生态学报  2014, Vol. 34 Issue (20): 5944-5952

文章信息

徐鹏雁, 牛建明, AlexanderBuyantuyev, 张庆, 董建军
XU Pengyan, NIU Jianming, Alexander Buyantuyev, ZHANG Qing, DONG Jianjun
呼和浩特市不同土地利用/覆盖类型对杨树春季物候的影响
Variable effects of land use/cover patterns on plant spring phenology in Hohhot, Inner Mongolia
生态学报, 2014, 34(20): 5944-5952
Acta Ecologica Sinica, 2014, 34(20): 5944-5952
http://dx.doi.org/10.5846/stxb201304120694

文章历史

收稿日期:2013-4-12
修订日期:2014-8-6
呼和浩特市不同土地利用/覆盖类型对杨树春季物候的影响
徐鹏雁1, 2, 牛建明1, 3 , AlexanderBuyantuyev4, 张庆1, 董建军1    
1. 内蒙古大学生命科学学院, 呼和浩特 010021;
2. 托克托县民族中学, 呼和浩特 010200;
3. 中美生态能源及可持续性科学研究中心, 呼和浩特 010021;
4. 纽约州立大学奥尔巴尼分校地理及规划系, 奥尔巴尼 12222
摘要:城市化引起土地利用方式的变化,在局地、区域以及全球尺度上对环境造成了极为深刻的影响。局地尺度上,大面积的不透水地面以及较少的植被覆盖格局已经导致城郊物候的差异。在内蒙古呼和浩特城区选取新疆杨、青杨和毛白杨作为观测树种,通过定点定株的春季物候及温度的观测,探讨城市土地利用/覆盖对植物物候的影响。结果表明:1)各物候期发生当月(即4月)的平均气温、≥5 ℃积温、最低气温与各物候期之间呈显著负相关,而日平均最高气温与各物候期之间呈显著正相关。2)在4种不同的土地利用/覆盖类型中,绿地及裸土壤面积与4-6月的月平均气温、平均最低气温及≥5 ℃积温之间呈显著负相关,不透水面面积与各温度之间呈显著正相关。3)绿地及水体面积与展叶始期呈现显著负相关,而不透水面面积与展叶始期之间呈现显著正相关。研究表明,不同的土地利用/覆盖格局下,其温度之间存在差异,土地利用/覆盖显著地影响着温度的变化,进而影响了植物的春季物候。
关键词物候    温度    土地利用/覆盖    格局    呼和浩特    
Variable effects of land use/cover patterns on plant spring phenology in Hohhot, Inner Mongolia
XU Pengyan1, 2, NIU Jianming1, 3 , Alexander Buyantuyev4, ZHANG Qing1, DONG Jianjun1    
1. School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
2. Nationalities Middle School of Tokoto County, Hohhot 010200, China;
3. Sino-US Center for Conservation, Energy, and Sustainability Science, Hohhot 010021, China;
4. Department of Geography and Planning, University at Albany, State University of New York, Albany 12222, USA
Abstract:Urbanization profoundly affects ecological processes across many scales. Most such effects are primarily due to land use/cover transformations. At the local scale proliferation of impervious surfaces and decreases in vegetation cover in cities have led to phenological differences between urban and rural areas. In this study, we monitored spring phenology of Populus alba L.var. pyramidalis Bunge, P. cathayana Rehd and P. tomentosa Carr. at multiple sites across the urban core and in the surrounding rural areas of Hohhot city, Inner Mongolia. Urban sites were established mainly along streets, in city parks and schools. Rural sites occupied different natural localities in suburbs characterized by significant distance from the urban core and relatively low human disturbance. Spring phenophases we monitored include leaf budburst (BL), first full leaf (L1), and unfolding of ≥ 50% leaves (LU). We simultaneously measured air temperature at each site using ThermochronDS-1921G (±1 ℃ accuracy, 0.5 ℃ precision) data loggers which collected data between late March (Day of Year (DOY) = 88) and late November(DOY= 330) during two growing seasons. Land use/cover patterns were analyzed by digitizing green spaces (including trees, manicured lawns, grasses, and agriculture), bare soil (unpaved areas), water (lakes, rivers) and pavements in the 300 m circular buffer around each site. Proportions of each cover type at each site were used as explanatory variables for observed patterns of temperature and phenology. Correlations and regression analyses were performed using SPSS 17.0. Our findings suggest the following conclusions. 1) The timing of leaf budburst (BL), first full leaf (L1) and unfolding of ≥ 50% leaves (LU) phenophases were best predicted by mean daily temperature, minimum daily temperature and Growing degree days temperature that above 5 degree centigrade (GDD5) of April prior to the initiation of each phenophase. However, the relationship between the three phenophases and maximum daily temperature of April were positively correlated; 2) Among the four land use/cover types, green spaces together with bare soil were negatively related to the mean daily temperature, GDD5, and minimum daily temperature of April to June. We found high positive correlation between paved areas and all temperature variables. 3) Green spaces together with water were negatively correlated with the first full leaf (L1) phenophase, while paved areas had positive correlations with L1. Differences in land use/cover were clearly were reinforced by distinct mean daily temperature and GDD5. We conclude that rural to urban land use/cover pattern transition in general advances spring phenophases by significantly increasing temperature, the primary environmental driver of phenology. Our study of the rapidly urbanizing area of Inner Mongolia provides important information for scientists and practitioners engaged in understanding effects of urbanization on environmental and human health.
Key words: phenology    temperature    land use/cover    pattern    Hohhot    

