生态学报  2014, Vol. 34 Issue (21): 6039-6048

文章信息

梁倩倩, 李敏, 刘润进, 郭绍霞
LIANG Qianqian, LI Min, LIU Runjin, GUO Shaoxia
全球变化下菌根真菌的作用及其作用机制
Function and functioning mechanisms of mycorrhizal fungi under global changes
生态学报, 2014, 34(21): 6039-6048
Acta Ecologica Sinica, 2014, 34(21): 6039-6048
http://dx.doi.org/10.5846/stxb201301300191

文章历史

收稿日期:2013-1-30
网络出版日期:2014-3-13
全球变化下菌根真菌的作用及其作用机制
梁倩倩1, 2, 李敏1, 刘润进1, 郭绍霞1, 2     
1. 青岛农业大学菌根生物技术研究所, 青岛 266109;
2. 青岛农业大学园林与林学院, 青岛 266109
摘要:全球气候、环境、经济与社会的发展变化,对环境与资源造成严重挑战和新的发展机遇.菌根真菌是陆地生态系统中的重要生物组份,占据不可替代的重要地位,充当调控生态系统稳定和保持可持续发展的多重角色.分析了全球变化对菌根真菌的影响,探讨了全球变化下菌根真菌的地位、角色和作用,以及菌根真菌应对全球变化的可能作用机制,旨在为加强全面应对全球变化提供新的思路和途径.
关键词菌根    菌根真菌    丛枝菌根    外生菌根    全球变化    
Function and functioning mechanisms of mycorrhizal fungi under global changes
LIANG Qianqian1, 2, LI Min1, LIU Runjin1, GUO Shaoxia1, 2     
1. Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao 266109, China;
2. College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
Abstract:Global changes with regards to climate, environment, economy and society may cause serious problems and in the meantime also challenges for terrestrial ecosystems. Example global changes include greenhouse effects, ozone depletion, acid deposition, drought and waterlogging frequency, higher and lower temperature duration, soil acidity and degradation, soil polluted with heavy metals, sharp decline of forest area and species diversity etc. It is well documented that biogeography environments and climates play key roles in species distribution, while global changes affect the distribution and utilization of species resources. As the most intimate partner to plants, mycorrhizal fungi are also seriously influenced. Mycorrhizal fungi which colonize plant roots and form symbiosis with host plants, occupy irreplaceable niche. Mycorrhizal associations specifically arbuscular mycorrhiza (AM), ectomycorrhiza (ECM), ectoendomycorrhiza (EEM), ericoid mycorrhizas (ERM), and/or orchid mycorrhizas (OM), interact with other organisms living both in soil and on the ground, incorporate nutrient transforming, absorption, circulation and utilization. They play vital roles in maintaining atmospheric compositions, adjusting terrestrial ecosystems, increasing biodiversities, stabilizing sustainable productivities as well as sustainable development of human society. Thus, exploration of the function and functioning mechanisms of mycorrhizal fungi under global changes is a complete new subject, especially, the study on biological mechanisms to global changes is of realistic value and profound scientific significance. This paper introduces the impact of global changes on mycorrhizal fungi, particularly the influence of greenhouse effects, CO2 level increasing, ozone depletion, acid with nitrogen and sulfur deposition, drought and waterlogging, exotic plant invasion, and human activities on mycorrhizal fungus development and functions. We summarized the possible functions of mycorrhizal fungi under global changes through direct and indirect pathways, such as rehabilitating and stabilizing the damaged, degraded and fragile ecosystems, deceasing CO2 concentration in the atmosphere, increasing carbon sink, enhancing substance conversion, circulation and utilization, resisting to plant pathogens and pest insects, conferring biological stresses, and playing some roles in exotic plant invasion and succession. The authors also reviewed the functioning mechanisms of mycorrhizal fungi under global changes. It was suggested that mycorrhizal fungi may synergistically function with the other organisms, strengthening their own and host plant physiological and ecological characteristics, enlarging hyphae net, and secreting and inducing beneficial substances. Therefore the position, role, function and mechanisms of mycorrhizal fungi under global changes, especially the evolution characters of mycorrhizal fungi and mycorrhizas, the role and functions of mycorrhizal fungi under global changes and possible mechanisms of responses of mycorrhizal fungi to the global changes, should be paid more attention to. This knowledge may be helpful for better understanding of the comprehensive responses of terrestrial ecosystems to global changes, and for providing basis for further investigation on this topics and possible pathways to control agricultural pests.
Key words: mycorrhiza    mycorrhizal fungi    arbuscular mycorrhiza    ectomycorrhiza    global changes    

随着经济全球化,人类活动加剧,导致全球性环境恶化:温室效应与臭氧层破坏、旱涝与极端天气频发、持续高温与低温、土地酸化与退化、土壤重金属污染、森林面积与物种多样性锐减等等。研究表明,生物地理环境和气候对物种的自然分布起着主导作用。全球变化深刻影响物种资源的分布与利用。作为与植物最密切最广泛的共生成员,菌根真菌也必然受到严重影响。所谓菌根真菌是侵染植物根系形成互惠共生体即菌根(mycorrhiza)的真菌,于陆地生态系统中占据不可替代的生态位,其庞大的菌根网络可通过丛枝菌根(AM)、外生菌根(ECM)、内外菌根(EEM)、欧石南菌根(ERM)和兰科菌根(orchid mycorrhizas,OM)等将全部植被连结起来,于地下和地上直接或间接与其他生物相互作用,参与全球生态系统内养分转化吸收、循环利用过程[1];在维持大气成分平衡、调节生态系统、增加生物多样性[2]、稳定和保持生态系统可持续生产力方面发挥作用[3]。因此,探究全球变化下菌根真菌的作用及其作用机制,是一个全新的研究领域,开展应对全球变化的生物学机制研究,具有重要的现实价值和深远的科学意义。本文通过总结全球变化下菌根真菌的地位、角色、作用及其作用机制的研究成果,探讨当前研究存在的问题,以期为进一步开展应对全球变化、探索全球变化中菌根真菌的生态学意义提供依据。

