生态学报  2013, Vol. 34 Issue (20): 5687-5695

文章信息

施建敏, 叶学华, 陈伏生, 杨清培, 黎祖尧, 方楷, 杨光耀
SHI Jianmin, YE Xuehua, CHEN Fusheng, YANG Qingpei, LI Zuyao, FANG Kai, YANG Guangyao
竹类植物对异质生境的适应——表型可塑性
Adaptation of bamboo to heterogeneous habitat:phenotypic plasticity
生态学报, 2013, 34(20): 5687-5695
Acta Ecologica Sinica, 2013, 34(20): 5687-5695
http://dx.doi.org/10.5846/stxb201308062036

文章历史

收稿日期:2013-8-6
网络出版日期:2014-3-14
竹类植物对异质生境的适应——表型可塑性
施建敏1, 2, 叶学华3, 陈伏生1, 2, 杨清培1, 2, 黎祖尧1, 2, 方楷1, 2, 杨光耀1, 2     
1. 江西农业大学林学院, 南昌 330045;
2. 江西省竹子种质资源与利用重点实验室, 南昌 330045;
3. 中国科学院植物研究所, 北京 100093
摘要:竹类植物是一类以木本为主的克隆植物,凭借表型可塑性的优势,对异质生境具有很强适应能力。然而,目前对竹类植物表型可塑性的实现方式及其异质生境适应对策未见系统总结,从而在一定程度上限制了竹类生态学的发展。从形态可塑性、选择性放置、克隆整合和克隆分工等4个方面对竹类植物的表型可塑性研究进行分析和梳理,结果表明:竹类植物在异质生境中具有明显的表型可塑反应,主要采用形态可塑性、选择性放置和克隆整合来适应异质生境,而克隆分工的普遍性仍有待验证;目前侧重于研究构件形态和生物量分配格局,而很少深入探讨形态、生理和行为等可塑性机理。今后竹类植物表型可塑性研究重点在于:1)克隆整合的格局与机理;2)克隆整合对生态系统的影响;3)克隆分工的形成及其与环境关系;4)表型可塑性的等级性及环境影响;5)不同克隆构型的表型可塑性特征及其内在机制。
关键词竹类植物    异质生境    表型可塑性    克隆整合    克隆分工    选择性放置    
Adaptation of bamboo to heterogeneous habitat:phenotypic plasticity
SHI Jianmin1, 2, YE Xuehua3, CHEN Fusheng1, 2, YANG Qingpei1, 2, LI Zuyao1, 2, FANG Kai1, 2, YANG Guangyao1, 2     
1. Forestry College of Jiangxi Agricultural University, Nanchang 330045, China;
2. Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Nanchang 330045, China;
3. Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
Abstract:Since heterogeneity is ubiquitous, plant phenotypic plasticity is a vital ecological countermeasure to adapt to the heterogeneous habitat. Owing to the double modularity, the clonal plant has higher phenotypic plasticity and then acquires higher adaptability than other plants. Bamboo is a group of clonal plants, and mainly composed of woody plants. Bamboo could grow well in the difficult site and heterogeneous habitat where most plants hardly survive. Meanwhile, bamboo can expand rapidly to broad-leaved forest in the bamboo-forest ecotone. Compared with most plants, bamboo has stronger adaptability to heterogenous habitat due to its higher phenotypic plasticity. Thus, in order to advance the development of bamboo ecology, it is necessary to systematically summarize the bamboo phenotypic plasticity and adaptation countermeasures to heterogeneous habitat. Literature analysis shows that bamboo has obvious phenotypic plasticity to respond to heterogeneous habitat. Four realizing ways of phenotypic plasticity including morphological plasticity, selective placement, clonal integration and intraclonal division of labor, are exerted by bamboo to cope with heterogeneous habitat. Firstly, bamboo modifies the morphology, such as height, diameter, leaf area, spacer length, node number, branching angle, biomass etc, to adapt to the changes of above-ground or under-ground resources. The morphological modification is adapted to the resource level. In the poor resource habitat, energy is mainly invested in the constructing of absorbing structures in order to increase resource absorption. In contrast, most energy is invested in the growth of ramet to increase plant biomass in the rich resource habitat. Secondly, bamboo grows more ramets in the fertile microhabitat than that of in the infertile microhabitat. Thus, bamboo can acquire more survival resources and adapt to the unfavorable habitat. The selective placement is achieved by altering the spacer length, branching angle and branching intensity. Clearly, it is an active behavior to adapt to the heterogeneous habitat. Thirdly, clonal integration behavior helps bamboo ramets in unfertile habitat gain resource from those in fertile habitat. Actually, bamboo shoot growth is a typical process of clonal integration, because the new shoot need obtain the nutrients from mother ramets. However, the direction and intensity of clonal integration could be altered with the variation of resource distribution in the heterogeneous habitat. Fourthly, intraclonal division of labor is another important countermeasure to deal with the heterogeneous habitat. Clonal integration and specialization of ramet are two basic prerequisites for intraclonal division of labor. Although many studies of intraclonal division of labor were developed in herbaceous plants, little is known about that in bamboo. Therefore, we need further confirm whether the intraclonal division of labor is commonly used by bamboo. Overall, the present studies focus on modular morphology and biomass allocation pattern, while little attention is paid on the mechanism of phenotypic plasticity. In the future, the researches on bamboo phenotypic plasticity shall be focused on the following 5 aspects: 1) pattern and mechanism of clonal integration; 2) influence of clonal integration on ecosystem stability; 3) mechanism of intraclonal division of labor, and its relationship with environment; 4) hierarchical selection of phenotypic plasticity and the environmental effect; 5) differences of phenotypic plasticity in different types of clonal architecture, and their mechanisms.
Key words: bamboo    heterogeneous habitat    phenotypic plasticity    clonal integration    intraclonal division of labor    selective placement    