城市化已成为当今世界发展的重要特征[1]。预计到2025年,世界城市人口比例将增加至全球人口的60%[2]。而我国预计到2050年,城市化率将由目前的40%扩大到70%以上[1]。人类活动对气候的影响在城市表现得尤为突出[3]。高强度的人为活动使城市区域出现大量的建筑物、道路以及人造表面,不透水面面积激增[2],植被面积减少,导致城市土地利用/覆盖空间格局发生变化,改变了城市的局部气候特征如气温、湿度、对流、降水格局等[1],产生城市热岛效应[4],进而影响城区动植物的生理过程[5]

植物物候对气候具有敏感性[3],能直接反应气候变化,且容易观察[6, 7],可以指示城市化和全球气候变化的环境效应[8, 9, 10],是多尺度上监测气候变化对植被影响的一个很好的工具[11, 12, 13, 14, 15]。在气候变化的大背景下,无论是基于地面物候资料[16, 17, 18]还是遥感手段[19, 20]的观测都表明,中高纬地区春季植物物候提前[15, 21, 22, 23, 24, 25]、植物初级生产力以及植物分布界限等都会随着改变[26, 27],尽管也存在区域差异[28]。大量研究表明,城区春季物候早于郊区。例如,欧洲北部地区的10个城市中,城市区域的春季物候要早于周围郊区[12];在北美东部地区,城市化导致城区的植物物候要早于周围郊区[29];在我国,长三角地区的城市化过程导致城区内植被始绿期提前[1];北京地区自从1978年以来春季物候提前,也与城市化过程密切相关[30, 31, 32]

我国对于城市气候与植物物候之间关系的研究,大多根据历年气象与物候资料,注重分析气候与物候之间的时间对应关系[33, 34, 35, 36, 37],建立物候模型,而在局地尺度上结合土地利用/覆盖,分析植物物候与城市气候的研究相对较少。本研究以内蒙古呼和浩特城区为例,通过定点定株物候及温度的观测,探讨春季期间温度对杨树物候的影响,阐述不同土地利用/覆盖格局与物候之间的关系,为深入认识城市土地利用/覆盖对生态系统的影响提供参考。

1 研究方法 1.1 研究区概况

呼和浩特市位于内蒙古中部土默川平原,介于北纬40°51′—41°8′,东经110°46′—112°10′之间,平均海拔1050 m,全市总人口291万,总面积为1.7万km2。呼和浩特市市辖新城区、赛罕区、回民区与玉泉区,市区常住人口220万人,建成区面积210 km2。市区北部为大青山山地,南部为土默川平原,地势由东北向西南逐渐倾斜。研究区域属中温带半干旱大陆性季风气候区,根据呼和浩特市南郊气象站1991—2012年数据显示,呼和浩特市区年平均气温7.58 ℃,年平均降水量326 mm,年平均日照时数2832 h。

1.2 物候与气温的观测与处理

2010—2011年期间,在呼和浩特城区及周边地区等地设置物候观测以及温度观测样点共45个(图 1),观测树种为新疆杨(Populus alba L.var. pyramidalis Bunge)、青杨(P. cathayana Rehd)和毛白杨(P. tomentosa Carr.),每个观测点选3株大小、形态相似的个体。物候期指标包括叶芽开放期(Leaf Budburst,BL)、展叶始期(First full leaf,L1)、展叶盛期(50% Leaves unfolded,LU)。采用儒略日(Julian days)换算方法,即年序列累积日数(Day of year,DOY)得到各物候期的时间序列[31]