1 全球变化对菌根真菌的影响

全球变化主要由臭氧增加、温室效应增强、N和S沉降增大、降水量分布失衡、生物入侵和人类活动加剧等引致。人们愈来愈关注这些变化对菌根真菌的影响。

1.1 臭氧对菌根真菌的影响

臭氧增加导致近地层O3浓度日益增高,可直接或间接影响菌根真菌的发育和功能。O3诱导树叶早衰和脱落,气孔数量减少,降低植物光合固碳,减少回流根内的碳素同化物[4]。将接种和不接种AM真菌的高羊茅(Festuca arundinacea)植株经0.1 μL/L O3处理3个月后,根重和菌根量减少,且不接种对照的长势更差,这可能是O3降低植物光合作用造成的[5]。 接种AM真菌的番茄(Lycopesicum esculentum) 幼苗,O3处理后侵染率与植株干重比未接种植株显著降低[6]。O3浓度升高显著影响AM真菌产孢和菌丝生长。研究表明,高浓度O3处理使孢子数量比自然浓度增加1倍;低、高浓度O3使菌丝生长量比自然浓度时分别下降48.7%和85.6%[7]。随着O3浓度增加,囊泡、菌丝圈和根内菌丝着生率增加,丛枝则降低,而总侵染率保持不变。这表明AM真菌通过促进对能量需求较少和养分交换效率较差的器官(菌丝圈)的发育,以及通过增加储存养分器官(泡囊)以确保后期生长来应对逆境。而内部菌丝体增加(其中大部分可能不是AM真菌)可能是其他真菌使侵染数量有所增加[8]。关于这一点以及O3增加对菌根真菌功能的影响值得深入探索。

1.2 温室效应对菌根真菌的影响

据联合国政府间气候变化专门委员会(Intergovernmental panel on climate change,IPCC)报导,CO2浓度已由1700年的280 μL/L上升到2005年的379 μL/L,预计本世纪末CO2浓度将加倍[9]。全球气候变化特别是温室效应对AM真菌多样性的影响倍受关注。一定范围内CO2浓度升高能促进植物光合作用,增加碳水化合物向地下部的供应,提高土壤中AM真菌对碳的周转率,改变AM真菌群落物种组成[10]。CO2浓度倍增可增加共有类群AM真菌菌种数量、降低特异类群的菌种数量[11]。Philip采用时间进程的方法,研究了大气CO2浓度升高、土壤加温和干旱及其它们之间的相互作用对AM真菌侵染三叶草(Trioflium repens)根系长度和根外菌丝密度的影响。结果表明,大气CO2升高不影响菌根侵染率,但促进根外菌丝生长,即增加地下碳量向根外菌丝的分配;土壤加温直接增加球囊霉属种类的根系长度和根外菌丝密度,而不影响细内生菌的根系长度;干旱降低根内生菌的根系长度,对球囊霉属种类的则没有影响。升高的大气CO2浓度、土壤加温和干旱三者对根系长度无交互作用,对根外菌丝却存在显著交互作用[12]。可见,目前对于土壤碳循环的了解十分有限。未来可关注环境变化对菌根真菌的变化和呼吸作用,这对于阐明陆地碳循环具有重要意义。

大气CO2浓度升高,必然导致温室效应,即全球持续升温。研究表明,温度升高能够提高土壤N和P的有效性,进而减少寄主根围AM真菌物种多样性[10],降低侵染率和泡囊数量[13]。Heinemeyer观察到温度对绒毛草(Holcus lanatus)的影响甚微,而车前草(Plantago lanceolata)生长随温度升高增加,而且叶面积与根长都有所增加,车前草的菌根侵染率与菌丝长度都与温度呈正相关关系。升温能增加植物根长,这可能是由于AM真菌在共生系统中发挥了重要的调节作用[14]。因此,这些温度响应对模拟全球气候变化下C动态具有重要启示。

1.3 酸雨N、S沉降对菌根真菌的影响

研究表明,酸雨导致植物形成菌根能力下降,并能改变菌根形态结构特征[15]。含S氧化物溶解于土壤,土壤pH值降低,有毒金属(如Al,Mn和Mg)等被释放,更容易被植物吸收利用,导致植物根系生长量减少,进而降低菌根真菌生长和侵染。N富集是全球变化的基本要素之一,影响生态系统的物种丰度、植物群落结构,改变菌根真菌物种多样性[16]。随N沉降增加而降低ECM真菌子实体产量和生物量[17]。施加N肥降低了松林ECM真菌群落多样性[17];随着土壤N素增加,将木质素转化为CO2的担子菌数量明显减少[17]。阿拉斯加工业区内随N沉降的增加,菌根真菌数量由30减少到9;菌根变化还可能通过反馈作用降低本地优势灌木种丰度,使其被大量外来草种替代[18]

N沉降极大地降低锡达克里克(Cedar Creek)低N ∶ P土壤中AM真菌的侵染率。正如功能平衡模型所预测的那样,P水平高的土壤中,N增加通常会降低丛枝、菌丝圈和根外生菌丝数量。湿地中这种响应与AM真菌群落内巨孢囊霉的相对多度变化有关。N沉降影响草原生态系统中AM真菌的分布。这些变化表明菌根真菌功能的改变反过来会影响植物群落组成和生态系统的功能[19]。N增加显著改变了AM真菌的群落结构。一些球囊霉的操作分类单元(OTUs)对施加N呈负响应,而其他的一些球囊霉的OTUs和一个无梗囊霉OTU则呈正响应。结果表明与糖槭(Acer saccharum)共生的AM真菌对升高的N的响应不同[20]

AM真菌是重要的地下C吸收者,并能增加N的有效性。N沉降也能显著影响微生物群落结构,导致真菌/细菌生物量比率下降10%,AM真菌和全部微生物生物量的下降,以及微生物群落结构的变化会进一步影响北方阔叶林生态系统内的营养和C循环[21]。施N肥使微生物量降低15%,但是真菌和细菌并没有显著变化。另外,微生物和真菌多度的下降在长期高N定位研究中更为明显。此外,微生物量对N肥的响应与土壤CO2排放量显著相关。这一结果表明N富集会降低生态系统中微生物的生物量和与之相应的CO2排放量[22]

值得注意的是N沉降对生态系统的影响往往与CO2浓度升高和O3浓度变化存在互作[23],事实上,菌根真菌主要是受自然界多因子的互作效应影响的,今后应加强这方面的研究工作。

