生态学报  2013, Vol. 34 Issue (20): 5706-5713

文章信息

王学娟, 周玉梅, 江肖洁, 韩士杰
WANG Xuejuan, ZHOU Yumei, JIANG Xiaojie, HAN Shijie
增温对长白山苔原土壤微生物群落结构的影响
Effects of warming on soil microbial community structure in Changbai Mountain Tundra
生态学报, 2013, 34(20): 5706-5713
Acta Ecologica Sinica, 2013, 34(20): 5706-5713
http://dx.doi.org/10.5846/stxb201301230137

文章历史

收稿日期:2013-1-23
网络出版日期:2014-3-11
增温对长白山苔原土壤微生物群落结构的影响
王学娟1, 2, 周玉梅3 , 江肖洁3, 韩士杰1    
1. 中国科学院沈阳应用生态研究所, 沈阳 110016;
2. 中国科学院大学, 北京 100049;
3. 上海应用技术学院, 上海 201418
摘要:研究土壤微生物群落结构对温度升高的响应,对预测气候变化条件下土壤微生物以及土壤养分循环具有重要意义。采用开顶箱(OTC,Open-top chamber)增温方法对长白山苔原土壤进行连续两个生长季(6-9月)增温处理,结果表明:增温使土壤磷脂脂肪酸(PLFA,Phospholipid fatty acid)总量降低了16.1%,革兰氏阳性菌/革兰氏阴性菌比值(G+/G-)升高21.2%。增温与对照条件下的G+、G-、细菌、真菌的PLFAs相对含量和真菌/细菌比值在统计上无显著差异,除真菌与G-外,其它指标均存在明显的季节波动。增温与对照条件下,细菌、G+、G+/G-和PLFA总量在土壤温度较高的7、8月份较温度较低的9月份高,真菌/细菌比值则在9月份温度较低时达到最大值。主成分分析表明,整个生长季代表真菌和G-的脂肪酸相对变化较明显。冗余分析(RDA,Redundancy analysis)表明,G+/G-比值与土壤温度呈正相关关系,土壤含水量与PLFA总量呈负相关关系,表明增温直接或间接导致G+/G-比值和PLFA总量变化,改变了土壤微生物的群落结构。
关键词磷脂脂肪酸    真菌    细菌    苔原    土壤微生物    
Effects of warming on soil microbial community structure in Changbai Mountain Tundra
WANG Xuejuan1, 2, ZHOU Yumei3 , JIANG Xiaojie3, HAN Shijie1    
1. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Shanghai Institute of Technology, Shanghai 201418, China
Abstract:The Intergovernmental Panel on Climate Change (IPCC) claims that air temperature will increase by 2.0-4.5 ℃ by 2100. Soil microbial communities are very sensitive to temperature and likely exert a dominant influence on the net C balance of terrestrial ecosystems by controlling organic matter decomposition and plant nutrient availability. Therefore, studying the responses of soil microbial community composition to warming is very important to predict the changes in soil microorganism and soil nutrition cycling under climate changes. Tundra is observed to warm more rapidly. Open-top chambers (OTCs) were established to simulate warming on Tundra ecosystem of Changbai Mountain. According to HOBO Data Loggers, soil temperature and soil water content were increased by 1.6 ℃ and 0.03 m3/m3, respectively. After two growing seasons (from June to September) of temperature increase experiment by OTCs, we collected soil samples in July, August and September of 2011 and measured soil microbial community structure. Phospholipid fatty acid (PLFA) analysis was used to examine the structure of soil microbial community. The results showed that warming did not change soil basic properties. The PLFA fingerprints showed that the relative abundance of PLFA markers of bacteria and fungal were higher, 52.2%-57.3% and 38.7%-45.4% of total PLFAs throughout the growing season, respectively. The relative abundance of PLFA markers of Gram-negative bacteria was lower, 7.5%-11.9% of total PLFAs. However, warming resulted in 16.1% decrease in the relative abundance of total PLFAs, and 21.2% increase in the ratios of Gram-positive to Gram-negative bacteria. There was no significant difference in the relative abundance of PLFA markers of bacteria, fungal, Gram-positive bacteria, Gram-negative bacteria, and the ratios of fungal to bacteria between warming OTCs and control plots. In addition, the seasonal dynamic changes of bacteria, Gram-positive bacteria, Gram-positive to Gram-negative bacteria and fungal to bacteria were observed except for fungal and Gram-negative bacteria. In the OTCs and control plots, the relative abundance of total PLFAs, bacteria, Gram-positive bacteria and Gram-negative bacteria were higher in July and August than that in September. The ratio of fungal to bacteria was the highest in September. Analysis of the PLFA data using principal component analysis (PCA) showed that the first two principal components accounted for 85.4% of the total variance. The relative changes in fungal and Gram-negative bacteria were very obvious according to PCA throughout the growing season. Redundancy analysis (RDA) was used to finger out which environmental factors changed the relative abundance of total PLFAs and the ratios of Gram-positive to Gram-negative bacteria. RDA showed that the ratios of Gram-positive to Gram-negative bacteria positively correlated to soil temperature, and total PLFAs negatively correlated to water content, which indicate that the changes in total PLFAs and the ratio of Gram-positive to Gram-negative bacteria directly or indirectly caused by warming change. In summary, warming significantly changed the relative abundance of total PLFAs and the ratios of Gram-positive to Gram-negative bacteria, indicated that warming caused significant dissimilarities in soil microbial community structure in warming plots after two growing seasons of experimental increase in temperature by OTCs.
Key words: phospholipid fatty acid (PLFA)    fungal    bacteria    tundra    soil microorganism    