图 1 研究区地理位置及样点分布图 Fig. 1 Sample distribution map in the study area

同时进行温度观测的共有29个样点,每个观测点周围的空气温度由ThermochronDS-1921G数据记录器(±1 ℃的准确度,0.5 ℃精密度)探测并记录,观测时间为每年的3月28日(DOY = 88)至11月25日(DOY = 330)。选取的温度指标包括日平均温度、日平均最低温度、≥5 ℃的活动积温(后简称积温;Growing degree days temperature that above 5 degree centigrade,GDD5)及日平均最高温度。

1.3 土地利用/覆盖专题遥感解译

利用2010年呼和浩特市GeoEye高分辨率卫星遥感图像,在eCognition 9.2和ArcGIS 9.3软件支持下,对观测点周围300 m范围内的土地利用/覆盖专题进行解译,具体类型包括绿地、不透水面、水体和裸土壤。

1.4 统计分析

利用SPSS 17.0进行Pearson相关等数据分析,利用Excel 2010及Sigmaplot 12.3进行数据的常规处理和图表绘制。

2 研究结果 2.1 杨树春季物候特征及其与温度的关系 2.1.1 叶芽开放期与展叶期的物候特征

2 010—2011年期间,研究区新疆杨、青杨以及毛白杨的物候发生时间十分接近:平均叶芽开放期的年序列累积日数为115—116 d(4月25日—4月26日)之间,展叶始期117 d(4月27日),展叶盛期119—120 d(4月29日—4月30日)之间(表 1)。

表 1 2010—2011年新疆杨、青杨、毛白杨叶芽开放期与展叶期物候特征 Table 1 Leaf budburst and leaf unfolding days of Populus alba var. pyramidalis,P. cathayana and P. tomentosa in 2010—2011
观测树种Observed species观测点数]Number of sites叶芽开放期/dLeaf budburst(BL)展叶期 Leaves unfolding/d
展叶始期First full leaf(L1)展叶盛期5 0% Leaves unfolded(LU)
新疆杨P. alba L. var. pyramidalis14116.1±7.71117.8±7.42119.9±6.43
青杨P. cathayana7115.1±7.00117.2±6.93120.8±6.58
毛白杨 P. tomentosa9115.6±7.42117.3±7.42119.3±6.58
2.1.2 杨树春季物候特征与温度的相关关系

表 2中可以看出,4月的日平均气温、日平均最低气温及≥5 ℃积温与各物候期呈显著负相关,而日平均最高气温与各物候期呈显著正相关。这表明,总体上,在物候发生当月的温度越高,物候发生越早,温度越低,物候发生越迟;而日平均最高气温与物候之间显著正相关关系表明,较高的日平均最高温度则不利于各物候期较早发生。

表 2 新疆杨、青杨、毛白杨各物候期与4月各温度的关系 Table 2 The relationships between all phenophases of P. alba L. var. pyramidalis,P. cathayana and P. tomentosa. and different temperature types in April
温度类型Temperature type树种及物候期 Species and phenophases
新疆杨P. alba L. var. pyramidalis 青杨P. cathayana 毛白杨P. tomentosa
BLL1LUBLL1LUBLL1LU
**表示在0.01水平下显著,*表示在0.05水平下显著;#表示在0.1水平下显著
日平均气温Mean daily temperature-0.928**-0.945**-0.932**-0.833**-0.886**-0.855**-0.921**-0.886**-0.893**
日平均最高气温Maximum daily temperature0.941**0.946**0.925**0.776**0.778**0.879**0.963**0.960**0.937**
日平均最低温度Minimum daily temperature-0.859**-0.869**-0.831**-0.901**-0.901**-0.926**-0.971**-0.950**-0.943**
≥5 ℃积温 Growing degree days temperature that above 5 degree centigrade (GDD5)-0.873**-0.887**-0.889**-0.844**-0.837**-0.857**-0.903**-0.866**-0879**
2.2 土地利用/覆盖类型对物候及温度的影响

参照Shustack等人提取景观类型的方法[38],对每个观测点周围300 m缓冲区的土地利用/覆盖类型进行提取、统计,得到结果见表 3。从表中可以看出,观测点300 m范围内主要以不透水面及绿地为主,部分观测点的水体及裸土壤的面积比例达30%以上。