1.4 干旱胁迫对菌根真菌的影响

由于厄尔尼诺和拉尼拉效应导致全球气候异常,极端气温、干旱与水涝频繁发生,使得植物生产力和生物量降低,而减少向菌根真菌提供有机养分,抑制菌根发育[24],并改变菌根真菌的群落结构,降低群落中真菌的多样性[25]。严重干旱显著影响高海拔地区的热带人工林总细根生物量和ECM根生物量[26]。纯培养条件下,干旱处理的彩色豆马勃(Pisolithus tinctorius)和圆头伞(Descolea antartica)菌丝生物量分别下降了22%和19%[27]。干旱下绒粘盖牛肝菌(Suillus tomentosus)、灰环粘盖牛肝菌(Suillus laricinus)和灰鹅膏菌(Aminita vaginata)生物量也下降[28]。也有研究证明,植物形成菌根共生体后,可以增强对一些不利环境特别是干旱环境的耐受力[29]。干旱胁迫下接种AM减轻了对烤烟(Nicotiana)细胞膜的伤害作用,并能保持较强的光合作用和养分吸收能力[30]。AM真菌增强寄主植物根部及自身的水孔蛋白基因的表达,可改善植物水分状况,提高叶片水势[31]。可见,干旱对不同植物不同菌种的作用是不同的。菌根真菌对干旱胁迫的反应涉及干旱程度、寄主植物等多方面的因素,是一个多因素控制的复杂反映过程。

1.5 外来生物入侵对菌根真菌的影响

外来植物入侵可直接或/和间接改变土著菌根真菌多样性、种群数量、群落结构和功能。伴随桉树(Eucalyptus camaldulensis E. globulus)入侵伊比利亚半岛,与其共生的ECM进入当地生态系统,这些原产澳大利亚的真菌不仅有利于桉树入侵,而且在与当地真菌的竞争中处于优势地位,能与当地植物建立共生关系,改变土壤养分循环;即使桉树消灭后,这些ECM将继续存在,并保持高侵染势侵染当地植物[32]。入侵我国的加拿大一枝黄花(Solidago canadensis)和紫茎泽兰(Ageratina adenophora)能够提高有益其自身生长的AM真菌相对多度,改变土著AM真菌群落结构,且这种改变可对其进一步扩张起到正反馈作用,减少本地优势植物[33, 34]。蒙大纳州斑点矢车菊(Centaurea maculosa)的入侵改变了当地AM真菌群落组成,降低其群落多样性[35]。蒜芥(Alliaria petiolata)的水提液能阻碍AM真菌孢子萌发,抑制其与番茄形成共生体;蒜芥种植密度与AM真菌侵染势呈显著负相关,表明蒜芥通过干扰本地植物形成菌根而增强自身的竞争力[36]。入侵印度的臭春黄菊(Anthemis cotula)和加拿大蓬(Conyza canadensis)可改变AM真菌多样性[37],美国西部和非洲大草原入侵杂草上也发生类似变化[38]

1.6 人类活动对菌根真菌的影响

高强度人类活动干扰是导致生态系统退化的主要驱动力,是引起全球变化的首要起因。人类干扰会显著降低生态系统中AM真菌物种多样性及其侵染率[39]。城市生态系统中AM真菌侵染率明显低于人类干扰较少的农林生态系统[40]。利用454焦磷酸测序技术测定华北地区长期(>20a)施肥农田中AM真菌多样性及群落结构,发现长期施肥处理(尤其是施用P肥和N肥)显著降低了农田生境中AM真菌多样性[41]。人为的农艺管理(如修整、耕作、灌溉和施肥)也会影响AM真菌群落结构。草坪切割后,AM真菌孢子量重建变慢,切割2.5a后,孢子量为60—95个/g干土,仅相当于天然山金车(Arnica montana)草地孢子数量的55%—70%[42]。对土壤进行机械翻耕强烈影响AM真菌群落结构,并显著降低其物种多样性[43]。这些影响应该是与人为干扰的方式和强度密切相关的[44]

2 全球变化下菌根真菌的作用

通过直接或间接途径,菌根真菌首先对植物个体、种群、群落、其他生物和土壤产生作用。特别是当今全球变化下,菌根真菌生理生态效应有助于减轻全球变化造成的生态系统恶化、极端气候变化、外来物种入侵和污染等不良影响[45]。主要体现在以下几个方面:

2.1 修复和稳定被破坏的及脆弱的生态系统

土壤中的菌根真菌有助于植物群落的形成,促进环境修复。菌根真菌通过其庞大的菌丝网络将植物联结起来,于菌根真菌与菌根真菌之间、菌根真菌与植物之间、植物与植物之间进行养分运转,形成完整的生物群落[46]。近年来,以AM真菌主导的菌根共生系统已成为一种新型生物修复主体,可以提高受损和退化生态系统修复重建的成功率,缩短修复周期,并保证修复效果的稳定性[47]。接种AM真菌显著提高球囊霉素相关土壤蛋白含量和土壤水稳性大团聚体数量;接种处理提高了土壤的平均重量直径和几何平均直径,降低了土壤分形维数[48],有助于中国亚热带侵蚀红壤植被重建[49]。AM真菌能提高重金属污染土壤地区寄主植物对重金属的忍耐性和营养吸收能力[50]。对矿区脆弱地带的新疆杨(Populus bolleana)和白蜡(Fraxinus chinensis)幼苗混合接种摩西球囊霉(Glomus mosseae)和幼套球囊霉(G. etunicatum)后,其侵染率高达80%以上,接种后根围孢子数量较多,对矿区环境修复和生态恢复起到了重要作用[51]。Wu等首次报道了金属污染土壤中存活的优势植物狗牙根(Cynodon dactylon)根围AM真菌的物种多样性,其中幼套球囊霉是常见种,并认为金属污染地的植物修复可以采用适当的植物辅助于耐金属毒性的AM真菌[52]