自工业革命以来,由于化石燃料燃烧、土地利用方式改变以及人类活动的影响,全球气候已发生明显变化。据政府间气候变化专门委员会(IPCC,Intergovernmental Panel on Climate Change)第四次气候变化评估报告显示,最近100年(1906—2005年)的大气温度线性增加趋势为0.74℃/100a,并预测至2100年全球大气平均温度将升高2.0—4.5 ℃。温度是影响土壤微生物活性的重要因素,土壤温度升高使土壤微生物的生物量、活性、结构产生明显改变[1, 2, 3, 4, 5, 6, 7]。由于增温方式与增温时间不同,增温对土壤微生物群落影响的结果也有所不同。Weedon[8]等在位于瑞典的Abisko研究站采用开顶箱增温方式,进行连续9a(1999—2008年)的增温处理(+0.2—0.9 ℃),发现土壤微生物群落结构并没有发生明显改变。Rinnan[9]等同样采用开顶箱增温方式,在位于芬兰西北部的亚苔原区域,经过12a(1994—2006年)的增温处理(+0.5 ℃),却发现增温改变了土壤微生物的群落结构,并且增温条件下的土壤G+的PLFAs含量较对照低,而真菌和G-的PLFAs含量则没有明显变化。但也有研究发现温度升高导致真菌和G-的PLFAs含量减少[10],可能是由于他们对扰动的敏感性或者土壤可利用营养物质在较高温度下的快速消耗引起的养分限制引起的。土壤中的不同微生物类群对温度升高的响应也会有所不同,Zogg[11]等的研究显示,增温引起土壤中表征G+与G-土壤微生物类群的PLFAs增加,而其它土壤微生物类群PLFAs和活性微生物量则随着温度的升高而降低,可能与不同微生物类群对环境的敏感性不同有关,或者是增温引起的土壤养分、含水量等的改变间接影响了微生物类群的生长率,进而导致微生物群落结构的改变。

土壤微生物是土壤中的重要组成部分,是土壤物质循环和能量流动的主要参与者[12, 13],研究变暖条件下土壤微生物群落结构变化对评价全球碳循环具有重要意义。全球变暖存在显著的区域差异,北半球高纬度地区以及高海拔地区被称为全球变暖的敏感区。长白山苔原海拔2000 m以上,属于典型的高山苔原气候,年平均温度-7.3 ℃,积雪时间可达6个月以上[14, 15]。本实验以长白山苔原生态系统为研究对象,探讨增温对土壤微生物群落结构的影响,有助于了解在全球变暖趋势下这一区域内土壤微生物对温度的响应模式。