表 3 观测点300 m范围土地利用/覆盖类型面积百分比 Table 3 The proportion of land use/ cover types within 300 m of each study site
点编号Site number绿地/%Vegetated surfaces不透水面/%Impervioussurfaces水体/%Water and wetland裸土壤/%Bare soil点编号Site number绿地/%vegetated surfaces不透水面/%Impervioussurfaces水体/%Water and wetland裸土壤/%Bare soil
108.1591.850.000.00837.4453.120.009.43
1111.6788.330.000.002646.3748.542.342.75
1214.6585.350.000.001746.3641.6811.960.00
4416.0583.950.000.003534.9947.175.4812.37
717.5482.280.000.182031.1547.077.0014.78
1320.3879.620.000.002748.2543.321.806.64
4520.5679.440.000.001622.6334.5734.867.95
3120.8179.190.000.003433.5443.955.9616.55
623.6675.800.000.542849.6430.7115.374.28
2226.4173.350.000.243663.6531.020.005.33
3029.1570.850.000.004253.4333.661.1711.74
1528.1868.523.290.004027.0341.820.0031.15
1827.9965.576.440.004173.5124.100.002.39
1431.2666.612.130.003769.7425.400.004.86
3326.9766.452.054.53274.5222.560.002.92
2931.8665.580.002.564372.1622.640.005.19
3835.8364.170.000.002472.4020.100.007.50
2337.2262.780.000.00479.4215.090.005.50
1934.0156.437.092.473272.3713.077.956.62
3924.8261.362.3811.442557.6919.340.0022.97
2136.8655.704.313.13391.844.560.003.59
147.0952.620.000.29570.5510.720.0018.73
942.3453.510.004.15

土地利用/覆盖类型与温度及物候的相关关系见表 4。首先,不同的土地利用/覆盖类型对春季4—6月的日平均气温、日平均最低气温以及≥5 ℃积温有显著影响,其中对日平均最低气温影响最大,呈现显著负相关关系。但是,对日平均最高气温的影响不显著。

表 4 不同土地利用/覆盖类型与温度及物候的相关关系 Table 4 The relationships of land use / cover types with temperatures and phenophases
温度类型及物候期Temperature typeand phenophases月份Months绿地Vegetated surfaces不透水面Impervious surfaces水体Water and wetland裸土壤Bare soil
日平均气温Mean daily temperature4-0.3990.411*0.231-0.336
5-0.598**0.621**0.017-0.444*
6-0.3500.405*-0.256-0.324
日平均最高气温Maximum daily temperature40.0300.009-0.040-0.117
50.100-0.0670.002-0.069
6-0.0510.140-0.096-0.330
日平均最低气温Minimum daily temperature4-0.422**-0.424*0.003-0.385**
5-0.677**-0.708**0.309-0.566**
6-0.422**-0.424*0.003-0.385**
≥5 ℃积温May GDD temperature(GDD5)4-0.4040.412*0.232-0.354
5-0.598**0.620**0.016-0.444*
6-0.3510.405*-0.256-0.324
叶芽开放期 Leaf budburst(BL)0.325-0.2600.3610.141
展叶始期 First full leaf (L1)-0.386*0.496*-0.519**-0.250
展叶盛期 50% Leaves unfolded (LU)0.292-0.1940.1890.008

就具体类型而言,绿地面积和不透水面面积对各气温指标影响最大,其次是裸土壤面积。除日平均最高气温外,绿地面积、裸土壤面积与其它各温度之间呈现显著负相关,不透水面面积与各温度之间呈现显著正相关。可见在观测点300 m的范围内,绿地及裸土壤的面积越大,其周围的温度越低,而不透水面面积越大则温度越高。

针对物候特征,不同的土地利用/覆盖类型对展叶始期的影响最大,表现为绿地面积及水体面积与展叶始期之间呈现显著负相关,而不透水面面积与展叶始期之间呈现显著正相关。即在观测点300 m的范围内,绿地面积与水面面积越大,该点的物候发生越迟;而不透水面面积越大,物候发生则越早。

2.3 不同土地利用/覆盖下周围环境温度的差异

根据不透水面的面积比例,将观测点分为三类,即不透水面面积大于60%、30%—60%、小于30%,并分别代表城区、城郊地区及郊区3种地域类型:城区点主要位于道路的两侧,城郊地区点主要位于公园、学校内(其绿地面积高于城区点),郊区点则主要为分布于主城区外的点以及公园、苗圃等绿地面积较多的点。综合分析发现,3种地域条件下大于等于5 ℃积温呈现出由城区向城郊地区、郊区逐步降低的变化趋势(图 2)。然而,该变化特征在不同的月份存在不同的差异,在DOY=120 d(4月30日)之后差异明显一些。日平均温度指标也获得了相似的结果(图 3),并且,自6月10日至9月7日,三者之间的差异更加突出(图 4)。上述结果表明,不同的土地利用/覆盖结构与格局对温度产生了影响,但对春季温度影响的程度相对较弱。