2.2 降低大气CO2浓度,提高碳汇能力

AM真菌可丰富植物群落,为植物输送养分,增加C同化。同时菌根真菌依赖植物提供的C源,ECM真菌可获得14%—15%的植物净光合产物[53]。AM真菌增加植物叶片气孔导度、胞间CO2浓度和蒸腾速率,促进CO2吸收和固定[54],降低了大气CO2浓度。喜树(Camptotheca acuminate)接种蜜色无梗囊霉(Acaulospra mellea)显著提高叶片净光合速率、气孔导度和蒸腾速率[55]。菌根也有利于植物对C的分配[56]。菌根对冷杉(Abies amabillis)林净初级生产力(net primary productivity,NPP)的贡献分别占45%(林龄23a)和75%(林龄180a)[57]。进一步研究则表明菌根类型不同,生态系统呼吸通量对降水和温度变化的响应也不同[58]。AM对地下部NPP的贡献高于ECM,而ECM对地上部、主干和枝条NPP的贡献较大;AM则对叶片和细根NPP的贡献较大[59]

2.3 促进生态系统物质转化、利用与循环

土壤生物在物质转化、利用与循环中担任重要角色。菌根真菌和固N微生物每年为植物提供5%—20% (草原和热带草原)至80%(温带和寒带森林)的N和高达75%的P[60]。庞大的菌根网络可以为土壤提供约相当于凋落物40%的C,这些有机质成为土壤微生物的主要C源,直接影响土壤微生物的组成和数量。ECM的菌丝围酯酶、磷酸酶、几丁质酶和海藻糖酶等土壤酶水平显著升高,促进动植物残体中复杂有机C、N和P的分解[61],菌根共生体可极大地促进植物对水分、矿质元素的吸收和利用。接种AM真菌促进了土壤中难溶性P向有效态P转化,显著降低总无机P含量、提高玉米(Zea mays)的生物量和P吸收量[62]。AM通过扩大寄主植物根的吸收面积,改善了根围环境,菌丝还通过提高植物对P的运输速率等机制来促进P吸收。根内球囊霉(G. intraradices)显著增加烟草(Nicotiana tabacum)叶片P和叶绿素含量、根超氧化物歧化酶、几丁质酶和硝酸还原酶的活性和植物生物量[63]。研究人员也发现根瘤菌与菌根真菌产生的信号至少是部分的通过同样途径发挥作用,植物根系受菌根真菌侵染而帮助植物获得土壤中的磷酸盐,从而提高磷酸盐吸收量[64]

2.4 拮抗植物病虫,缓解生物逆境

气候变化是植物病虫害的主要驱动者。AM真菌作为环境功能生物,具有生物药肥双重作用[65]。AM真菌侵染植物根系形成菌根过程中,可通过水杨酸与茉莉酸之间的信号通路来调节植物防御系统。该调控方式能更有效地激发植物组织防御机制来抵抗潜在的攻击者[66]。AM真菌能显著抑制植物病原真菌和病原线虫[67]。接种AM真菌能对烟草的青枯病达到很好的防治效果[68]。AM真菌丛枝发育能有效抑制大豆胞囊线虫,降低病害程度,提高大豆抗病性[69]。利用AM真菌与根围促生细菌(PGPR)的最佳组合可抑制番茄根结线虫的繁殖,提高番茄抗病性[70]。植物防御系统的改变对食草昆虫影响显著。菌根对咀嚼式昆虫的负面影响最常见[71],利用对食草昆虫产生消极影响的AM真菌来研发生物防治技术是可行的。不同菌根真菌与不同种类昆虫之间的相互作用关系可能是不同的,即使是同一种互作关系在不同条件下也可能发生转变;另一方面菌根真菌与昆虫互作的机制也是复杂多样的。探明这些问题,可为农业害虫的防控提供新途径。

2.5 在外来植物入侵演替中的作用

AM真菌具有偏好性,其形成的菌根网络通过不同植物养分吸收与转化的差异,能量物质与养分转移的变化等影响植物种间竞争关系[72]。AM真菌对外来入侵植物个体生长具有促进作用[73]。缺P条件下,AM真菌可以显著促进互花米草(Spartina alterniflora)的养分吸收[74];增加豚草(Ambrosia artemisiifolia)对土壤中硝态N和铵态N的吸收,改善豚草N营养和生长[75]。AM真菌首先影响植物个体生长,进而调节植物群落结构[76]。另一方面菌根共生可通过促进本地植物生长,提高其与外来物种的竞争力[77],间接抑制外来入侵植物。而菌根共生对入侵物种适应性的最大化具负反馈[78]。菌根对植物生长的负反馈可能归因于AM真菌种的不同和植物之间的利益不对称传递[79]。菌根真菌在外来植物入侵演替中的作用复杂多样:当外来入侵植物是菌根依赖性的,则菌根真菌处于主导地位,充当驱动者,菌根形成与否,直接决定了该外来植物能否成功入侵;如入侵植物对菌根的依赖是兼性的,则菌根真菌所发挥的作用是变化的,值得深入探索。

3 菌根真菌应对全球变化的可能作用机制 3.1 扩大菌丝网络,分泌及诱导有益化学物质

菌丝向根外土壤分枝扩散,形成庞大的根外菌丝体,驱动土壤营养循环,决定植物群落的生产力[1]。菌丝分泌的球囊霉素(GRSP)和菌丝粘液能络\\螯合大量金属,使金属从游离态转化为结合态[80]。真菌组织中聚磷酸、有机酸可与重金属结合,以多聚磷酸盐的形式沉积在真菌中,或以果胶酸类物质的形式沉积在寄主植物根系的界面上,从而减少重金属向地上部的运输量,减轻对植物的胁迫[81]

接种AMF能够诱导根内防御性酶系苯丙氨酸解氨酶、几丁质酶和过氧化物酶的积累,增加酶的含量,提高酶的活性,还能诱导根内抗性物质酚类物质、可溶性糖和脯氨酸的含量的增加,降低根内丙二醛的含量,缓解细胞的损伤。AMF显著改变棉花(Gossypium hirsutum)根细胞超微结构,引起细胞壁明显加宽,导管处产生胶状物质,出现细胞壁物质的沉积,有助于增强细胞壁的结构抗性,增强对病原物的抗性[82]。菌根化植物对农药也有很强的耐受性,能把一些有机成分转化为菌根真菌和植株的养分源,降低农药对土壤的污染程度[83]

