生态学报  2014, Vol. 34 Issue (24): 7350-7355

文章信息

郑静静, 杨丽, 苏小雨, 赵会杰, 袁祖丽, 薛瑞丽, 赵一丹
ZHENG Jingjing, YANG Li, SU Xiaoyu, ZHAO Huijie, YUAN Zuli, XUE Ruili, ZHAO Yidan
水杨酸对高温强光下小麦叶绿体蛋白酶Deg5和PSⅡ功能的调节作用
Regulatory effects of salicylic acid on protease Deg5 and PSⅡfunction of wheat chloroplasts under heat and high light stress
生态学报, 2014, 34(24): 7350-7355
Acta Ecologica Sinica, 2014, 34(24): 7350-7355
http://dx.doi.org/10.5846/stxb201303120393

文章历史

收稿日期:2013-03-12
网络出版日期:2014-03-19
水杨酸对高温强光下小麦叶绿体蛋白酶Deg5和PSⅡ功能的调节作用
郑静静, 杨丽, 苏小雨, 赵会杰 , 袁祖丽, 薛瑞丽, 赵一丹    
河南农业大学生命科学学院, 郑州 450002
摘要:以小麦(Triticum aestivum)矮抗58为材料,采用0.1mmol/L的外源水杨酸(SA)处理小麦叶片,以清水为对照,通过Western blotting蛋白质印记技术和叶绿素荧光分析,研究了高温强光胁迫(38℃和1600 μmol m-2 s-1)对小麦叶绿体Deg5蛋白酶、D1蛋白和叶绿素荧光参数的影响及SA的调节作用.结果表明,高温强光胁迫导致小麦叶绿体Deg5蛋白酶、D1蛋白含量和PSⅡ最大光能转化效率(Fv/Fm)降低,原初荧光(Fo)升高.和对照相比,外源SA处理可维持较高的Deg5蛋白酶、D1蛋白、Fv/Fm水平和较低的Fo.说明外源水杨酸可减轻高温强光对Deg5蛋白酶和D1蛋白的损伤,维持较强的PSⅡ功能.
关键词小麦    高温强光胁迫    Deg5蛋白酶    叶绿素荧光    水杨酸    
Regulatory effects of salicylic acid on protease Deg5 and PSⅡfunction of wheat chloroplasts under heat and high light stress
ZHENG Jingjing, YANG Li, SU Xiaoyu, ZHAO Huijie , YUAN Zuli, XUE Ruili, ZHAO Yidan    
College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
Abstract:Wheat is the main food crop in the north of China, so its yield level is closely related to people's living standard and the national food security. Wheat plants often suffer cross-stress of heat and high light during grain-filling stage in the area, which leads to damages in photosynthetic apparatus, early decline of photosynthesis and finally reduction of grain yield. Therefore, much attention is currently being paid to the effect of heat and high light stress on the photosynthesis of wheat plants during grain-filling period. In photosynthesis system of plants, the reaction center in photosystem Ⅱ (PS Ⅱ) is the key site vulnerable to multiple stresses such as heat, drought and high light; moreover, the extent of its damage depends on the balance between injury and repair. The repair of PSⅡ requires efficient turnover of D1 protein, which is the key component of PSⅡ. During the repair of PSⅡ, damaged D1 protein must be degraded and replaced by a new copy quickly. It has been known that Deg5 protease plays an important role in cleavage of damaged D1 protein. However, the changes of Deg5 protease under heat and high light stress are still not known. Salicylic acid (SA) is a phenolic substance which has been used as a plant hormone for a long time. A lot of recent reports have shown that SA plays an important role in response to abiotic stress in plants. In this study, the wheat cultivar "Aikang 58" was used to investigate the effects of SA on Deg5 protease, D1 protein and PSⅡ performance under heat and high light stress. Wheat leaves at grain-filling stage were pretreated with 0.1 mmol/L SA and water (as control), respectively and then subjected to different temperature and light treatments: moderate temperature and light (25℃, 600umol m-2 s-1, MTL) for 2h, high temperature and light(38℃, 1600 μ mol m-2 S-1, HTL)for 2h, and recovery for 3h under MTL after 2h of HTL. Fluorescence parameters were measured using a chlorophyll fluorometer and the changes of Deg5 protease and D1 protein contents were analyzed by western-blotting. The results showed that heat and high light stress resulted in decreases of Deg5 protease, D1 protein and Fv/Fm (maximal photochemical efficiency of PSⅡ) and an increase of Fo (chlorophyll initial fluorescence). Compared with the control, pretreatment with SA increased the levels of Deg5 protease, D1 protein and Fv/Fm and decreased Fo. It was suggested that exogenous SA could alleviate the damage to Deg5 protease and D1 protein and maintain PSⅡfunction of wheat chloroplasts under heat and high light stress.
Key words: wheat    heat and high light stress    Deg5 protease    chlorophyll fluorescence    salicylic acid    