异质性是自然系统的基本特征[1,2],植物生长和繁殖的必需资源在生境中的异质分布增加了植物吸收和利用的难度[3,4,5],所以对异质生境适应能力的高低直接关系植物的生存及其种间竞争的优劣[6,7]。表型可塑性是植物适应异质生境的重要生态对策[8,9],它是指相应于环境波动,一个有机体(遗传学个体)改变形态、生理和行为的能力[10]。凭借表型可塑性,植物在异质生境中可以最大限度地获取资源,并进行资源的再分配,从而实现资源的有效利用,提高植物适合度[4,11,12]。由于克隆植物的双构件性,使其比非克隆植物具有更高的表型可塑性[13],能更好地适应异质生境[12,14,15]

竹类植物是一类以木本为主的克隆植物,属禾本科竹亚科。据统计,全球竹类植物约有88属1400余种,大部分是木本种类,其中我国有34属534种,全为木本竹子[16,17]。竹类植物因克隆生长特性而具有更高的表型可塑性,对异质生境有很强的适应能力。研究表明竹类植物的生存能力强,能在很多植物难以生存的高异质生境形成优势群落[18,19,20],特别是淡竹(Phyllostachys glauca)的地下茎(竹鞭)能跨过岩石,在岩石裸露率60%以上的生境顽强生长[18,21]。竹类植物还具有很强的种间竞争力,在与其他群落交错的异质生境中,竹子不断侵入邻近群落占领新生境,扩大竹林面积[22,23,24]。例如浙江天目山自然保护区毛竹(Phyllostachys edulis)林以年均4.47 hm2的速度扩张,1985年至2003年毛竹林总面积增加了近34倍[22]

竹类植物突出的异质生境适应能力一方面为高异质生境的植被保持和生物多样性保育发挥着重要作用[16,25],另一方面竹林扩张入侵其他群落所带来的多样性下降、土壤肥力退化和生态系统碳贮量降低等负面影响日渐凸显[26,27,28,29]。然而,作为适应异质生境的重要生态对策,竹类植物的表型可塑性目前尚无系统总结。本文对国内外相关文献进行分析和梳理,以期增进人们对竹类植物适应异质生境对策的认识和理解,为竹林的保持和扩张防控等相关研究提供理论基础。

1 表型可塑性实现方式

在异质生境中,克隆植物一般采取形态上的可塑性调节,行为上的选择性放置分株,生理上的资源传送与共享(克隆整合)来最大限度地获取和有效利用资源(图 1)[4,11,12,30],有些情况下克隆整合伴随分株形态和(或)生理等功能特化而形成的克隆分工进一步增强了克隆植物对异质生境的适应[31,32]

图 1 克隆植物表型可塑性的主要实现方式及其关系[4, 11, 12, 30] Fig. 1 The main realization ways and its relationships of phenotypic plasticity in clonal plant[4,11,12,30]

在形态可塑性、选择性放置、克隆整合和克隆分工这4种表型可塑性的主要实现方式中:克隆分工以克隆整合为基础,通过克隆分株的形态可塑性产生功能特化来实现[14,33];克隆整合对形态可塑性具有修饰作用,可以促进或削弱形态可塑性,也可以诱发新的可塑性反应[4,30];而选择性放置主要通过克隆器官(如间隔子等)的形态可塑性实现[7,11]

2 形态可塑性

克隆植物的形态对不同资源水平和环境条件发生的反应称为形态可塑性[4,34],主要表现为构件、资源吸收结构形态特征与生物量分配等变化[35,36],它是克隆植物适应异质生境的重要方式。在不同的土壤养分、水分和光照资源水平下,竹类植物可以通过形态塑造来适应不同的资源水平。雷竹(Phyllostachys violascens f. prevernalis)随着氮素含量或光照强度的增加,分株数量和生物量显著增加而间隔子明显变短,但分枝角度和根茎节间长度等没有显著变化[37,38,39]。斑苦竹(Pleioblastus maculata)和筇竹(Chimonobambusa tumidinoda)在不同土壤水分梯度下表现出相似的形态适应性变化,两种竹子均随着水分资源有效性的提高,分株的高度、直径、叶面积、间隔子长度、间隔子直径、总生物量相应增加,而分株密度和间隔子总长度减小[40,41,42]

生长在林下的竹类植物对不同林冠环境具有明显的形态可塑反应,但有些形态的可塑反应具有种间差异。在川西亚高山暗针叶林的林缘、大林窗、中林窗和林下,华西箭竹(Fargesia nitida)随着林冠郁闭度的增加,分株数、分株与各构件生物量、株高、基径、节数、节间长度、分枝节数、间隔子长度、间隔子直径和分枝强度等逐渐减小,而分枝角度、叶生物量分配百分率、比叶面积和叶面积率不断增大[43,44,45]。缺苞箭竹(Fargesia denudata)和秦岭箭竹(Fargesia qinlingensis)在不同林冠环境的形态可塑性表现与华西箭竹相似,但缺苞箭竹的构件大小和生物量在小林窗中最大[46,47],秦岭箭竹的新竹胸径在中等林窗和大林窗下最大[48]。另有研究表明生长在圆齿水青冈(Fagus crenata)林下和林窗的千岛赤竹(Sasa kurilensis)在比叶重(LMA)上表现出显著差异[49]