3.2 增强自身及其寄主植物的生理生态特性

在形成外生菌根共生体后,植物的根系上会形成菌套(mantle)、菌索(rhizomorph)、外延菌丝(extraradical)和哈蒂氏网(Hartig net)等结构。土壤干旱条件下菌套对营养根内水分的外渗起到阻隔作用[84]。外延菌丝、菌索等器官在土壤中的延伸、扩展使水分移动受到的阻力比根和土接触时所受的阻力小。液流通过菌丝和哈蒂氏网进入根的无阻空间。降低了土壤与根系间的液流阻力[85]。干旱胁迫下AM真菌通过协调增加保护酶活性和渗透物质含量显著降低了丙二醛含量,表明膜质过氧化对细胞伤害显著减少,显著促进植株对N、P和水分的吸收,提高了植株N、P和黄酮含量,改善了植株营养状况,同时增加了甘草(Glycyrriza uralensis)品质,对根系效果更加显著。因此,干旱胁迫下接种AM 真菌显著促进了甘草生长,提高了甘草耐旱性[86]。干旱胁迫下外生菌根提高了叶水势、保水力、降低叶水分的饱和亏缺值[87]

3.3 与其他生物协同发挥作用

菌根真菌与PGPR在植物根围共同发生发展,它们之间相互促进、协同发挥作用,在活化土壤养分、促进植物养分吸收与利用、增加植物和土壤健康状况、提高植物生长量、稳定生态系统等方面具有重要意义,尤其全球变化下作用更加突出。PGPR对菌根真菌的侵染、生长发育及其功能都有一定的促进作用。例如蒙氏假单胞菌(Pseudomonas monteilii)能明显促进植物外生菌根和内生菌根的侵染[88];增强AM真菌抑制线虫、提高抗病性的效应[61]。苏云金芽孢杆菌(Bcillus thuringiensis)增加AM真菌的根外和根内定殖,最低施P肥水平下亦能发挥相同作用,并增强AM真菌的生理代谢[89]

4 研究动向与展望

当前,菌根学研究已进入菌根网络时代。面对全球变化的诸多挑战,通过较大的时间和空间尺度来探讨全球气候变化对菌根真菌群落结构与功能的影响,将是今后菌根真菌物种群落结构与功能研究领域值得关注的研究方向之一;其次,长期定位研究特殊或极端环境中菌根及其菌根真菌群落结构与功能,将有助于阐明全球变化下菌根真菌的作用;第三,于控制条件下,采用现代分子生物学技术等系统深入研究全球气候变化下菌根真菌生理生态的功能与作用机制,为进一步筛选评价高效菌根真菌菌种及其应用提供技术依据。全球变化既是严重挑战又是新的机遇。作为陆地生态系统中的重要成员之一,菌根真菌占据和调控多种生态位,充当多重角色,并发挥多种生理生态作用。可以预见,随着该领域研究的不断深入,在全面应对全球变化过程中,菌根真菌将发挥极其重要的作用。