光合作用是作物产量和品质形成的基础,逆境是限制光合作用的重要因素,其中高温和强光是主要逆境之一[1]。目前,人们普遍认为高温强光胁迫对光合机构破坏的原初部位是叶绿体的光系统II(PSII)。PSII是一种多亚基蛋白复合体,在构成PSII的30多种蛋白质中,D1蛋白是逆境损伤的主要靶位[2, 3]。在正常的生长环境中,D1蛋白通过不断地快速降解和重新合成维持着PSⅡ的活性[3, 4],但高温强光引起的光抑制往往会打破这种平衡,使光合作用遭到破坏[2, 5]。研究表明,光破坏的D1蛋白需要被叶绿体中的蛋白酶降解并从PSII中去除,只有这样,新合成的D1蛋白才能替换上去,PSⅡ才能得到修复,因此,受损D1蛋白的及时降解是高温逆境下加快PSII修复,提高光合效率的关键[6]。在受损D1蛋白降解的蛋白酶的研究中有报道称,Deg和FtsH蛋白酶家系主要负责D1蛋白的降解[7]。Deg5蛋白酶是Deg家族中位于类囊体腔侧的蛋白酶之一,它不仅可以降解类囊体腔侧的蛋白质,而且在没有环境胁迫的情况下参与Dl蛋白的降解和PSⅡ的修复过程[8, 9, 10]。因此,进一步弄清高温强光下Deg5蛋白酶的变化及其与PSⅡ功能的关系,对于了解高温强光下光合机构的修复机理非常重要。

小麦是我国主要粮食作物,其产量的丰欠直接影响人民生活水平及其国民经济的发展。小麦属于喜凉作物,在生长季节内(尤其生育后期)易受到异常高温强光天气影响,引起光合作用的光抑制,导致籽粒产量下降和品质变劣。鉴于上述情况,本项目主要研究高温强光胁迫下Deg5蛋白酶、D1蛋白及PSⅡ功能的变化以及水杨酸(SA)的调节作用,为进一步阐明高温强光下受损光合机构的修复机理,采取抗逆应变措施提供科学依据。

1 材料与方法 1.1 材料及处理

以小麦矮抗58为实验材料。选择均一,饱满的小麦种子,用30%双氧水浸种30s,用蒸馏水冲洗干净,放入铺有两层滤纸的培养皿中,加入充足的蒸馏水,放入培养箱(30℃,黑暗)催芽24h,种子露白即可。然后将种子种入花盆中,每盆苗为5株,于室温下阳光充足的地方培养,按时浇水,并喷施营养液。

待长到四叶期时,将苗设置两个处理:(1)W清水预处理植株,作为对照;(2)SA浓度为0.1mmol/L的SA预处理植株。

在不同的光温条件下进行3次取样:Ⅰ室温下(25℃,600μmol m-2 s-1)取样;Ⅱ高温强光胁迫(38℃,1600μmol m-2 s-1)2h后取样;Ⅲ 高温胁迫后在适温中光下(25℃,600μmol m-2 s-1)恢复3h后取样。

1.2 测定方法 1.2.1 类囊体膜蛋白提取

参照郭军伟等[11]的方法分别提取不同处理叶片的类囊体膜蛋白。剪取叶片0.5g,加入液氮研磨成粉末状,悬浮于缓冲液A(含300 mmol/L 蔗糖,5 mmol/L MgCl2,1 mmol/L EDTA,10mmol/L NaF,50mmol/L HEPES-NaOH,pH 7.5),混匀,匀浆液经两层纱布过滤后,1500g离心4 min,所得沉淀用缓冲液B(含5 mmol/L 蔗糖,5 mmol/L MgCl2,10 mmol/L NaF,10mmol/L HEPES-NaOH,pH 7.5)悬浮并洗涤1 次,3000 r/min离心3min。最后将类囊体膜蛋白悬浮在少量缓冲液C(100 mmol/L 蔗糖,5 mmol/L NaCl,10 mmol/L MgCl2,10 mmol/L NaF,10 mmol/L HEPES-NaOH,pH 7.5)中,整个过程于4℃进行。所得样品储存于-70℃冰箱中备用。