1 材料与方法 1.1 试验设计

研究区域位于吉林长白山国家自然保护区苔原生态系统(海拔2028 m),为苔原-冰缘型气候,常年低温,冬季严寒漫长,夏季温凉短暂,年平均气温-7.3 ℃,最低温1月与最高温7月平均温度分别为-24 ℃和8.7 ℃。年平均降水量1400—1800 mm,降水主要集中在6—9月份,约占全年降水量70%左右,积雪时间达6个月以上,常年多风[14, 15]。苔原植被主要为越橘(Vaccinium Vitis-Idaea)、宽叶仙 女木(Dryas octopetala var. asiatica)、苞叶杜鹃(Rhododendron redowskianum)、苔草(Carex tristachya) 和倒根蓼(Polygonum ochotense)等。

2010年6月,在长白山苔原带建立10个六角形开顶箱系统(高45 cm,底边长60 cm)用于增温,开顶箱内外分别安装自动记录光合有效辐射、空气和土壤温湿度(HOBO Data Logger)系统,每个开顶箱临近位置设立相应面积的对照地,用线围起。生长季(6—9月份),开顶箱内空气温度昼夜平均增加1 ℃(14.3 ℃和13.3 ℃),箱内5 cm和10 cm处土壤温度在生长季内平均增加1.6 ℃(14.6 ℃和13 ℃)和0.9 ℃(13.2 ℃和12.3 ℃),箱内土壤含水量增加0.03 m3/m3(0.25 m3/m3和0.22 m3/m3)。

经过两个生长季增温处理,于2011年7月5日、8月14日和9月2日分别采集3个开顶箱内与3个对照样地0—20 cm土壤,每个处理3个重复。所有土壤去除根系后分成两部分,一部分进行风干处理,另一部分迅速冷藏于-80 ℃下,然后进行冻干处理。

1.2 研究方法

风干土壤有机质含量采用重铬酸钾氧化法,土壤全氮含量采用半微量凯氏定氮法,土壤全磷含量采用酸溶-钼锑抗比色法,土壤速效磷采用氟化铵提取钼锑抗比色法,土壤pH值测定则采用电位法。

冻干土壤样品使用PLFA方法进行磷脂分析。PLFA提取参照Frostegrd等的方法[16]。19:0为内标用于定量,用Finnigan Trace GC Ultra/Trace MS气相色谱质谱联用仪测定。色谱条件:HP-5柱(30 m×25 mm×0.25 μm),进样量1 μL,载气(N2)流速0.8 mL/min。初始温度140 ℃维持3 min,分3个阶段程序性升温:140—190 ℃,4 ℃/min,保持1 min;190—230 ℃,3 ℃/min,保持1 min;230—300 ℃,10 ℃/min,保持2 min。电子轰击源(EI)检测。峰面积通过计算机自动积分,各脂肪酸的识别与定量分别参照BAME(Bacterial Acid Methyl Esters)Mix和Supelcoe 37 Component FAME Mix。以14:0、i15:0、a15:0、15:0、i16:0、16:0、16:1ω9、i17:0、cy17:0、17:0、18:0、cy19:0作为细菌源脂肪酸,真菌源脂肪酸为18:2ω6,9和18:1ω9。革兰氏阳性菌(G+)以i15:0、a15:0、i16:0、i17:0等支链脂肪酸(terminally branched saturated fatty acids,TBSAT)表示;革兰氏阴性菌(G-)以环化脂肪酸(cyclopropyl fatty acids,CYCLO)cy17:0、cy19:0表示[17, 18, 19],14:0可作为微生物总量[20],本实验检测到的14:0含量较低,因此微生物总量以各脂肪酸加和表示。

1.3 统计分析

利用SPSS 16.0软件,采用单因素方差法分析增温对土壤有机质及养分含量的影响;采用重复测量方差法检验增温对PLFA总量、细菌、真菌、G+、G-、真菌/细菌、G+/G-的影响;对实验检测到的土壤微生物脂肪酸采用主成分分析法。利用CANOCO 4.5.1软件,对微生物群落结构因子与土壤温度、土壤理化性质间的关系进行冗余分析(RDA)。