参考文献
[1] Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754-13759.
[2] van der Heijden M G A, Horton T R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 2009, 97(6): 1139-1150.
[3] Kohler J, Hernández J A, Caravac F, Roldán A. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Functional Plant Biology, 2008, 35(2): 141-151.
[4] Wilkinson S, Mills G, Illidge R, Davies W J. How is ozone pollution reducing our food supply? Journal of Experimental Botany, 2012, 63(2): 527-536.
[5] Ho I, Trappe J M. Effects of ozone exposure on mycorrhiza formation and growth of Festuca arundinacea. Environmental and Experimental Botany, 1984, 24(1): 71-74.
[6] McCool P M, Menge J A. Influence of ozone on carbon partitioning in tomato: potential role of carbon flow in regulation of the mycorrhizal symbiosis under conditions of stress. New Phytologist, 1983, 94(2): 241-247.
[7] Wang S G, Feng Z Z, Wang X K, Feng Z W. Effect of elevated atmospheric O3 on arbuscular mycorrhizal (AM) and its function. Environmental Science, 2006, 27(9): 1872-1877.
[8] Duckmanton L, Widden P. Effect of ozone on the development of vesicular-arbuscular mycorrhizae in sugar maple saplings. Mycologia, 1994, 86(2): 181-186.
[9] Liverman D. From uncertain to unequivocal: the IPCC Working Group I Report: climate change 2007——the physical science basis. Environment, 2007, 49(8): 28-32.
[10] Gamper H, Hartwig U A, Leuchtmann A. Mycorrhizas improve nitrogen nutrition of Trifolium repens after 8 yr of selection under elevated atmospheric CO2 partial pressure. New Phytologist, 2005, 167(2): 531-542.
[11] Yang R Y, Tang J J, Chen X, Chen J, Jiang Q Q. The effects of elevated atmospheric CO2 on AMF community colonized in roots of various plant species. Acta Ecologica Sinica, 2006, 26(1): 54-60.
[12] Staddon P L, Gregersen R, Jakobsen I. The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Global Change Biology, 2004, 10(11): 1909-1921.
[13] Hawkes C V, Hartley I P, Ineson P, Fitter A H. Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biology, 2008, 14(5): 1181-1190.
[14] Heinemeyer A, Fitter A H. Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner. Journal of Experimental Botany, 2004, 55(396): 525-534.
[15] Lü C Q, Tian H Q, Huang Y. Ecological effects of increased nitrogen deposition in terrestrial ecosystems. Journal of Plant Ecology, 2007, 31(2): 205-218.
[16] Frey S D, Knorr M, Parrent J L, Simpson R T. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 2004, 196(1): 159-171.
[17] Einsenlord S D, Zak D R. Simulated atmospheric nitrogen deposition alters actinobacterial community composition in forest soils. Soil Science Society of America Journal, 2010, 74(4): 1157-1166.
[18] Lilleskov E A, Fahey T J, Horton T R, Lovett G M. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology, 2002, 83(1): 104-115.
[19] Johnson N C, Rowland D L, Corkidi L, Egerton-Warburton L M, Allen E B. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid Grasslands. Ecology, 2003, 84(7): 1895-1908.
[20] van Diepen L T A, Lilleskov E A, Pregitzer K S. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Molecular Ecology, 2011, 20(4): 799-811.
[21] van Diepen L T A, Lilleskov E A, Pregitzer K S, Miller R M. Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern Hardwood forests. Ecosystems, 2010, 13(5): 683-695.
[22] Treseder K K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecology Letters, 2008, 11(10): 1111-1120.
[23] Chung C, Zak R, Reich P B, Ellsworth D S. Plant species richness, elevated CO2 and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology, 2007, 13(5): 980-989.
[24] Wang J G, Zheng R, Bai S L, Liu S, Yan W. Responses of ectomycorrhiza to drought stress: a review. Chinese Journal of Ecology, 2012, 31(6): 1571-1576.
[25] Richard F, Roy M, Shahin O, Sthultz C, Duchemin M, Joffre R, Selosse M A. Ectomycorrhizal communities in a mediterranean forest ecosystem dominated by Quercus ilex: seasonal dynamics and response to drought in the surface organic horizon. Annals of Forest Science, 2011, 68(1): 57-68.
[26] Valdés M, Asbjornsen H, Gómez-Cárdenas M, Juárez M, Voght K A. Drought effects on fine-root and ectomycorrhizal-root biomass in managed Pinus oaxacana Mirov stands in Oaxaca, Mexico. Mycorrhiza, 2006, 16(2): 117-124.
[27] Alvarez M, Huygens D, Fernandez C, Gacitúa Y, Olivares E, Saavedra I, Alberdi M, Valenzuela E. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots. Tree Physiology, 2009, 29(8): 1047-1057.
[28] Zhang H H, Tang M, Yang Y. The response of ectomycorrhizal (ECM) fungi under water stress induced by polyethylene glycol (PEG) 6000. African Journal of Microbiology Research, 2011, 5(4): 365-373.
[29] Smith S E, Read D J. Mycorrhizal Symbiosis. San Diego: Academic Press, 2008: 185-187.
[30] Zhou X, Liang Y J, Zhang C H, Chen X M, Huang J G. Effects of arbuscular mycorrhizal fungi on growth, nutrition and drought resistance of flue-cured tobacco seedlings. Acta Agriculturae Boreali-Sinica, 2012, 27(3): 181-185.
[31] Li T, Chen B D. Arbuscular mycorrhizal fungi improving drought tolerance of maize plants by up-regulation of aquaporin gene expressions in roots and the fungi themselves. Chinese Journal of Plant Ecology, 2012, 36(9): 973-981.
[32] Díez J. Invasion biology of Australian ectomycorrhizal fungi introduced with eucalypt plantations into the Iberian Peninsula. Biological Invasions, 2005, 7(1): 3-15.
[33] Zhang Q, Yang R Y, Tang J J, Yang H S, Hu S J, Chen X. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS ONE, 2010, 5(8): e12380.
[34] Yu W Q, Liu W X, Gui F R, Liu W Z, Wan F H, Zhang L L. Invasion of exotic Ageratina adenophora Sprengel. alters soil physical and chemical characteristics and arbuscular mycorrhizal fungus community. Acta Ecologica Sinica, 2012, 32(22): 7027-7035.