1.2.2 SDS-PAGE和Western Blotting检测

参照杜林方等的方法[12],采用15%的分离胶(pH 8.8)和5%的浓缩胶(pH 6.8)进行蛋白分离。在类囊体膜蛋白样品中加入等体积的上样缓冲液(含2% SDS、5% β-巯基乙醇、20%甘油、0.01%溴酚蓝以及0.125 mol/L Tris-HCl,pH6.8),100℃水浴处理3 min,之后10000 r/min离心5min,上样时取用上清液,每个泳道蛋白样品含5μg蛋白,蛋白分离完毕后用考马斯亮蓝R-250染色或转移至PVDF膜上进行Western blotting检测。Western blotting检测以蛋白酶Deg5抗体和D1蛋白抗体(Agrisera公司提供)为一抗,以辣根过氧化物酶标记的山羊抗兔IgG(中杉金桥)为二抗。

1.2.3 叶绿素荧光参数测定

使用FMS-2脉冲调制式叶绿素荧光仪测定原初荧光(Fo)和PSⅡ的最大光化学效率(Fv/Fm),检测植物受光抑制的程度。测定前叶片暗适应时间为15min,光化学强度为400μmol m-2 s-1,饱和闪光强度为8000μmol m-2 s-1

2 结果与分析 2.1 小麦叶绿体类囊体膜蛋白电泳图谱

图 1可看出,室温情况下,对照植株(W)与0.1mmol/L SA处理植株(SA)的小麦叶绿体类囊体膜蛋白各组分含量差异不大,基本处于同一水平;高温强光2h后,W植株膜蛋白部分组分水平出现降低趋势,而且在温度光照恢复后也不能恢复到室温下的水平;而高温强光下的SA植株膜蛋白整体组分相对于室温情况并无明显变化,温度和光照恢复后也能维持正常的表达水平。表明,0.1mmol/L SA有利于维持高温强光下小麦叶绿体类囊体膜蛋白的正常表达水平,减轻高温强光对膜蛋白的损害。

图 1 小麦叶绿体类囊体膜蛋白的SDS-PAGE电泳图谱 Fig. 1 SDS-PAGE of D1 protein in thylakoids membrane of wheat leaves (M:marker) W: Leaves pretreated with water (Control);SA: Leaves pretreated with 0.1mmol/L SA

为了进一步研究D1蛋白(分子量32KD)和Deg5蛋白酶(分子量28KD)的变化情况,将分离得到的蛋白转移到PVDF膜上,并与D1蛋白抗体和Deg5蛋白酶抗体杂交,进行Western blotting分析。

2.2 不同光温条件下小麦叶绿体Deg5蛋白酶的变化

图 2可知,室温时对照(W)和SA处理叶片(SA)的Deg5表达基本一致;高温强光2h后,对照的Deg5表达量明显降低,而SA处理叶片则维持正常的水平;进行恢复之后,SA处理叶片的Deg5表达量得到明显恢复。说明0.1mmol/L的SA可以抑制高温强光下小麦叶绿体Deg5蛋白酶的降解,保证植物体对Deg5蛋白酶的需要,便于受损D1蛋白能够快速降解和新合成D1蛋白的替换,有利于光合机构的修复和运转。

图 2 小麦叶绿体Deg5蛋白酶的Western blotting结果 Fig. 2 Western blotting of Deg5 protease in wheat chloroplasts W: Leaves pretreated with water (Control);SA: Leaves pretreated with 0.1mmol/L SA
2.3 不同光温条件下小麦叶绿体D1蛋白的变化

图 3可以看出,室温情况下,对照植株(W)和0.1mmol/L SA预处理植株(SA)叶片的D1蛋白含量差别不大;而高温强光2h后,对照叶片的D1蛋白含量明显下降,SA处理叶片的D1蛋白含量变化则较小;恢复3h后,对照的D1蛋白含量未能明显恢复,而SA处理的D1蛋白含量明显回升。表明0.1mmol/L的SA不仅能够缓解高温强光下小麦类囊体膜D1蛋白的减少,而且可以促进使其在非逆境条件下的恢复。