2 结果与分析 2.1 增温对土壤基本理化性质的影响

连续两个生长季增温处理使土壤有机质降低5.4%,全氮、全磷和有机磷含量分别增加19.4%、16%和10%,但统计上差异并不显著(表 1)。土壤pH值无明显变化。

表 1 增温与对照条件下土壤理化性质 Table 1 Basic properties of soil in the warming open-top chambers and control plots
处理Treatment pH有机质/(g/kg)Organic matter全氮/(g/kg)Total nitrogen全磷/(g/kg)Total phosphorus有效磷/(mg/kg)Available phosphorous
同列相同字母表示差异不显著(P > 0.05)
增温 Warming3.97±0.20a117±4.0a4.3±0.15a1.16±0.17a8.19±0.2a
对照 Control3.96±0.06a124±9.2a3.6±0.19a1.00±0.06a7.42±0.1a
2.2 增温对土壤微生物PLFA的影响

增温与对照条件下的土壤中均含有21种PLFA生物标记磷脂脂肪酸,且所含脂肪酸种类基本相同(图 1)。长白山苔原土壤微生物群落PLFA种类丰富,含有多种饱和、不饱和、分支和环状磷脂脂肪酸生物标记,但含量不高。7月份,增温条件下检测到的所有脂肪酸含量明显低于对照土壤;8月份,增温条件下土壤中的i15:0、a15:0、3-OH 14:0、i16:0、17:1、cy17:0、22:0和24:0含量明显高于对照;9月份,增温条件下3-OH 14:0、i17:0、17:0、18:2ω6,9、18:0和24:0含量明显低于对照(图 1)。整个生长季,增温仅使17:0含量降低26.1%。增温与对照条件下,均表现为单个磷脂脂肪标记16:0与18:1ω9含量最高,相对含量分别占总量的18.1%—21.7%和31.9%—35.2%,代表细菌与真菌的PLFA生物标记磷脂脂肪酸分别占总量的52.2%—57.3%和38.7%—45.4%,而代表G-的PLFA生物标记含量只占总量的7.5%—11.9%。

图 1 增温与对照条件下土壤微生物PLFA图谱 Fig. 1 Microbial PLFA profiles of soil in the warming open-top chambers and control plots in July,August and September

生长季不同月份,增温对PLFA总量影响不同(P < 0.05,表 2)。7、9月份,增温使PLFA总量分别降低了35.3%和24.1%,8月份增温对PLFA总量没有明显影响。整个生长季增温使PLFA总量降低16.1%(P <0.05)。

表 2 增温对PLFA总量、细菌、真菌、革兰氏阳性菌(G+)、革兰氏阴性菌(G-)、真菌/细菌、G+/G-影响的统计结果 Table 2 The statistic results of effects of warming on the amount of PLFAs (total,bacteria,fungal,Gram-positive,Gram-negative) and the ratios of fungal/bacteria and GP/GN in soil
分析指标Analysis index细菌Bacteria真菌Fungal革兰氏阳性菌Gram-positive革兰氏阴性菌Gram-negative(G+)真菌/细菌Fungal/bacteria (G-)革兰氏阳性菌/ 革兰氏阴性菌(G+/G-)PLFA总量Total PLFA
P > 0.05,* P < 0.05,** P < 0.01
增温处理 Warming**
取样时间 Sampling time*******
增温处理×取样时间 Warming×Sampling time********
2.3 增温对土壤微生物群落结构的影响

将不同月份指示微生物群落类型的特征脂肪酸进行主成分分析(图 2),得到两个主成分,其中主成分一的方差贡献率为67.3%,主成分二的方差贡献 率为18.1%,总的方差贡献率为85.4%,因此主成分一和主成分二基本可以全面反映研究区域微生物群落特征。i16:0、16:1ω9、16:0、cy17:0、18:1ω9和cy19:0在主成分一上的载荷值较高,因此主成分一是他们的代表因子,主要代表真菌和G-。说明在增温过程中,真菌和G-发生了相对明显变化。14:0在主成分二上的载荷值相对较高,是细菌的特征脂肪酸,说明在增温过程中土壤细菌的变化也比较明显。

图 2 增温与对照条件下土壤微生物PLFA分布的主成分分析 Fig. 2 PLFA distribution of soil microorganism calculated from principal components analysis in the warming open-top chambers and control plots
2.4 增温对土壤微生物细菌、真菌、G+、G-、细菌/真菌和G+/G-比值的影响