[35] Mummey D L, Rillig M C, Holben W E. Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant and Soil, 2005, 271(1/2): 83-90.
[36] Robert K J, Anderson R C. Effect of garlic mustard [Alliaria petiolata (Beib. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. The American Midland Naturalist, 2001, 146(1): 146-152.
[37] Shah M A, Reshi Z A, Rasool N. Plant invasions induce a shift in Glomalean spore diversity. Tropical Ecology, 2010, 51(S2): 317-323.
[38] Hawkes C V, Belnap J, D'Antonio C, Firestone M K. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant and Soil, 2006, 281(1/2): 369-380.
[39] Entry J A, Rygiewicz P T, Watrud L S, Donnelly P K. Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas. Advances in Environmental Research, 2002, 7(1): 123-138.
[40] Valencia A V O. Arbuscular Mycorrhizal and Dark Septate Endophytic Fungi in Urban Preserves and Surrounding Sonoran Desert[D]. Tempe: Arizona State University, 2009.
[41] Lin X G, Feng Y Z, Zhang H Y, Chen R R, Wang J H, Zhang J B, Chu H Y. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north China revealed by 454 pyrosequencing. Environmental Science & Technology, 2012, 46(11): 5764-5771.
[42] Vergeer P, van den Berga L J L, Baarb J, Ouborg N J, Roelofs J G M. The effect of turf cutting on plant and arbuscular mycorrhizal spore recolonisation: Implications for heathland restoration. Biological Conservation, 2006, 129(2): 226-235.
[43] Schnoor T K, Lekberg Y, Rosendahl S, Olsson P A. Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza, 2011, 21(3): 211-220.
[44] Öpik M, Moora M, Zobel M, Saks U, Wheatley R, Wright F, Daniell T. High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytologist, 2008, 179(3): 867-876.
[45] Pankhow W, Boller T, Wiemken A. The significance of mycorrhizas for protective ecosystems. Experientia, 1991, 47(4): 391-394.
[46] Pennisi E. The secret life of fungi. Science, 2004, 304(5677): 1620-1622.
[47] van der Heijden M G A, Verkade S, de Bruin S J. Mycorrhizal fungi reduce the negative effects of nitrogen enrichment on plant community structure in dune grassland. Global Change Biology, 2008, 14(11): 2626-2635.
[48] Peng S L, Shen H, Guo T. Influence of mycorrhizal inoculation on water stable aggregates traits. Plant Nutrition and Fertilizer Science, 2010, 16(3): 695-700.
[49] Wu T H, Hao W Y, Lin X G, Shi Y Q. Screening of arbuscular mycorrhizal fungi for the revegetation of eroded red soils in subtropical China. Plant and Soil, 2002, 239(2): 225-235.
[50] Audet P, Charest C. Effects of AM colonization on "wild tobacco" plants grown in zinc- contaminated soil. Mycorrhiza, 2006, 16(4): 277-283.
[51] Du S Z, Bi Y L, Wu W Y, Liu H H, Yang Y F. Ecological effects of arbuscular mycorrhizal fungi on environmental phytoremediation in coal mine areas. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(4): 113-116.
[52] Wu F Y, Bi Y L, Leung H M, Ye Z H, Lin X G, Wong M H. Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminated soils. Applied Soil Ecology, 2010, 44(3): 213-218.
[53] Hobbie E A. Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology, 2006, 87(3): 563-569.
[54] Fang Y L, Zhang J H, Song S R, Qu Y P, Zhang Z W, Meng J F, Liu J C, Sun Y. Promotion effects of native AM fungi on Cabernet Sauvignon grapevines in vineyards of Weibei Tableland. Nutrition and Fertilizer Science, 2010, 16(3): 701-707.
[55] Zhao X, Song R Q, Yan X F. Effects of arbuscular mycorrhizal fungal inoculation on growth and photosynthesis of Camptotheca acuminata seedlings. Chinese Journal of Plant Ecology, 2009, 33(4): 783-790.
[56] Rillig M C, Wright S F, Kimball B A, Pinter P J, Wall G W, Ottman M J, Leavitt S W. Elevated carbon dioxide and irrigation effects on water stable aggregates in a sorghum field: a possible role for arbuscular mycorrhizal fungi. Global Change Biology, 2001, 7(3): 333-337.
[57] Vogt K A, Grier C C, Meier C E, Edmonds R. Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in Western Washington. Ecology, 1982, 63(2): 370-380.
[58] Vargas R, Baldocchi D D, Querejeta J I, Curtis P S, Hasselquist N J, Janssens I A, Allen M F, Montagnani L. Ecosystem CO2 fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature. New Phytologist, 2010, 185(1): 226-236.
[59] Shi Z Y, Liu D H, Wang F Y, Ding X D. Effect of mycorrhizal strategy on net primary productivity of trees in global forest ecosystem. Ecology and Environmental Sciences, 2012, 21(3): 404-408.
[60] van der Heijden M G A, Bardgett R D, van Straalen N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11(3): 296-310.
[61] Vázquez M M, César S, Azcón R, José M B. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Applied Soil Ecology, 2000, 15(3): 261-272.
[62] Zhang Y T, Zhu M, Xian Y X W, Shen H, Zhao J, Guo T. Influence of mycorrhizal inoculation on competition between plant species and inorganic phosphate forms. Acta Ecologica Sinica, 2012, 32(22): 7091-7101.
[63] Jiang L, Li Z M, Huang J G, Yuan L, Wu H T, Liang Y J. Influences of arbuscular mycorrhizal fungi on growth and selected physiological indices of tobacco seedlings. Plant Nutrition and Fertilizer Science, 2008, 14(1): 156-161.
[64] Marx J. The roots of plant-microbe collaborations. Science, 2004, 304(5668): 234-236.
[65] Ahmed S H, Abdelgani M E, Yassin A M. Effects of interaction between vesicular-arbuscular mycorrhizal (VAM) fungi and root-knot nematodes on dolichos bean (Lablab niger Medik.) plants. American-Eurasian Journal of Sustainable Agriculture, 2009, 3(4): 678-683.
[66] Pozo M J, Azcón-Aguilar C. Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 2007, 10(4): 393-398.
[67] Veresoglou S D, Rillig M C. Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biology Letters, 2012, 8(2): 214-217.