图 2 2010—2011年4月1日—6月10日期间不同环境下的≥5 ℃积温曲线 Fig. 2 The growing degree days temperature that above 5 degree centigrade curves in different environments from 1st April to 10th June in 2010—2011
图 3 2010—2011年4月1日—6月10日期间不同环境下的日平均温度曲线 Fig. 3 The mean daily temperature curves in different environments from 1st April to 10th June in 2010—2011
图 4 2010—2011年6月10日—9月7日期间不同环境下的日平均温度曲线 Fig. 4 The mean daily temperature curves in different environments from 10th June to 7th September in 2010—2011
3 讨论

(1)控制植物物候变化的内外因素有很多,外因有温度、日长、水分等,内因有遗传因子和植物激素等。在影响植物物候期的气象因子中,温度是决定物候发生的最主要因子[39],特别是在植物生长发育各阶段的前期[40]。就本研究中新疆杨、青杨及毛白杨的三个春季物候期而言,每个物候期发生当月的日平均气温、日平均最低气温及≥5 ℃积温与物候之间呈现显著负相关关系,也即温度越高,则物候发生越早,而温度越低,则物候发生越迟,支持了前人[41, 42, 43]的研究结果。另一方面,物候发生当月的日平均最高气温与物候呈显著正相关关系,这可能与植物物候的发生需要一定时期的低温刺激[44]有关。张福春[39]指出,低温刺激能促进植物解除休眠,通常的休眠只有在温度低于5—8 ℃时才会打破,且短时间的低温效果可以积累起来。本研究中,日平均最高气温值较高可能会影响物候发生需要的低温量以及一定时间的持续低温,使得出现日平均气温值越高,物候反而推迟的现象。另外,由于本研究对温度并没有进行全年的监测,也即在11月26日至次年3月27日之间没有温度记录,因此使得本研究中对温度与物候的关系的研究,只选取了4月的温度指标,不免会存在一定的局限性。

(2)城市化最直接的结果是导致土地利用方式发生变化[45],而建设用地不断增加是快速城市化地区景观结构变化的最显著标志[46]。1987—1997年期间,呼和浩特市城市建设用地呈现明显扩展趋势,年均扩展率为10.23%[47]。随着建设用地迅速扩张,土地利用格局不断变化,城市建设不断地向郊区扩展,向地下扩展,向空中扩展,形成以水泥、沥青、砖、

石、玻璃、金属等为材料建造起来的人工地貌体,原来的林地、草地、农田、水塘或牧场的郊区自然生态环境逐渐缩小或消失[2, 48],因而造成地面反射率、导热率、热容量等热性质发生变化[1],地表蒸发量、植物蒸腾量减少,城市以蒸发形式散热变少[49],它们从根本上改变了城市区域下垫层的热力学、动力学、水循环特征,从而对城市的温度、湿度、气流产生影响,使得环境温度产生空间异质性。大量的有关城市热岛效应的研究发现[31, 50, 51],在城市化程度较高的区域例如城中心区与商业区,环境温度较高,这与不透水面面积较大且集中有关;而城市化程度较低的区域如郊区,环境温度较低,与绿地面积相对较多有关。本项研究也得出了类似的结论。在不同的土地利用/覆盖(城区、城郊地区、郊区)结构与格局下,环境温度的表现也不同(图 2图 4),并且与物候具有显著的相关关系。在各观测点周围300 m的范围内,不透水面面积越大,则周围的环境温度越高,物候发生越早;而绿地、水体及裸土壤的面积越大,则周围的环境温度越低,物候发生越迟。可见,城市土地利用/覆盖的改变,首先重塑了城市环境温度的空间分布,增加了温度空间格局的异质性,从而间接地影响着植物物候以及物候发生的空间分布格局。

(3)本研究尚存在一些不足。在布置观测样点时,受取样的客观因素限制,难以选取同一杨树种;从样点分布的角度看,主城区外布置的观测样点相对较少,影响了城区内外的比较分析,也因此弱化了城市化引起物候变化的趋势。另一方面,加强较长时间尺度上对物候与土地利用变化的同步观测,将十分有助于阐明城市土地利用/覆盖变化对物候的影响。

4 结论

(1)分布于呼和浩特城区及周边地区的新疆杨、青杨及毛白杨的3个春季物候期发生时间相近,物候期发生当月的日平均气温、日平均最低气温、日平均最高气温和≥5 ℃积温对各物候期具有显著影响:整体上呈现出温度越高,则物候发生越早,而温度越低,则物候发生越迟的规律;但日平均最高气温较多出现则不利于物候较早发生。