在植物群落演替过程中,竹类植物凭借形态可塑性展现出很强的异质生境适应能力。Neohouzeua dulloaDendrocalamus hamiltonii是印度梅加拉亚邦休耕地次生演替的先锋树种,它们在不同年限(5—60a)的休耕地上,分株密度、分株高度、分株基径、节间长度和生物量均有明显可塑反应,其中节间长度、地上生物量和地下生物量均以休耕15a的值最大;这两种竹子的生长和构件结构表现为适应早期演替的高光环境,随休耕年限增长则倾向于把更多生物量和养分分配给地下茎以适应人为干扰[50]。在毛竹向阔叶林扩张形成竹阔混交林的过程中,毛竹的细根在土壤表层(0—20 cm)的分布增加,细根的比根长大幅提高,增强了毛竹的资源获取能力[28]

竹类植物与其他克隆植物一样,对于生境中的地上资源或地下资源变化会采用形态可塑性进行应对,而且形态可塑性与生境资源状况是相适应的[36,51],在资源水平低时,能量主要投资于资源吸收结构,以便提高资源的吸收;在资源水平高时,能量则主要投资于分株的生长和生物量增加[38,39,42]

3 选择性放置

选择性放置是指当植物生长在异质生境内时,决定分株在水平空间放置的形态学性状(间隔子长度、分枝角度和分枝强度等)能够对资源性质和资源量做出反应,将较多的分株选择性地放置到资源相对丰富的小生境内[7,11]。分株的选择性放置是克隆植物克服资源吸收困难,提高适合度的一种主动适应行为。

研究表明,间隔子(根状茎或匍匐茎的节)长度的可塑性在方向和程度上具有种间差异,有的克隆植物间隔子长度随着资源水平的增高而增大,有的随着资源水平的增高而减小,还有的几乎对资源水平变化不发生反应;但克隆植物的分枝强度无一例外地随着资源水平的增高而增大,而分枝角度的可塑性很弱或不对环境变化发生显著反应[4,51,52,53]。最近,梁士楚等应用空间分析方法对克隆植物自然群落的空间分布进行了研究,结果表明克隆分株放置格局与土壤养分空间格局显著相关,从而证实了克隆植物的分株选择性放置行为[5]

竹类植物的选择性放置研究目前尚少。在毛竹林的施肥试验中发现,当地下茎(竹鞭)穿越养分分布不均的环境时,竹笋能有选择地大量生长在养分丰富的地段而避开养分贫乏的地段[54,55]。随着土壤水分资源的提高,筇竹的间隔子长度和分枝角度显著增高,在水分资源有效性较低的生境中会选择水资源相对丰富的微生境放置分株[40]。分株的选择性放置是竹类植物能克服不利生境,同时获取更多生存资源的一种有效生态对策[4,40],这也是竹类植物能够广泛分布的一个重要原因。

4 克隆整合

相连分株间的物质传递称为克隆整合,亦称生理整合,它是克隆植物区别于非克隆植物最显著的特征之一[7,10]。克隆整合的物质传递沿物质的源—汇梯度进行,通过克隆整合作用实现的资源共享使处于资源匮乏生境的分株能够间接地从资源丰富生境的分株获取食物,从而增强了克隆植物对异质生境的适应[12,14,36,56]。竹类植物早为人知的母竹育笋即为克隆整合作用的体现。20世纪80年代,裘福庚用原子示踪法研究毛竹伐桩内腔施肥时,在与伐桩相连的分株检测到施入的32P,直接证实了分株间克隆整合作用的存在[57]

克隆整合的方向和强度等格局会对异质生境的资源分布状况表现出较强的可塑性。利用14C标记的试验表明,遮荫会改变克隆植物分株间光合产物传输的量,甚至改变其传输方向[56,58,59]。控制试验的结果显示,在同质和异质资源(水、氮、磷)供应条件下,异质资源的克隆整合强度和方向与同质资源的相比有明显的改变[60,61,62]。Saitoh等人通过15N同位素示踪证明了氮元素容易在密云赤竹(Sasa palmata)分株间传输,而且异质氮供应下的克隆整合作用强于同质氮供应的,整合作用使生长于异质环境中的密云赤竹可充分利用各异质的资源[63]。当相连分株间的“源-汇”梯度被改变时,克隆整合的方向也会随之改变。密云赤竹[56]的遮荫处理表明被处理的分株可以通过克隆整合作用从对照分株获得物质补给。

克隆整合对克隆植物形态特征的可塑性会有修饰作用[4,12,59],当与水分胁迫下的分株相连时,水分充足的Carex hirta分株单位根长的水分吸收速率得到显著提高[61]。但是,Saitoh等人[56]的研究表明,经遮荫处理的密云赤竹分株相对于与之相连的未遮荫分株具有更大的比叶面积(SLA),而且该可塑性特征不因相互间的克隆整合而消失,认为这是密云赤竹对弱光环境适应的结果,有利于增强其对有限光资源的利用。