[68] Zeng W A, Long S P, Li H G, Peng F Y, Huang Y N. Effects of inoculating different arbuscular mycorrhizal fungus at seedling stage on wilt disease resistance in tobacco. Guangxi Agricultural Sciences, 2011, 42(6): 612-615.
[69] Li J X, Li H, Wang W H, Zhu X C, Liu R J. Effects of arbuscular mycorrhizal fungal arbuscule development on soybean cyst nematode diseases. Journal of Qingdao Agricultural University: Natural Science, 2010, 27(2): 95-99.
[70] Liu R J, Dai M, Wu X, Li M, Liu X Z. Suppression of the root-knot nematode [Meloidogyne incognita) (Kofoid & White) chitwood] on tomato by dual inoculation with AM fungi and plant growth-promoting rhizobacteria. Mycorrhiza, 2012, 22(4): 289-296.
[71] Koricheva J, Gange A, Jones T. Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology, 2009, 90(8): 2088-2097.
[72] Shah M A, Reshi Z A, Khasa D. Arbuscular mycorrhizal status of some Kashmir Himalayan alien invasive plants. Mycorrhiza, 2009, 20(1): 67-72.
[73] Pringle A, Bever J D, Gardes M, Parrent J L, Rillig M C, Klironomos J N. Mycorrhizal symbioses and plant invasions. Annual Review of Ecology, Evolution and Systematics, 2009, 40(1): 699-715.
[74] McHugh J M, Dighton J. Influence of mycorrhizal inoculation, inundation period, salinity, and phosphorus availability on the growth of two salt marsh grasses, Spartina alterniflora Lois, and Spartina cynosuroides (L.) Roth, in nursery systems. Restoration Ecology, 2004, 12(4): 533-545.
[75] Huang D, Sang W G, Zhu L, Song Y Y, Wang J P. Effects of nitrogen and carbon addition and arbuscular mycorrhiza on alien invasive plant Ambrosia artemisiifolia. Chinese Journal of Applied Ecology, 2010, 21(12): 3056-3062.
[76] Carvalho L M, Caçador I, Martins-Louçāo M A. Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal). Mycorrhiza, 2001, 11(6): 303-309.
[77] Gillespie I G, Allen E B. Effects of soil and mycorrhizae from native and invaded vegetation on a rare California forb. Applied Soil Ecology, 2006, 32(1): 6-12.
[78] Goodwin J. The role of mycorrhizal fungi in competitive interactions among native bunch grasses and alien weeds: a review and synthesis. Northwest Science, 1992, 66(4): 251-260.
[79] Bever J D. Negative feedback within a mutualism: Host-specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society B: Biological Sciences, 2002, 269(1509): 2595-2601.
[80] Chern E C, Tsai D W, Ogunseitan O A. Deposition of glomalin-related soil protein and sequestered toxic metals into watersheds. Environmental Science and Technology, 2007, 41(10): 3566-3572.
[81] Wang L, Wang F Y. Remediation of cadmium-polluted soils with Arbuscular Mycorrhiza. Guangdong Agricultural Sciences, 2012, 39(2): 51-53.
[82] Bu J. Biocontrol Effects of Arbuscular Mycorrhizal Fungi Against Cotton Verticillium Wilt and Its Related Mechanisms[D]. Urumqi: Xinjiang Agricultural University, 2009.
[83] Xu X Q, Xu L J, Yin Y Y, Huang Y, Liu R J. Analysis of arbuscular fungi on remedying pesticide polluted soil. Mycosystema, 2009, 28(4): 616-621.
[84] Reid C P P. Mycorrhizae and water stress // Riedacker A, ed. Root Physoiology and Symbiosis. New York: Nancy, 1978: 392-408.
[85] Han X L, Jia G X, Niu Y. Research of the mechanism of ectomycorrhizae to drought resistance. Research of Soil and Water Conservation, 2006, 13(5): 42-44.
[86] Liu S L. Effects of AM Fungi on Growth and Biochemical Characters of Glycyrrhiza Under Water and Salinity Stress . Baoding: Hebei University, 2010.
[87] Lü Q, Lei Z P. A study on effect of ectomycorrhizae on promoting castanea mollissima resistance to drought and its mechanism. Forest Research, 2001, 13(3): 249-256.
[88] Duponnois R, Plenchette C A. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza, 2003, 13(2): 85-91.
[89] Vivas A, Marulanda A, Gómez M, Barea J M, Azcón R. Physiological characteristics (SDH and ALP activities) of arbuscular mycorrhizal colonization as affected by Bacillus thuringiensis inoculation under two phosphorus levels. Soil Biology and Biochemistry, 2003, 35(7): 987-996.
[7] 王曙光, 冯兆忠, 王效科, 冯宗炜. 大气臭氧浓度升高对丛枝菌根(AM)及其功能的影响. 环境科学, 2006, 27(9): 1872-1877.
[11] 杨如意, 唐建军, 陈欣, 陈静, 蒋琦清. 大气 CO2 倍增对植物根内 AMF 群落的影响. 生态学报, 2006, 26(1): 54-60.
[15] 吕超群, 田汉勤, 黄耀. 陆地生态系统氮沉降增加的生态效应. 植物生态学报, 2007, 31(2): 205-218.
[24] 王琚钢, 峥嵘, 白淑兰, 刘声, 闫伟. 外生菌根对干旱胁迫的响应. 生态学杂志, 2012, 31(6): 1571-1576.
[30] 周霞, 梁永江, 张长华, 陈小明, 黄建国. 接种AM真菌对烤烟生长、 营养及抗旱性的影响. 华北农学报, 2012, 27(3): 181-185.
[31] 李涛, 陈保冬. 丛枝菌根真菌通过上调根系及自身水孔蛋白基因表达提高玉米抗旱性. 植物生态学报, 2012, 36(9): 973-981.
[34] 于文清, 刘万学, 桂富荣, 刘文志, 万方浩, 张利莉. 外来植物紫茎泽兰入侵对土壤理化性质及丛枝菌根真菌(AMF)群落的影响. 生态学报, 2012, 32(22): 7027-7035.
[48] 彭思利, 申鸿, 郭涛. 接种丛枝菌根真菌对土壤水稳性团聚体特征的影响. 植物营养与肥料学报, 2010, 16(3): 695-700.
[51] 杜善周, 毕银丽, 吴王燕, 刘慧辉, 杨永峰. 丛枝菌根对矿区环境修复的生态效应. 农业工程学报, 2008, 24(4): 113-116.
[54] 房玉林, 张稼涵, 宋士任, 屈雁朋, 张振文, 孟江飞, 刘金串, 孙艳. 渭北旱塬葡萄园土著AM真菌对赤霞珠葡萄促生效应研究. 植物营养与肥料学报, 2010, 16(3): 701-707.
[55] 赵昕, 宋瑞清, 阎秀峰. 接种AM真菌对喜树幼苗生长及光合特性的影响. 植物生态学报, 2009, 33(4): 783-790.
[59] 石兆勇, 刘德鸿, 王发园, 丁效东. 菌根类型对森林树木净初级生产力的影响. 生态环境学报, 2012, 21(3): 404-408.
[62] 张宇亭, 朱敏, 线岩相洼, 申鸿, 赵建, 郭涛. 接种AM真菌对玉米和油菜种间竞争及土壤无机磷组分的影响. 生态学报, 2012, 32(22): 7091-7101.
[63] 江龙, 李竹玫, 黄建国, 袁玲, 吴洪田, 梁永江. AM真菌对烟苗生长及某些生理指标的影响. 植物营养与肥料学报, 2008, 14(1): 156-161.
[68] 曾维爱, 龙世平, 李宏光, 彭福元, 黄艳宁. 苗期接种不同丛枝菌根真菌对烟草青枯病防治效果的影响. 南方农业学报, 2011, 42(6): 612-615.
[69] 李俊喜, 李辉, 王维华, 朱新产, 刘润进. 丛枝菌根真菌丛枝发育对大豆胞囊线虫病的影响. 青岛农业大学学报: 自然科学版, 2010, 27(2): 95-99.
[75] 黄栋, 桑卫国, 朱丽, 宋迎迎, 王晋萍. 氮碳添加和丛枝菌根对外来入侵植物豚草的影响. 应用生态学报, 2010, 21(12): 3056-3062.
[81] 王玲, 王发园. 丛枝菌根对镉污染土壤的修复研究进展. 广东农业科学, 2012, 39(2): 51-53.
[82] 补娟. 丛枝菌根真菌(AMF)对棉花黄萎病的防病效应及其机理研究 [D]. 乌鲁木齐: 新疆农业大学, 2009.
[83] 许秀强, 徐丽娟, 殷元元, 黄艺, 刘润进. 丛枝菌根真菌修复农药污染土壤的潜力分析. 菌物学报, 2009, 28(4): 616-621.
[85] 韩秀丽, 贾桂霞, 牛颖. 外生菌根提高树木抗旱性机理的研究进展. 水土保持研究, 2006, 13(5): 42-44.
[86] 刘盛林. 水分和盐胁迫下AM真菌对甘草生长和生理生态特性的影响 [D]. 保定: 河北大学, 2010.
[87] 吕全, 雷增普. 外生菌根提高板栗苗木抗旱性能及其机理的研究. 林业科学研究, 2001, 13(3): 249-256.