(2)各观测点周围方圆300 m内的土地利用/覆盖类型显著地影响4—6月的日平均气温、日平均最低气温以及≥5 ℃积温,进而对杨树物候也产生了显著影响。一般地,观测点周围300 m范围内的不透水面面积越大,则环境温度就越高,物候发生就越早;相反,绿地、水体等类型的面积越大,其周围的温度就越低,物候发生就越迟。

致谢: 张雪峰、尚辰蔚、常昌明、贾晓燕、高敏、王蓉等人参与了部分野外观测工作,张雪峰等人提供了遥感解译方面的指导,特此致谢。

参考文献
[1] Han G F, Xu J H, Yuan X Z. Impact of urbanization on vegetation phenology in major cities in Yangtze River Delta region. Chinese Journal of Applied Ecology, 2008, 19(8): 1803-1809.
[2] Pickett S T A, Cadenasso M, Grove J, Nilon C H, Pouyat R V, Zipperer W C, Costanza R. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas//Urban Ecology. US: Springer, 2008: 99-122.
[3] Zheng Z F, Zheng Y, Li Q C. Effect of urbanization on the temperature of Beijing metropolis in recent 30 years. Chinese Journal of Eco-Agriculture, 2007, 15(4): 26-29.
[4] Li S Y, Chen H B, Li W. The impact of urbanization on city Climate of Beijing Region. Plateau Meteorology, 2008, 27(5): 1102-1110.
[5] Kuang W H, Liu J Y, Lu D S. Pattern of impervious surface change and its effect on water environment in the Beijing-Tianjin-Tangshan metropolitan area. Acta Geographica Sinica, 2011, 66(11): 1486-1496.
[6] Badeck F W, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S. Responses of spring phenology to climate change. New Phytologist, 2004, 162(2): 295-309.
[7] Bertin R I. Plant phenology and distribution in relation to recent climate change. The Journal of the Torrey Botanical Society, 2008, 135(1): 126-146.
[8] Menzel A. Phenology: its importance to the global change community. Climatic Change, 2002, 54(4): 379-385.
[9] White M A, Brunsell N, Schwartz M D. Vegetation phenology in global change studies. Phenology: An Integrative Environmental Science, 2003, 39: 453-466.
[10] Morisette J T, Richardson A D, Knapp A K, Fisher J I, Graham E A, Abatzoglou J, Wilson B E, Breshears D D, Henebry G M, Hanes J M. Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Frontiers in Ecology and the Environment, 2008, 7(5): 253-260.
[11] Chuine I, Cambon G, Comtois P. Scaling phenology from the local to the regional level: advances from species-specific phenological models. Global Change Biology, 2000, 6(8): 943-952.
[12] Roetzer T, Wittenzeller M, Haeckel H, Nekovar J. Phenology in central Europe-differences and trends of spring phenophases in urban and rural areas. International Journal of Biometeorology, 2000, 44(2): 60-66.
[13] Schwartz M D, Reiter B E. Changes in north American spring. International Journal of Climatology, 2000, 20(8): 929-932.
[14] Basteri G, Benvenuti S. Wildflowers pollinators-attractivity in the urban ecosystem. Acta Hort.(ISHS) 881: 2010: 585-590. http://www.actahort.org/books/881/881_98.htm.
[15] Guyon D, Guillot M, Vitasse Y, Cardot H, Hagolle O, Delzon S, Wigneron J P. Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series. Remote Sensing of Environment, 2011, 115(2): 615-627.
[16] Walther G R, Post E, Convey P, Menzel A, Parmesan C, Beebee T J C, Fromentin J M, Hoegh-Guldberg O, Bairlein F. Ecological responses to recent climate change. Nature, 2002, 416(6879): 389-395.
[17] Menzel A, Sparks T H, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A. European phenological response to climate change matches the warming pattern. Global Change Biology, 2006, 12(10): 1969-1976.
[18] Root T L, Price J T, Hall K R, Schneider S H, Rosenzweig C, Pounds J A. Fingerprints of global warming on wild animals and plants. Nature, 2003, 421(6918): 57-60.