细菌、G+、真菌/细菌、G+/ G-和PLFA总量有明显的季节波动(表 2)。细菌、G+、G+/G-和PLFA总量在土壤温度较高的7、8月份较土壤温度较低的9月份高,真菌/细菌比值则在9月份达到最大值(表 3)。整个生长季,增温条件下的细菌、真菌和G-的PLFAs相对含量与对照比分别降低了7.7%、15.1%和10.8%,G+的PLFAs相对含量与对照相比升高了5.0%,但差异均不显著;增温使G+/G-比值升高了21.2%,对真菌/细菌比值没有明显影响(表 2表 3)。

表 3 增温及对照条件下真菌、细菌、革兰氏阳性菌 (G+) 、革兰氏阴性菌 (G-) 和PLFA总量 (TPLFA) 及真菌/细菌和G+/G-比值 Table 3 The amount of PLFAs (fungal,bacteria,G+,G- and total) and the ratios of fungal/bacteria and G+/G- in soil in the warming open-top chambers and control plots
测定指标 Determination index7月July 8月 August 9月 September 7—9月平均值 Average from July to September
增温 Warming对照 Control 增温 Warming对照 Control增温 Warming对照 Control增温 Warming对照 Control
真菌Fungal1.50±0.072.43±0.032.28±0.021.86±0.051.42±0.061.85±0.011.74±0.152.04±0.20
细菌Bacteria2.23±0.053.34±0.033.21±0.022.14±0.091.68±0.082.23±0.042.37±0.232.57±0.24
革兰氏阳性 (G+) Gram-positive0.55±0.040.76±0.010.75±0.010.36±0.040.28±0.040.38±0.010.53±0.070.50±0.07
革兰氏阴性(G-)Gram-negative0.09±0.000.14±0.000.14±0.000.07±0.000.08±0.000.10±0.000.10±0.000.10±0.01
真菌/细菌 Fungal/bacteria0.68±0.030.73±0.000.71±0.000.83±0.070.84±0.020.83±0.020.74±0.030.79±0.03
革兰氏阳性菌(G+)/ 革兰氏阴性菌(G-)Gram-positive/Gram-negative1.42±0.081.01±0.101.31±0.021.08±0.040.74±0.070.77±0.031.15±0.100.95±0.10
PLFA总量Total PLFA3.89±0.112.14±0.095.71±0.045.02±0.063.20±0.154.22±0.024.23±0.395.01±0.31
3 讨论

土壤微生物是土壤物质循环和能量流动的主要参与者,受气候、土壤理化性质和植被情况等诸多因素影响[21]。本研究中,增温使土壤微生物PLFA总量下降了16.1%、G+/G-比增加了21.2%,土壤微生物群落发生改变。为辨析PLFA总量和G+/G-比值的变化是否由增温引起,选取总PLFA、细菌 PLFA、真菌 PLFA、G+细菌PLFA、G-细菌 PLFA、细菌 PLFA/真菌 PLFA和 G+/G-7个因子作为土壤微生物群落分析指标以及土壤温度、含水量和理化性质等进行冗余分析,分析微生物群落因子与环境因子之间的关系。冗余分析表明土壤温度与G+/G-存在明显正相关关系(图 3),因此G+/G-升高是温度升高直接导致的,即增温处理使G+占微生物群落的比例增加,改变了土壤微生物的群落结构,这与Frey[22]等对森林生态系统的研究结果一致。Rinnan[9, 23]等、Allison[24]等在苔原生态系统的研究也表明增温改变了土壤微生物的群落结构,但具体表现有所不同。例如Rinnan[9, 23]等在瑞典苔原的结果显示增温降低了真菌含量,而在芬兰的研究结果则表明增温降低了G+的含量。所以,增温会改变土壤微生物群落结构,但由于研究区域不同,土壤类型等不同,会呈现不同响应方式。

图 3 微生物群落结构因子与土壤温度、含水量、有机质及C/N的冗余分析 Fig. 3 Redundancy analysis of soil microbial community structure variables to soil temperature,soil water content,organic matter and C/N

本研究中,增温与对照土壤的细菌、G+、真菌/细菌、G+/ G-和PLFA总量存在明显的季节波动,不同月份间有一定差异。细菌、G+、G+/G-和PLFA总量在土壤温度较高的7、8月份较土壤温度较低的9月份高,真菌/细菌比值则在9月份达到最大值,说明苔原的自然温度变化对微生物群落结构也产生一定影响。Bjrk[25]等和Lipson[26]等在苔原的研究也表明温度的月际变化改变了土壤微生物的群落结构,Bjrk[25]等的研究结果显示真菌/细菌(F/B)比值在生长季末期较生长季初期高,与本研究结果相符。