5 克隆分工

克隆植物相连的分株为有效获取生长和繁殖所必需的地上和地下资源,伴随克隆内资源的相互传递(共享)而实现的分株形态和(或)生理等功能特化,称为克隆分工[7,33]。克隆植物实现克隆分工的条件包括:生境资源的空间异质性分布;克隆分株的特化;分株间不同资源的双向传递(通过克隆整合实现);分株潜在的生长独立性[7,14,33]。其中,克隆分株的特化是克隆分工的重要前提,它主要通过形态特化、生理特化和生物量的再分配3种方式实现[14,33,64]

通过克隆分工,克隆植物可在以下几方面受益:(1)更优的生物量分配格局,带来生物量增益[65];(2)提高单个分株的资源获取效率[66];(3)提高基株的适合度和竞争力[67];(4)提高克隆植物觅食行为的有效性和精确性[4];(5)降低种内竞争[67]。因此,克隆分工是克隆植物有效利用环境异质性的行为对策之一[12,68,69]

Saitoh等人[56,63]对密云赤竹做了遮荫的试验研究,结果表明地下茎相连的分株对中,全光照的分株会传输光合产物给遮荫分株,而且全光照的分株分配更多生物量用于地上部分生产,遮荫的分株则减少对地上部分的投资,从而推测分株对之间产生了克隆分工。然而,令人遗憾的是竹类植物克隆分工研究除此之外鲜有报道,与其他克隆植物的克隆分工研究相比[14],竹类植物的研究还亟待加强。

6 总结与展望

通过分析竹类植物的表型可塑性研究,发现竹类植物在异质生境中具有明显的表型可塑反应,主要采用形态可塑性、选择性放置和克隆整合来适应异质生境,克隆分工是否广泛存在仍有待验证。对某一种竹子而言,它往往不仅限于运用一种,而是综合运用多种表型可塑方式来应对异质生境。例如毛竹和筇竹运用形态可塑性和选择性放置[28,40,54,55],密云赤竹运用克隆整合和克隆分工来适应异质生境[56,63]

与草本克隆植物相比,现有竹类植物的表型可塑性研究仍显薄弱[70,71,72],主要体现在:(1)研究内容上,主要集中于形态可塑性研究,克隆整合次之,选择性放置和克隆分工的研究很少;(2)研究深度上,侧重异质生境中构件形态和生物量分配格局,而很少深入分析和探讨竹类植物的形态、生理和行为可塑性变化的机理;(3)研究对象上,虽然包括了3种克隆构型[7],即游击型(地下茎单轴型,如毛竹、雷竹)、密集型(地下茎合轴型,如华西箭竹、缺苞箭竹、秦岭箭竹等)以及中间类型(地下茎复轴型,如密云赤竹、斑苦竹、筇竹等),但是缺乏不同克隆构型竹子的表型可塑性比较研究。

造成竹类植物表型可塑性研究较为薄弱的原因,主要是竹类植物多为木本植物不易开展控制试验,另外长期以来竹类植物科研偏重于竹林培育和经营管理等应用研究而对克隆植物生态学的基础研究重视不足。结合克隆植物表型可塑性研究的热点和发展趋势,未来竹类植物表型可塑性研究需优先关注和重点解决的问题主要有以下几个方面:

(1)克隆整合的格局与机理。克隆整合是克隆植物最为关键的特征之一,然而目前竹类植物克隆整合的强度、速率、方向等格局,以及克隆整合的范围和发生条件等机理尚不明晰[70,72],不同物质(光合产物、水分、养分、次生产物和激素等)克隆整合格局的比较研究仍需加强。

(2)克隆整合对生态系统的影响。竹类植物籍克隆整合的优势,快速向邻近森林群落扩张已成为一个突出的生态问题[22,26]。但是,竹类植物克隆整合对群落物种组成和多样性,生态系统结构、过程和功能的影响研究十分缺乏,以至于难以准确评估竹子侵入其他群落带来的影响,这是今后需深入研究的重点领域之一。

(3)克隆分工的形成及其与环境关系。竹类植物的克隆分工研究仅见日本学者Saitoh等人对地下茎复轴型竹子密云赤竹的初步报道[56,63],尚有许多基础工作有待深入,包括不同克隆构型的竹子是否普遍存在克隆分工现象的检验。对于分布广、适应性强的竹类植物而言,需重点关注克隆分工形成的条件和途径,以及环境条件(资源异质生境、资源贫瘠生境等)在此过程所起的诱导作用。

(4)表型可塑性的等级性及环境影响。着重分析竹类植物在典型的三水平等级(分株水平、分株系统水平和基株水平)的表型反应,各水平等级之间的相互作用,环境对不同水平等级表型变化的影响,以及表型变化与基株适合度的关系。在分株系统水平上,分株的选择性放置与环境资源异质性的相互关系是值得重点研究的问题。

(5)不同克隆构型的表型可塑性特征及其内在机制。不同克隆构型竹子的分布具有明显的地带性和区域性[73],各类克隆构型的表型可塑性特征是由系统进化过程中形成的克隆构型决定还是与生境的资源状况相关,需开展不同克隆构型的对比试验研究,即克隆植物表型可塑性的限制假说[4]和适应假说[35]的检验。

