无机配施后,土壤pH值与速效养分都与杂草总干物质量显著相关,与湿生杂草干物质量显著相关,尤其是土壤pH值和速效磷与浮生杂草干物质量极显著相关,这与前人的研究有相似之处[24, 25]。通径和逐步回归分析表明,土壤碱解氮和速效磷对稻田杂草干物质量的影响为直接正效应,通过其他因子影响后还是起到了正效应;土壤pH值的直接作用为负效应,通过其他因子的影响间接起到了正效应。因此,在农业生产中,采用各种措施维持土壤适宜pH值及有效磷和碱解氮含量,能有效控制稻田湿生杂草和浮生杂草的发生,使杂草与作物之间的生长达到一个有益的平衡。

致谢: 感谢 刘更另 院士的帮助!研究得到中国农业科学院农业资源与农业区划研究所黄鸿翔研究员等的支持,中国农业科学院农业环境与可持续发展研究所曾希柏研究员帮助写作,特此致谢。

参考文献
[1] Lin X, Wang F, Wang C F, Lin C, Li Q H, He C M, Li Y. Effects of long-term fertilization on weed community characteristics and carbon, nitrogen and phosphorus stoichiometry during winter-spring season in yellow-clay paddy fields of South China. Chinese Journal of Eco-Agriculture, 2012, 20(5): 573-577.
[2] Shen P, Gao J S, Xu M G, Li D C, Niu D K, Qin D Z. Effects of long-term applying sulfur-and chloride-containing chemical fertilizers on weed growth in paddy field. Chinese Journal of Applied Ecology, 2011, 22(4): 992-998.
[3] Gajei P R, Gill K S, Singh R, Gill B S. Effect of pre-planting tillage on crop yields and weed biomass in a rice-wheat system on a sandy loam soil in Punjab. Soil and Tillage Research, 1999, 52(1-2): 83-89.
[4] Li Z Q, Yin L C, Zhou W J, Zhang Y Z, Xie J M. Influence of different agricultural practices on weed community composition of late rice in redlish rice-cropping ecosystems. Research of Agricultural Modernization, 2008, 29(2): 239-241, 245-245.
[5] Mclaughlin A, Mineau P. The impact of agricultural practices on biodiversity. Agriculture, Ecosystems and Environment, 1995, 55(3): 201-212.
[6] Zhang F S. Plant nutrition Ecological Physiology and Genetics. Beijing: China Science and Technology Press, 1993.
[7] Altieri M A. How best can we use biodiversity in agroecosystems. Outlook on Agriculture, 1991, 20(1): 15-23.
[8] Chen X, Wang Z S, Tang J J. The ecological functions of weed biodiversity in agroecosystem. Chinese Journal of Ecology, 2000, 19(4): 50-52.
[9] Holzner W. Weed species and weed communities. Vegetatio, 1978, 38(1): 13-20.
[10] Frick B, Thomas A G. Weed surveys in different tillage systems in southwestern Ontario field crops. Canadian Journal of Plant Science, 1992, 72(4): 1337-1347.
[11] Mountford J O, Lakhani K H, Kirkham F W. Experimental assessment of the effects of nitrogen addition under hay-cutting and aftermath grazing on the vegetation of meadows on a somerset pear moor. Journal of Applied Ecology, 1993, 30(2): 321-332.
[12] Theaker A J, Boatman N D, Froud-Williams R J. The effect of nitrogen fertiliser on the growth of Bromus sterilis in field boundary vegetation. Agriculture, Ecosystems and Environment, 1995, 53(2): 185-192.
[13] Stevenson F C, Anne L, Simard R R, Angers D A, Pageau D, Lafond J. Weed species diversity in spring barley varies with crop rotation and tillage, but not with nutrient source. Weed Science, 1997, 45(6): 798-806.
[14] Andersson T N, Milberg P. Weed flora and the relative importance of site, crop, crop rotation, and nitrogen. Weed Science, 1998, 46(1): 30-38.
[15] Johnston A E. The significance of long-term experiments to agricultural research // The Askov Long-Term Experiments on Animal Manure and Mineral Fertilizers. 100th Anniversary Workshop, Askov Experimental Station, 8th-10th September. 1994: 19-23.
[16] Li C X, Zhao F, Rui W Y, Hang Q R, Yu X C, Zhang W J. The long-term effects of returning straw and applying organic fertilizer on weed communities in a paddy field with a double rice cropping system. Acta Prataculturae Sinica, 2009, 18(3): 142-147.