[19] Corresponding R S, Vidale P L. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. International Journal of Remote Sensing, 2004, 25(17): 3303-3330.
[20] Slayback D A, Pinzon J E, Los S O, Tucker C J. Northern hemisphere photosynthetic trends 1982-1999. Global Change Biology, 2003, 9(1): 1-15.
[21] Defila C, Clot B. Phytophenological trends in Switzerland. International Journal of Biometeorology, 2001, 45(4): 203-207.
[22] Menzel A, Estrella N, Fabian P. Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biology, 2001, 7(6): 657-666.
[23] Schwartz M D, Ahas R, Aasa A. Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology, 2006, 12(2): 343-351.
[24] Sparks T H, Menzel A. Observed changes in seasons: an overview. International Journal of Climatology, 2002, 22(14): 1715-1725.
[25] Li R P, Zhou G S, Zhang H L. Research advances in plant phenology. Chinese Journal of Applied Ecology, 2006, 17(3): 541-544
[26] Zhang F C. Effects of global warming on plant phenological everts in China. Acta Geograpphica Sinica, 1995, 50(5): 402-410.
[27] Yang L T, Hou Q. Phenological changes of populus simonii and its relationship with meteorological conditions in the Eastern Inner Mongolia. Journal of Meteorology And Ironment, 2008, 24(6): 39-44.
[28] Ho C H, Lee E J, Lee I, Jeong S J. Earlier spring in Seoul, Korea. International Journal of Climatology, 2006, 26(14): 2117-2127.
[29] White M A, Nemani R R, Thornton P E, Running S W. Satellite evidence of phenological differences between urbanized and rural areas of the eastern United States deciduous broadleaf forest. Ecosystems, 2002, 5(3): 260-273.
[30] Xia J J, Yan Z W. The impact of urbanization process on local changes in the growing season in Beijing//The 28th Annual Meeting of Chinese Meteorological Society-S7 for City Weather Forecasting and Fine Service. Beijing: Chinese Meteorological Society, 2011.
[31] Luo Z K, Sun O J, Ge Q, Xu W T, Zheng J J. Phenological responses of plants to climate change in an urban environment. Ecological Research, 2007, 22(3): 507-514.
[32] Lu P Y Q, Liu J, Liu J D, Lee X H. Advance of tree-flowering dates in response to urban climate change. Agricultural and Forest Meteorology, 2006, 138(1/4): 120-131.
[33] Li R P, Zhou G S. Responses of woody plants phenology to air temperature in Northeast China in 1980-2005. Chinese Journal of Ecology, 2010, 29(12): 2317-2326.
[34] Chen X Q. Relationships between grow seasons determined by tree's phenology and air temperature: the case of the Taunusmountain area in central Germany. Actamet Eorologica Sinica, 2000, (6): 726-737.
[35] Xie Y Y, Lu P L, Yu Q. Sensitivity of leaf unfolding date for woody plant to temperature variability in spring in China's eastern monsoonal region. Chinese Journal of Agrometeorology, 2010, 31(4): 495-500.
[36] Wu R F, Shen J G, Yan W X, Zhang H. Impact of climate warming on phenophase of Populus tomentosa in Inner Mongolia. Chinese Journal of Applied Ecology, 2009, (4): 785-790.
[37] Han F, Li X H, Miao B L, Bater U, Guo R Q. Effects of climate change on bud opening of Populus Simonii Carr. in Inner Mongolia. Meteorological Monthly, 2010, 36(1): 91-96.
[38] Shustack D P, Rodewald A D, Waite T A. Springtime in the city: exotic shrubs promote earlier greenup in urban forests. Biological Invasions, 2009, 11(6): 1357-1371.
[39] Zhang F C. Phenology. Beijing: Meteorological Press, 1985, 58-66.
[40] Lu P L. Study of Response of Main Woody Plant Phenology to Climate Change in China[D]. Beijing: Beijing Forestry University, 2006.