参考文献
[1] Palmer T M. Spatial habitat heterogeneity influences competition and coexistence in an African acacia ant guild. Ecology, 2003, 84(11): 2843-2855.
[2] Blondel J, Thomas D W, Charmantier A, Perret P, Bourgault P, Lambrechts M M. A thirty-year study of phenotypic and genetic variation of blue tits in Mediterranean habitat mosaics. Bioscience, 2006, 56(8): 661-673.
[3] Wijesinghe D K, Hutchings M J. The effects of spatial scale of environmental heterogeneity on the growth of a clonal plant: an experimental study with Glechoma hederacea. The Journal of Ecology, 1997, 85(1): 17-28.
[4] Dong M. Clonal growth in plants in relation to resource heterogeneity: foraging behavior. Acta Botanica Sinica, 1996, 38(10): 828-835.
[5] Liang S C, Zhang S M, Yu F H, Dong M. Small-scale spatial cross-correlation between ramet population variables of Potentilla reptans var. Sericophylla and soil available phosphorus. Journal of Plant Ecology (Chinese Version), 2007, 31(4): 613-618.
[6] Leimu R, Fischer M. A meta-analysis of local adaptation in plants. PLoS One, 2008, 3(12): e4010.
[7] Dong M. Clonal Plant Ecology. Beijing: Science Press, 2011.
[8] de Kroon H, Schieving F. Resource allocation patterns as a function of clonal morphology: a general model applied to a foraging clonal plant. The Journal of Ecology, 1991, 79(2): 519-530.
[9] Gao L, Li B, Liu W Y, Shen Y X, Liu W J. Inhibition effects of daughter ramets on parent of clonal plant Eichhornia crassipes. Aquatic Botany, 2013, 107: 47-53.
[10] Dong M, Yu F H. Terminology and concept of clonal plant ecology. Journal of Plant Ecology (Chinese Version), 2007, 31(4): 689-694.
[11] Zhu Z H, Liu J X, Wang X A. Review of phenotypic plasticity and hierarchical selection in clonal plants. Journal of Plant Ecology (Chinese Version), 2007, 31(4): 588-598.
[12] Zhu Z L, Li D Z, Wang X P, Sheng L J, Shi Q. Water physiology integration and its ecological effect of clonal plants. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(12): 2602-2614.
[13] Dong M. Plant clonal growth in heterogeneous habitats: risk-spreading. Acta Phytoecologica Sinica, 1996, 20(6): 543-548.
[14] Ke S Z, Li D Z, Fan X L, Wang C H, Zhou Y, Li H, Song Y, Wang C Y, Sun Y B. Division of labor in clonal plants and its ecological effects. Journal of Tropical and Subtropical Botany, 2008, 16(6): 586-594.
[15] Agrawal A A. Phenotypic plasticity in the interactions and evolution of species. Science, 2001, 294(5541): 321-326.
[16] Li R, Zhang J, Zhang Z E. Values of bamboo biodiversity and its protection in China. Journal of Bamboo Research, 2003, 22(4): 7-12, 17-17.
[17] Wu Z Y, Raven P H, Hong D Y. Flora of China. Vol. 22: Poaceae. Beijing/St. Louis: Science Press/Missouri Botanical Garden Press, 2006.
[18] Li Z Y, Yang G Y, Du T Z, Cheng D Y, Fang L. Studies on the growth environment of Phyllostachys glauca McCl. In limestone area of the northwest Jiangxi. Acta Agriculturae Universitatis Jiangxiensis, 1998, 20(2): 82-86.
[19] Liu X, Tao J P, Huang R, Wang Y J. Water-holding capacity of forest litter in the mountain limestone region of Chongqing. Chinese Journal of Eco-Agriculture, 2008, 16(3): 712-717.
[20] Xie Y G, Yang B, Chen H, Liu J M. Study on population modules characteristics in different age classes of karst plant Drepanostachyum luodianense. Guizhou Agricultural Sciences, 2011, 39(4): 167-169.
[21] Du T Z, Li Z Y, Yang G Y, Zhu W H, Liu X W, Cheng D Y, Fang L. Study on site of Phyllostachys glauca McCl. In limestone area. Acta Agriculturae Universitatis Jiangxiensis, 1994, 16(1): 82-87.
[22] Ding L X, Wang Z L, Zhou G M, Du Q Z. Monitoring Phyllostachys pubescens stands expansion in national nature reserve of Mount Tianmu by remote sensing. Journal of Zhejiang Forestry College, 2006, 23(3): 297-300.
[23] Okutomi K, Shinoda S, Fukuda H. Causal analysis of the invasion of broad-leaved forest by bamboo in Japan. Journal of Vegetation Science, 1996, 7(5): 723-728.
[24] Suzuki S, Nakagoshi N. Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions. Ecological Research, 2008, 23(4): 641-647.