[17] Li R H, Qiang S, Qiu D S, Chu Q H, Pan G X. Effects of long-term fertilization regimes on weed communities in paddy fields under rice-oilseed rape cropping system. Acta Ecologica Sinica, 2008, 28(7): 3236-3243.
[18] Zhang X Y, Jin L H, Chen B S, Han J, Mao Y X. Study on effects of N. P. K. fertilizer on weeds growing. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2003, 31(2): 109-111.
[19] Huang A J, Zhao F, Chen X F, Zhang L, Yang F, Zhang W J. Long-term effects of straw returning & fertilization on community characteristics of spring weed in rice-rape seed cropping system. Resources and Environment in the Yangtze Basin, 2009, 18(6): 515-521.
[20] Lu R K. Analysis Methods of Soil Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press, 2000: 107-109, 147-149, 150-152, 166-168, 179-181, 191-195.
[21] Zhou Y M, Yu X B, Yan B Y. Balance and change trend of cropland soil nutrients in Jiangxi province during 1949 to 2005. Acta Agriculturae Universitatis Jiangxiensis, 2008, 30(5): 919-926.
[22] Zhang L, Ouyang Z, Dong Y H, Zhang Z C, Pan G Y. Ecological effects of weeds on soil water and soil nutrient in farmland ecosystem. Journal of Soil Water Conservation, 2005, 19(2): 69-74.
[23] Colbach N, Dürr C, Chauvel B, Richard G. Effect of environmental conditions on Alopecurus myosuroides germination. II. Effect of moisture conditions and storage length. Weed Research, 2002, 42(3): 210-221.
[24] Yin L C, Cai Z C, Zhong W H. Changes in weed community diversity of maize crops due to long-term fertilization. Crop Protection, 2006, 25(9): 910-914.
[25] Li H, Chen Y X, Liang X Q, Ni W Z, Tian G M. Influence of duckweed on N conversion and dissolved N in floodwater after urea application into paddy field. Journal of Soil and Water Conservation, 2006, 20(5): 92-94, 129-129.
[1] 林新坚, 王飞, 王长方, 林诚, 李清华, 何春梅, 李昱. 长期施肥对南方黄泥田冬春季杂草群落及其C、N、P化学计量的影响. 中国生态农业学报, 2012, 20(5): 573-577.
[2] 沈浦, 高菊生, 徐明岗, 李冬初, 牛德奎, 秦道珠. 长期施用含硫和含氯化肥对稻田杂草生长动态的影响. 应用生态学报, 2011, 22(4): 992-998.
[4] 李照全, 尹力初, 周卫军, 张杨珠, 谢建明. 农田管理措施对红壤稻田系统杂草种群结构的影响. 农业现代化研究, 2008, 29(2): 239-241, 245-245.
[6] 张福锁. 植物营养生态生理学和遗传学. 北京: 中国科学技术出版社, 1993.
[8] 陈欣, 王兆骞, 唐建军. 农业生态系统杂草多样性保持的生态学功能. 生态学杂志, 2000, 19(4): 50-52.
[16] 李昌新, 赵锋, 芮雯奕, 黄欠如, 余喜初, 张卫建. 长期秸秆还田和有机肥施用对双季稻田冬春季杂草群落的影响. 草业学报, 2009, 18(3): 142-147.
[17] 李儒海, 强胜, 邱多生, 储秋华, 潘根兴. 长期不同施肥方式对稻油轮作制水稻田杂草群落的影响. 生态学报, 2008, 28(7): 3236-3243.
[18] 张学友, 金丽华, 陈柏森, 韩娟, 冒宇翔. 氮磷钾对杂草生长影响的研究. 西北农林科技大学学报: 自然科学版, 2003, 31(2): 109-111.
[19] 黄爱军, 赵锋, 陈雪凤, 张莉, 杨菲, 张卫建. 施肥与秸秆还田对太湖稻-油复种系统春季杂草群落特征的影响. 长江流域资源与环境, 2009, 18(6): 515-521.
[20] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000: 107-109, 147-149, 150-152, 166-168, 179-181, 191-195.
[21] 周杨明, 于秀波, 鄢帮有. 1949-2005年江西省农田养分平衡动态的宏观分析. 江西农业大学学报, 2008, 30(5): 919-926.
[22] 张磊, 欧阳竹, 董玉红, 张志诚, 潘国艳. 农田生态系统杂草的养分和水分效应研究. 中国水土保持学报, 2005, 19(2): 69-74.
[25] 李华, 陈英旭, 梁新强, 倪吾钟, 田光明. 浮萍对稻田田面水中氮素转化与可溶性氮的影响. 水土保持学报, 2006, 20(5): 92-94, 129-129.