图 3 小麦叶绿体D1蛋白的Western blotting结果 Fig. 3 Western blotting of D1 protein in wheat chloroplasts W: Leaves pretreated with water (Control);SA:Leaves pretreated with 0.1mmol/L SA
2.4 不同光温条件下小麦叶片FoFv/Fm的变化

叶绿素荧光不仅能反应光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度建立、ATP合成及CO2固定等过程有关[13]。在荧光分析中,最常用的基本荧光参数是FoFv/Fm[14]Fo指初始荧光,也称基础荧光,是PSⅡ反应中心处于完全开放时的荧光产量。当植物受到逆境胁迫时,初始荧光Fo上升,表明PSⅡ反应中心失活或破坏[14, 15]。从图 4可以看出,高温强光胁迫之前,对照和SA处理小麦叶片的Fo并无较大差异;高温强光2h后对照叶片的Fo上升幅度大于SA处理叶片;在恢复3h后,SA处理叶片的Fo迅速下降,基本恢复到胁迫前的水平,而对照未能恢复到胁迫前的水平。结果表明,0.1mmol/L的SA有利于缓解高温强光对PSⅡ反应中心的破坏,保证光合作用顺利进行。

图 4 SA对高温强光胁迫下小麦叶片FoFv/Fm的影响 Fig. 4 Effect of SA on F0 and Fv/Fm of wheat leaves subject to heat and high light stress W: Leaves pretreated with water (Control);SA:Leaves pretreated with 0.1mmol/L SA

Fv/Fm常用来度量植物叶片PSⅡ原初光能转换效率,反映PSⅡ利用光能的能力,也是表示植物光抑制程度的指标[13, 14, 15]。由图 4可见,对照组和SA处理的Fv/Fm水平差异不大;高温强光胁迫2h后,两组的Fv/Fm水平均有所降低,以对照下降较为明显;经过3h的恢复,SA处理的小麦叶片Fv/Fm能恢复到胁迫前的水平,而对照叶片不能得到有效的恢复。说明0.1mmol/L的SA对光合机构具有防护作用,有利于维持较高的PSⅡ原初光能转化活性。

3 讨论

植物光合机构通过一系列复杂的反应将太阳能转化为植物所需的稳定的化学能,但在大多数情况下,植物光合机构所接受的能量都要超过其转化的能量,因此,光抑制的发生是常见现象,如夏日正午,高温强光同时出现,光抑制往往在这种情况下发生[16]。叶绿体的PSⅡ反应中心是高温和强光等逆境胁迫的主要部位,高温强光造成的光抑制可以导致PSⅡ中心数个蛋白质的降解,尤其是反应中心的D1蛋白[2, 3],破坏了的PSⅡ通过一个修复循环来维持其正常的功能。在PSⅡ的修复循环中,Dl蛋白是周转频率最高的蛋白质[17],因此,近年来对参与D1蛋白降解的蛋白酶的研究受到了广泛的关注。Deg5蛋白酶定位于类囊体膜腔侧,是与膜结合的周质蛋白[9],许多研究显示,Deg5蛋白酶是已发现的与受损D1蛋白降解有关的蛋白酶之一[8, 9],但其对小麦叶绿体D1蛋白是否也起着同样的作用并没有相关报道,本实验从Deg5蛋白酶的角度研究了光抑制情况下小麦叶绿体D1蛋白的降解,及SA对其的调节作用,以期进一步阐明PSⅡ的修复机制。

随着光抑制及其防御机制研究的深入,人们开始关注外源物质对光合机构的保护作用,以期在作物生产中采取相应措施,防止光抑制对作物造成伤害,降低作物产量。SA是一种广泛存在于植物体中的酚类物质,已被证明在诱导植物抗性中起着重要作用,可通过调节强光下活性氧的代谢来减轻高温强光等逆境胁迫对植物造成的伤害[18, 19, 20]。本文在小麦叶片施加SA的情况下研究高温强光下小麦叶绿体Deg5蛋白酶和D1蛋白的表达水平,检测SA能否缓解或避免高温强光对Deg5蛋白酶和D1蛋白造成的伤害,为PSⅡ修复循环和光合作用的正常运行提供便利,为人工调控植物的光合作用提供参考。