[25] Qiu E F, Hong W, Zheng Y S. Review on diversity and utilization of bamboo in China. Journal of Bamboo Research, 2001, 20(2): 11-14.
[26] Yang Q P, Wang B, Guo Q R, Zhao G D, Fang K, Liu Y Q. Effects of Phyllostachys edulis expansion on carbon storage of evergreen broad-leaved fores in Dagangshan Mountain, Jiangxi. Acta Agriculturae Universitatis Jiangxiensis, 2011, 33(3): 529-536.
[27] Wu J S, Jiang P K, Wang Z L. The effects of Phyllostachys pubescens expansion on soil fertility in national nature reserve of Mount Tianmu. Acta Agriculturae Universitatis Jiangxiensis, 2008, 30(4): 689-692.
[28] Liu J, Yang Q P, Song Q N, Yu D K, Yang G Y, Qi H Y, Shi J M. Strategy of fine root expansion of Phyllostachys pubescens population into evergreen broad-leaved forest. Chinese Journal of Plant Ecology, 2013, 37(3): 230-238.
[29] Bai S B, Zhou G M, Wang Y X, Liang Q Q, Chen J, Cheng Y Y, Shen R. Plant species diversity and dynamics in forests invaded by Moso bamboo (Phyllostachys edulis) in Tianmu Mountain Nature Reserve. Biodiversity Science, 2013, 21(3): 288-295.
[30] de Kroon H, Huber H, Stuefer J F, Van Groenendael J M. A modular concept of phenotypic plasticity in plants. New Phytologist, 2005, 166(1): 73-82.
[31] Roiloa S R, Retuerto R. Responses of the clonal Fragaria vesca to microtopographic heterogeneity under different water and light conditions. Environmental and Experimental Botany, 2007, 61(1): 1-9.
[32] Oborny B, Kun Á, Czárán T, Bokros S. The effect of clonal integration on plant competition for mosaic habitat space. Ecology, 2000, 81(12): 3291-3304.
[33] Alpert P, Stuefer J F. Division of labour in clonal plants//de Kroon H, van Groenendael J. The Ecology and Evolution of Clonal Plants. Leiden: Backbuys Publishers, 1997: 137-154.
[34] de Kroons H, Hutchings M J. Morphological plasticity in clonal plants: the foraging concept reconsidered. The Journal of Ecology, 1995, 83(1): 143-152.
[35] Dong M. Morphological responses to local light conditions in clonal herbs from contrasting habitats, and their modification due to physiological integration. Oecologia, 1995, 101(3): 282-288.
[36] Tang J B, Xiao Y, An S Q. Advance of studies on rhizomatous clonal plants ecology. Acta Ecologica Sinica, 2010, 30(11): 3028-3036.
[37] Yue C L, Wang K H, He Q J, Weng F J. Comparative research on clonal growth of Phyllostachys praecox in different conditions of soil nitrogen content. Journal of Bamboo Research, 2002, 21(1): 38-40, 45-45.
[38] Yue C L, Wang K H, Zhu Y M. Morphological plasticity of clonal plant Phyllostachys praecox f. prevernalis (Poaceae) in response to nitrogen. Annales Botanici Fennici, 2005, 42(2): 123-127.
[39] Yue C L, Chang J, Wang K H, Zhu Y M. Response of clonal growth in Phyllostachys praecox f. prevernalis to changing light intensity. Australian Journal of Botany, 2004, 52(2): 171-174.
[40] Dong W Y, Huang B L, Xie Z X, Xie Z H, Liu H Y. The ecological strategy of clonal growth of Qiongzhuea tumidinoda under different levels of water resource supply. Journal of Nanjing Forestry University: Natural Sciences Edition, 2002, 26(6): 21-24.
[41] Liu Q, Li Y X, Zhong Z C. Effects of moisture availability on clonal growth in bamboo Pleioblastus maculata. Plant Ecology, 2004, 173(1): 107-113.
[42] Liu Q, Zhong Z C. The effects of water resources supply on clonal growth in Pleioblastus maculata population. Acta Phytoecologica Sinica, 1996, 20(3): 245-254.
[43] Song L X, Tao J P, Wang W, Xi Y, Wang Y J, Ran C Y. The ramet population structures of the clonal bamboo Fargesia nitida in different canopy conditions of subalpine dark confierous forest in Wolong nature reserve, China. Acta Ecologica Sinica, 2006, 26(3): 730-736.
[44] Song L X, Tao J P, Ran C Y, Yu X H, Wang Y J, Li Y. Clonal growth of Fargesia nitida under different canopy conditions in a subalpine dark coniferous forest in Wolong nature reserve, China. Journal of Plant Ecology (Chinese Version), 2007, 31(4): 637-644.
[45] Tao J P, Song L X. Response of clonal plasticity of Fargesia nitida to different canopy conditions of subalpine coniferous forest. Acta Ecologica Sinica, 2006, 26(12): 4019-4026.