[41] Han Y D, Yu C W, Li J L. Relationship between six trees spring phenophase and temperature in Shengyang. Journal of Shenyang Normal University: Natural Science, 2006, 24(1): 96-99.
[42] Cao Y F, Wei Y R, You L, Liu P T, Wu Q F. Phenological change of Populus simonii Carr. and it's response to air temperature variation in last 30 years in Inner Mongolia. Chinese Journal of Agrometeorology, 2011, 32(4): 538-542.
[43] Jiang J F, Wang H L, Wei Y G, Ding W K. Response of different type plants' phenology to climate change in East of Hexi Corridor. Chinese Journal of Agrometeorology, 2011, 32(4): 543-549.
[44] Lu P L. Study of the Response of Main Woody P1ant Pheno1ogy to C1imate Change in China[D]. Beijing: Beijing Forestry University, 2006.
[45] Zhou L, Dickinson R E, Tian Y, Fang J, Li Q, Kaufmann R K, Tucker C J, Myneni R B. Evidence for a significant urbanization effect on climate in China. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26): 9540-9544.
[46] Li S J, Zeng H. The expanding characteristics study of built-up land use along the urbanization gradient in quickly urbanized area: a case study of Nanchang area. Acta Ecologica Sinica, 2004, 24(1): 55-62.
[47] Su D L G Q. Research of Urban Heat Island Effects in Hohhot[D]. Hohhot: Inner Mongolia University, 2009.
[48] Wang C F, Liu D F. Test analysis of high permeable concrete reducing the urban heat island effect. Concrete, 2010, (8): 9-10, 93-93.
[49] Liu D W. Effected on unlimited coating the earth with cement or bitumen. Science Technology and Engineering, 2004, 4(6): 488-490.
[50] Jenerette G D, Potere D. Global analysis and simulation of land-use change associated with urbanization. Landscape Ecology, 2010, 25(5): 657-670.
[51] Brazel A, Gober P, Lee S J, Grossman-Clarke S, Zehnder J, Hedquist B, Comparri E. Determinants of changes in the regional urban heat island in metropolitan Phoenix (Arizona, USA) between 1990 and 2004. Climate Research, 2007, 33(2): 171-182.
[1] 韩贵锋, 徐建华, 袁兴中. 城市化对长三角地区主要城市植被物候的影响. 应用生态学报, 2008, 19(8): 1803-1809.
[3] 郑祚芳, 郑艳, 李青春. 近30 年来城市化进程对北京区域气温的影响. 中国生态农业学报, 2007, 15(4): 26-29.
[4] 李书严, 陈洪滨, 李伟. 城市化对北京地区气候的影响. 高原气象, 2008, 27(5): 1102-1110.
[5] 匡文慧, 刘纪远, 陆灯盛. 京津唐城市群不透水地表增长格局以及水环境效应. 地理学报, 2011, 66(11): 1486-1496.
[25] 李荣平, 周广胜, 张慧玲. 植物物候研究进展. 应用生态学报, 2006, 17(3): 541-544.
[26] 张福春. 气候变化对中国木本植物物候的可能影响. 地理学报, 1995, 50(5): 402-410.
[27] 杨丽桃, 侯琼. 内蒙古东部地区小叶杨物候变化与气象条件的关系. 气象与环境学报, 2008, 24(6): 39-44.
[30] 夏江江, 严中伟. 北京地区城市化进程对局地生长季变化的影响/ / 第28 届中国气象学会年会———S7 城市气象精细预报与服务. 北京: 中国气象学会, 2011.
[33] 李荣平, 周广胜. 1980—2005 年中国东北木本植物物候特征及其对气温的响应. 生态学杂志, 2010, 29(12): 2317-2326.
[34] 陈效逑. 论树木物候生长季节与气温生长季节的关系—以德国中部Taunus 山区为例. 气象学报, 2000, (6): 726-737.
[35] 谢莹莹, 陆佩玲, 于强. 中国东部季风气候区木本植物展叶期对春季温度变化的敏感性. 中国农业气象, 2010, 31(4):495-500.
[36] 吴瑞芬, 沈建国, 闫伟兄, 张化. 气候变暖对内蒙古地区小白杨物候的影响. 应用生态学报, 2009, 20(4): 785-790.
[37] 韩芳, 李兴华, 苗百岭, 乌兰巴特尔, 郭瑞清. 气候变化对内蒙古小叶杨叶芽开放期的影响. 气象, 2010, 36(1): 91-96.
[39] 张福春. 物候. 北京: 气象出版社, 1985, 58-66.
[40] 陆佩玲. 中国木本植物物候对气候变化的响应研究[D]. 北
[41] 韩亚东, 于长文, 李军林. 沈阳6 种树木春季物候期与温度之间的关系. 沈阳师范大学学报: 自然科学版, 2006, 24(1):96-99.
[42] 曹艳芳, 魏玉荣, 尤莉, 刘朋涛, 吴秋凤. 内蒙古小叶杨近30年物候变化特征及其对气温变化的响应. 中国农业气象,2011, 32(4): 538-542.
[43] 蒋菊芳, 王鹤龄, 魏育国, 丁文魁. 河西走廊东部不同类型植物物候对气候变化的响应. 中国农业气象, 2011, 32(4):543-549.
[44] 陆佩玲. 中国木本植物物候对气候变化的响应研究[D]. 北京: 北京林业大学, 2006.
[46] 李书娟, 曾辉. 快速城市化地区建设用地沿城市化梯度的扩张特征———以南昌地区为例. 生态学报, 2004, 24 ( 1):55-62.
[47] 苏德勒格其. 呼和浩特市城市热岛效应研究[D]. 呼和浩特:内蒙古大学, 2009.
[48] 王丛峰, 刘德富. 高透水性混凝土消减城市热岛效应试验分析研究. 混凝土, 2010, (8): 9-10, 93-93.
[49] 刘大为. 对用水泥以及沥青覆盖土壤产生影响的探讨. 科学技术与工程, 2004, 4(6): 488-490.