如上述实验所示,高温强光2h后,清水预处理的对照叶片Deg5蛋白酶、D1蛋白含量和Fv/Fm降低,Fo升高,经过3h恢复也不能回到高温强光前的水平,而经过0.1mmol/L的SA预处理的小麦叶片高温强光2h后,Deg5蛋白酶表达和D1蛋白含量下降较少,虽然Fo升高,PSⅡ的Fv/Fm降低,,但相对于对照的小麦叶片有所缓和,并且经过3h恢复后能回到高温强光处理前的水平。FoFv/Fm及D1蛋白含量的变化情况说明高温强光下PSⅡ中心会受到破坏,D1蛋白的含量会降低,而SA具有缓解D1蛋白含量降低趋势和促进PSⅡ修复的作用,但Deg5蛋白酶与D1蛋白一致的表达水平说明,SA可增强高温强光下Deg5蛋白酶的表达水平,进而加快D1蛋白的降解,促进PSⅡ的修复循环,为光合作用的正常运转奠定基础。然而,Deg5蛋白酶在小麦叶绿体中是以何种形式存在[10],是单独作用还是协同作用[5, 9, 10],作用机制如何,尚需进一步研究。

目前,促进PSⅡ的修复循环主要集中在加快D1蛋白降解,从而加快D1蛋白周转上,但是PSⅡ中心的破坏是因为失活速率的变化还是因为修复速率受到抑制的问题存在分歧,待深入探讨。