[46] Xie R, Li J Q, Zhao X, Li N. Effect of different canopy conditions on biomass allocation and clonal morphology of Fargesia denudata in a subalpine coniferous forest in southwestern China. Chinese Journal of Plant Ecology, 2010, 34(6): 753-760.
[47] Xie R, Li J Q. Clonal growth of Fargesia denudata under canopy conditions in a subalpine coniferous forest. Journal of Northeast Forestry University, 2009, 37(8): 22-25.
[48] Wang W, Franklin S B, Ren Y, Ouellette J R. Growth of bamboo Fargesia qinlingensis and regeneration of trees in a mixed hardwood-conifer forest in the Qinling Mountains, China. Forest Ecology and Management, 2006, 234(1/3): 107-115.
[49] Kobayashi T, Muraoka H, Shimano K. Photosynthesis and biomass allocation of beech (Fagus crenata) and dwarf-bamboo (Sasa kurilensis) in response to contrasting light regimes in a Japan Sea-type beech forest. Journal of Forest Research, 2000, 5(2): 103-107.
[50] Rao K S, Ramakrishnan P S. Architectural plasticity of two bamboo species (Nehouzeua dulloa A Camus and Dendrocalamus hamiltonii Nees and Arn.) in successional environments in north-east India. Proceedings: Plant Sciences, 1988, 98(2): 121-133.
[51] Roiloa S R, Hutchings M J. The effects of rooting frequency and position of rooted ramets on plasticity and yield in a clonal species: an experimental study with Glechoma hederacea. Ecological Research, 2012, 27(1): 145-152.
[52] Roiloa S R, Retuerto R. Small-scale heterogeneity in soil quality influences photosynthetic efficiency and habitat selection in a clonal plant. Annals of Botany, 2006, 98(5): 1043-1052.
[53] Roiloa S R, Retuerto R. Development, photosynthetic activity and habitat selection of the clonal plant Fragaria vesca growing in copper-polluted soil. Functional Plant Biology, 2006, 33(10): 961-971.
[54] Li R, Werger M J A, Kroon H, During H J, Zhong Z C. Interactions between shoot age structure, nutrient availability and physiological integration in the giant bamboo Phyllostachys pubescens. Plant Biology, 2000, 2(4): 437-446.
[55] Li R, Werger M J A, Zhong Z C. Influence of fertilization of the clonal growth of bamboo shoots in Phyllostachys pubescens. Acta Phytoecologica Sinica, 1997, 21(1): 19-26.
[56] Saitoh T, Seiwa K, Nishiwaki A. Importance of physiological integration of dwarf bamboo to persistence in forest understorey: a field experiment. Journal of Ecology, 2002, 90(1): 78-85.
[57] Qiu F G, Ma L L, Sun S S. Prelininary results of the fertilization in the stump of Phyllostachys pubescens with labelled atom. Journal of Bamboo Research, 1986, 5(2): 53-58.
[58] Magda D, Warembourg F R, Labeyrie V. Physiological integration among ramets of Lathyrus sylvestris L. Oecologia, 1988, 77(2): 255-260.
[59] Xu C Y, Schooler S S, Van Klinken R D. Effects of clonal integration and light availability on the growth and physiology of two invasive herbs. Journal of Ecology, 2010, 98(4): 833-844.
[60] Lotscher M, Hay M J M. Genotypic differences in physiological integration, morphological plasticity and utilization of phosphorus induced by variation in phosphate supply in Trifolium repens. The Journal of Ecology, 1997, 85(3): 341-350.
[61] de Kroon H, Fransen B, van Rheenen J W A, van Dijk A, Kreulen R. High levels of inter-ramet water translocation in two rhizomatous Carex species, as quantified by deuterium labelling. Oecologia, 1996, 106(1): 73-84.
[62] de Kroon H, van der Zalm E, van Rheenen J W A, van Dijk A, Kreulen R. The interaction between water and nitrogen translocation in a rhizomatous sedge (Carex flacca). Oecologia, 1998, 116(1/2): 38-49.
[63] Saitoh T, Seiwa K, Nishiwaki A. Effects of resource heterogeneity on nitrogen translocation within clonal fragments of Sasa palmata: an isotopic (15N) assessment. Annals of Botany, 2006, 98(3): 657-663.
[64] Stuefer J F, During H J, de Kroon H. High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments. The Journal of Ecology, 1994, 82(3): 511-518.
[65] Stueffer J F, de Kroon H, During H J. Exploitation of environmental hetergeneity by spatial division of labor in a clonal plant. Functional Ecology, 1996, 10(3): 328-334.
[66] Peterson A G, Chesson P. Short-term fitness benefits of physiological integration in the clonal herb Hydrocotyle peduncularis. Austral Ecology, 2002, 27(6): 647-657.
[67] Peltzer D A. Does clonal integration improve competitive ability? A test using aspen (Populus tremuloides ) invasion into prairie. American Journal of Botany, 2002, 89(3): 494-499.
[68] Hutchings M J, Wijesinghe D K. Patchy habitats, division of labour and growth dividends in clonal plants. Trends in Ecology & Evolution, 1997, 12(10): 390-394.
[69] Roiloa S R, Alpert P, Tharayil N, Hancock G, Bhowmik P C. Greater capacity for division of labour in clones of Fragaria chiloensis from patchier habitats. Journal of Ecology, 2007, 95(3): 397-405.
[70] Dong W Y. Current situation about the research of bamboo clonal population ecology and its application prospect. Forest Research, 2002, 15(2): 235-241.
[71] Wang W, Tao J P, Song L X, Ran C Y. Advances on the researches of bamboo population ecology. Guihaia, 2006, 26(4): 412-417.
[72] Zhuang M H, Li Y C, Chen S L. Advances in the researches of bamboo physiological integration and its ecological significance. Journal of Bamboo Research, 2011, 30(2): 5-9.
[73] Hui C M, Hu J Z, Zhang G X, Yang Y M. Studies on the present situation and prospects of bamboo diversity and its sustainable development in China. World Forestry Research, 2004, 17(1): 50-54.
[4] 董鸣. 资源异质性环境中的植物克隆生长: 觅食行为. 植物学报, 1996, 38(10): 828-835.
[5] 梁士楚, 张淑敏, 于飞海, 董鸣. 绢毛匍匐委陵菜与土壤有效磷的小尺度空间相关分析. 植物生态学报, 2007, 31(4): 613-618.
[7] 董鸣. 克隆植物生态学. 北京: 科学出版社, 2011.
[10] 董鸣, 于飞海. 克隆植物生态学术语和概念. 植物生态学报, 2007, 31(4): 689-694.
[11] 朱志红, 刘建秀, 王孝安. 克隆植物的表型可塑性与等级选择. 植物生态学报, 2007, 31(4): 588-598.
[12] 朱志玲, 李德志, 王绪平, 盛丽娟, 石强. 克隆植物的水分生理整合及其生态效应. 西北植物学报, 2006, 26(12): 2602-2614.
[13] 董鸣. 异质性生境中的植物克隆生长: 风险分摊. 植物生态学报, 1996, 20(6): 543-548.
[14] 柯世朕, 李德志, 范旭丽, 王超华, 周燕, 李红, 宋云, 王春叶, 孙玉冰. 克隆植物中的劳动分工及其生态学效应. 热带亚热带植物学报, 2008, 16(6): 586-594.
[16] 李睿, 章笕, 章珠娥. 中国竹类植物生物多样性的价值及保护进展. 竹子研究汇刊, 2003, 22(4): 7-12, 17-17.
[18] 黎祖尧, 杨光耀, 杜天真, 程丹阳, 方力. 赣西北石灰岩地区淡竹生长环境研究. 江西农业大学学报, 1998, 20(2): 82-86.
[19] 刘欣, 陶建平, 黄茹, 王永健. 重庆石灰岩地区3种林分林下枯落物持水能力比较. 中国生态农业学报, 2008, 16(3): 712-717.
[20] 谢元贵, 杨泊, 陈洪, 刘济明. 喀斯特适生植物小蓬竹不同龄级种群的构件特征. 贵州农业科学, 2011, 39(4): 167-169.
[21] 杜天真, 黎祖尧, 杨光耀, 朱伟华, 刘晓武, 程丹阳, 方力. 石灰岩地区淡竹立地条件研究. 江西农业大学学报, 1994, 16(1): 82-87.
[22] 丁丽霞, 王祖良, 周国模, 杜晴洲. 天目山国家级自然保护区毛竹林扩张遥感监测. 浙江林学院学报, 2006, 23(3): 297-300.
[25] 邱尔发, 洪伟, 郑郁善. 中国竹子多样性及其利用评述. 竹子研究汇刊, 2001, 20(2): 11-14.
[26] 杨清培, 王兵, 郭起荣, 赵广东, 方楷, 刘苑秋. 大岗山毛竹扩张对常绿阔叶林生态系统碳储特征的影响. 江西农业大学学报, 2011, 33(3): 529-536.
[27] 吴家森, 姜培坤, 王祖良. 天目山国家级自然保护区毛竹扩张对林地土壤肥力的影响. 江西农业大学学报, 2008, 30(4): 689-692.
[28] 刘骏, 杨清培, 宋庆妮, 余定坤, 杨光耀, 祁红艳, 施建敏. 毛竹种群向常绿阔叶林扩张的细根策略. 植物生态学报, 2013, 37(3): 230-238.
[29] 白尚斌, 周国模, 王懿祥, 梁倩倩, 陈娟, 程艳艳, 沈蕊. 天目山保护区森林群落植物多样性对毛竹入侵的响应及动态变化. 生物多样性, 2013, 21(3): 288-295.
[36] 汤俊兵, 肖燕, 安树青. 根茎克隆植物生态学研究进展. 生态学报, 2010, 30(11): 3028-3036.
[37] 岳春雷, 汪奎宏, 何奇江, 翁甫金. 不同氮素条件下雷竹克隆生长的比较研究. 竹子研究汇刊, 2002, 21(1): 38-40, 45-45.
[40] 董文渊, 黄宝龙, 谢泽轩, 谢周华, 刘厚源. 不同水分条件下筇竹无性系的生态适应性研究. 南京林业大学学报: 自然科学版, 2002, 26(6): 21-24.
[42] 刘庆, 钟章成. 斑苦竹无性系生长与水分供应及其适应对策的研究. 植物生态学报, 1996, 20(3): 245-254.
[43] 宋利霞, 陶建平, 王微, 席一, 王永健, 冉春燕. 卧龙亚高山暗针叶林不同林冠环境下华西箭竹分株种群结构特征. 生态学报, 2006, 26(3): 730-736.
[44] 宋利霞, 陶建平, 冉春燕, 余小红, 王永健, 李媛. 卧龙亚高山暗针叶林不同林冠环境下华西箭竹的克隆生长. 植物生态学报, 2007, 31(4): 637-644.
[45] 陶建平, 宋利霞. 亚高山暗针叶林不同林冠环境下华西箭竹的克隆可塑性. 生态学报, 2006, 26(12): 4019-4026.
[46] 解蕊, 李俊清, 赵雪, 李楠. 林冠环境对亚高山针叶林下缺苞箭竹生物量分配和克隆形态的影响. 植物生态学报, 2010, 34(6): 753-760.
[47] 解蕊, 李俊清. 亚高山针叶林冠下缺苞箭竹的克隆生长. 东北林业大学学报, 2009, 37(8): 22-25.
[55] 李睿, 维尔格 M J A, 钟章成. 施肥对毛竹(Phyllostachys pubescens)竹笋生长的影响. 植物生态学报, 1997, 21(1): 19-26.
[57] 裘福庚, 马力林, 孙受素. 用示踪原子法研究毛竹伐桩内腔施肥的初步结果. 竹子研究汇刊, 1986, 5(2): 53-58.
[70] 董文渊. 竹类无性系种群生态学研究现状及其应用前景. 林业科学研究, 2002, 15(2): 235-241.
[71] 王微, 陶建平, 宋利霞, 冉春燕. 竹类植物种群生态学研究进展与展望. 广西植物, 2006, 26(4): 412-417.
[72] 庄明浩, 李迎春, 陈双林. 竹子生理整合作用的生态学意义及研究进展. 竹子研究汇刊, 2011, 30(2): 5-9.
[73] 辉朝茂, 胡冀珍, 张国学, 杨宇明. 中国竹类多样性及其可持续利用研究现状和展望. 世界林业研究, 2004, 17(1): 50-54.