参考文献
[1] Qiu C H, Ji W W, Guo Y P. Effects of high temperature and strong light on chlorophyll fluorescence, the D1 protein, and Degl protease in satsuma mandarin, and the protective role of salicylic acid. Acta Ecologica Sinica, 2011, 31(13): 3802-3810.
[2] Ma P F, Li L H, Yang Y J, Zhao H J, Fu X J, Zhang C N. Effects of salicylic acid on D1 protein phosphorylation and PSⅡ performance in wheat leaf chloroplasts under high temperature and high light stress. Chinese Journal of Applied Ecology, 2008, 19(12): 2632-2636.
[3] Chen N, Wen Z W, Hu J C, Zhang D Y. Functional analysis of photodamaged D1 protein degradation and photoprotection of chloroplast Deg2 Protease in Arabidopsis. Genomics and Applied Biology, 2011, 30(6): 682-686.
[4] Mizusawa N, Tomo T, Satoh K, Miyao M. Degradation of the D1 Protein of photosystem II under illumination in Vivo: Two different pathways involving cleavage or intermolecular cross-Linking. Biochemistry, 2003, 42(33): 10034-10044.
[5] Zhao H J, Zhao X J, Ma P F, Wang Y X, Hu W W, Li L H, Zhao Y D. Effects of salicylic acid on protein kinase activity and chloroplast D1 protein degradation in wheat leaves subjected to heat and high light stress. Acta Ecologica Sinica, 2011, 31(5): 259-263.
[6] Sun X W, Wang L Y, Zhang L X. Involvement of DEG5 and DEG8 proteases in the turnover of the photosystem II reaction center D1 protein under heat stress in Arabidopsis thaliana. Chinese Science Bulletin, 2007, 52(13): 1742-1745.
[7] Cheregi O, Sicora C, Kós P B, Barker M, Nixon P J, Vass I. The role of the FtsH and Deg proteases in the repair of UV-B radiation-damaged photosystem II in the cyanobacterium Synechocystis PCC6803. Biochimica et Biophysica Acta, 2006, 1767(6): 820-828.
[8] Huesgen P F, Schuhmann H, Adamska I. Deg/HtrA proteases as components of a network for photosystem II quality control in chloroplasts and cyanobacteria. Research in Microbiology, 2009, 160(9): 726 -732.
[9] Zhang Y L, Sun X W, Zhang L X. Advances in function study of DEG proteases in chloroplasts of Arabidopsis thaliana. Chinese Bulletin Botany, 2009, 44(1): 37-42.
[10] Sun X W, Peng L W, Guo J K, Chi W, Ma J F, Lu C M, Zhang L X. Formation of DEG5 and DEG8 complexes and their involvement in the Degradation of photodamaged photosystemⅡ reaction Center D1 Protein in Arabidopsis. The Plant Cell, 2007, 19(4): 1347-1361.
[11] Guo J W, Wei H M, Wu S F, Du L F. Effects of low temperature on the distribution of excitation energy in photosystem and the phosphorylation of thylakoid membrane proteins in rice. Acta Biophysica Sinica, 2006, 22(3): 197-202.
[12] Du L F, Sun X, Pan Y H, Lin H H, Liang H G. Influence of calcium ion on photosystem Ⅱ oxygen evolution. Science in China: Series B, 1995, 38(12): 1439-1447.
[13] Zhao H J, Zou Q, Yu Z W. Chlorophyll fluorescence analysis technique and its application to photosynthesis of plant. Journal of Henan Agricultural University, 2000, 34(3): 248-251.
[14] Sun Y, Xu W J, Fan A L. Effects of salicylic acid on chlorophyll fluorescence and xanthophyll cycle in cucumber leaves under high temperature and strong light. Chinese Journal of Applied Ecology, 2006, 17(3): 399-402.
[15] Chen J M, Yu X P, Cheng J A. The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses. Acta Agriculturae Zhejiangensis, 2006, 18(1): 51-55.
[16] Marutani Y, Yamauchi Y, Kimura Y, Mizutani M, Sugimoto Y. Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes. Planta, 2012, 236(2): 753-761.
[17] Kettmnen R, Tyystjrvi E, Aro E M. D1 protein degradation during photoinhibition of intact leaves. A modification of the D1 protein precedes degradation. Federation of European Biochemical Societies, 1991, 290(1-2): 153-156.
[18] Liu Q Z, Jiang Y. Effect of salicylic acid of different concentration on active oxygen metabolism of cherry peach tomato during the storage period. Academic Periodical of Farm Products Processing, 2010, (12): 48-51.
[19] Yu W W, Cao F L, Wang G B. Relationship between active oxygen metabolism of ginkgo leaf and cell membrane injury under low-temperature stress. Journal of Northeast Forestry University, 2010, 38(7): 46-48.
[20] An Y, Shen Y B, Hu Y. Effects of salicylic acid on reactive oxygen species metabolism in poplar leaves under mechanical damage stress. Ningxia Journal of Agriculture and Forestry Science & Technology, 2011, 52(12): 69-71.
[1] 邱翠花, 计玮玮, 郭延平. 高温强光对温州蜜柑叶绿素荧光、D1蛋白和Degl蛋白酶的影响及SA效应. 生态学报, 2011, 31(13): 3802-3810.
[2] 马培芳, 李利红, 杨亚军, 赵会杰, 付晓记, 张超男. 水杨酸对高温强光胁迫下小麦叶绿体D1蛋白磷酸化及光系统Ⅱ功能的影响. 应用生态学报, 2008, 19(12): 2632-2636.
[3] 陈娜, 温泽文, 胡建成, 张东远. Deg2蛋白酶在拟南芥光损伤D1降解及光保护中的作用. 基因组学与应用生物学, 2011, 30(6): 682-686.
[9] 张艳玲, 孙旭武, 张立新. 拟南芥叶绿体中DEG蛋白酶功能的研究进展. 植物学报, 2009, 44(1): 37-42.
[11] 郭军伟, 魏慧敏, 吴守锋, 杜林方. 低温对水稻类囊体膜蛋白磷酸化及光合机构光能分配的影响. 生物物理学报, 2006, 22(3): 197-202.
[13] 赵会杰, 邹琦, 于振文. 叶绿素荧光分析技术及其在植物光合机理研究中的应用. 河南农业大学学报, 2000, 34(3): 248-251.
[14] 孙艳, 徐伟君, 范爱丽. 高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响. 应用生态学报, 2006, 17(3): 399-402.
[15] 陈建明, 俞晓平, 程家安. 叶绿素荧光动力学及其在植物抗逆生理研究中的应用. 浙江 农业学报, 2006, 18(1): 51-55.
[18] 刘巧枝, 江英. 不同浓度水杨酸处理对樱桃番茄在贮藏期间活性氧代谢的影响. 农产品加工学刊, 2010, (12): 48-51.
[19] 郁万文, 曹福亮, 汪贵斌. 低温胁迫下银杏活性氧代谢与膜伤害的关系. 东北林业大学学报, 2010, 38(7): 46-48.
[20] 安钰, 沈应柏, 虎燕. 外源水杨酸对机械损伤胁迫下合作杨活性氧代谢的影响. 宁夏农林科技, 2011, 52(12): 69-71.