经过两个生长季增温处理,PLFA总量在整个生长季下降了16.1%。RDA分析表明PLFA总量降低主要是由于增温引起的土壤含水量升高、有机质及C/N比值降低间接导致的。土壤微生物不仅受土壤温度影响,土壤湿度变化对土壤微生物的影响也很大[27, 28]。本实验中土壤含水量在增温条件下有所升高,可能是由于长白山苔原带降水多集中在6—9月份,开顶箱上部开口面积较底部面积小,因而影响了箱内土壤水分的蒸发,进而导致箱内土壤含水量较箱外高。增温通常会引起土壤微生物呼吸增加[29],导致土壤中可利用基质的消耗[30],进而导致土壤PLFA总量降低,本研究中的PLFA总量降低可能是由于土壤微生物呼吸增加间接引起的。

参考文献
[1] Conant R T, Klopatek J M, Klopatek C C. Environmental factors controlling soil respiration in three semiarid ecosystems. Soil Science Society of America Journal, 2000, 64(1): 383-390.
[2] Belote R T, Weltzin J F, Norby R J. Response of an understory plant community to elevated[CO2] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytologist, 2004, 161(3): 827-835.
[3] Treseder K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist, 2004, 164(2): 347-355.
[4] Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440(7081): 165-173.
[5] Liberloo M L, Tulva I, Ram O, Kull O, Ceulemans R. Photosynthetic stimulation under long-term CO2 enrichment and fertilization is sustained across a closed Populus canopy profile (EUROFACE). New Phytologist, 2007, 173(3): 537-549.
[6] Sheik C S, Beasley W H, Elshahed M S, Zhou X H, Luo Y Q, Krumholz L R. Effect of warming and drought on grassland microbial communities. ISME Journal, 2011, 5(10): 1692-1700.
[7] Castro H F, Classen A T, Austin E E, Norby R J, Schadt C W. Soil microbial community responses to multiple experimental climate change drivers. Applied and Environmental Microbiology, 2010, 76(4): 999-1007.
[8] Weedon J T, Kowalchuk G A, Aerts R, van Hal J, van Logtestijn R, TaN, Röling W F M, van Bodegom P M. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Global Change Biology, 2012, 18(1): 138-150.
[9] Rinnan R, Stark S, Tolvanen A. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. Journal of Ecology, 2009, 97(4): 788-800.
[10] Feng X J, Simpson M J. Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in organic matter quality. Soil Biology and Biochemistry, 2009, 41(4): 804-812.
[11] Zogg P G, Zak D R, Ringelberg D B, White D C, MacDonald N W, Pregitzer K S. Compositional and functional shifts in microbial communities due to soil warming. Soil Science Society of America Journal, 1997, 61(2): 475-481.
[12] Schimel D S. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1995, 1(1): 77-91.
[13] Trudell S A, Rygiewicz P T, Edmonds R L. Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests. New Phytologist, 2004, 164(2): 317-335.
[14] Huang X C, Li C H. An analysis on the ecology of alpine tundra landscape of Changbai mountains. Acta Geographica Sinica, 1984, 39(3): 285-297.
[15] Bai H J, Deng W. Study on the tundra wetland resources in Changbai mountain and their sustainable utilization. Journal of Mountain Science, 2002, 20(2): 228-231.
[16] Frostegård A, Tunlid A, Bååth E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology, 1993, 59(11): 3605-3617.
[17] Qi H Y, Xue K, Zhang H X. Phospholipid fatty acid analysis and its applications in microbial ecology. Acta Ecologica Sinica, 2003, 23(8): 1576-1582.
[18] Xiang G M, Zhang Y, Zhang X D, Xu H, Wang C L. Changes of microbial biomass and community diversity under different treatments of black soil in northeast China. Acta Agriculturae Jiangxi, 2007, 19(6): 68-71.
[19] Zou Y K, Zhang J N, Yang D L, Cheng X R, Zhang T R, Zhao T N, Zhao S. Phospholipid fatty acid analysis of microbial community structure under different land use patterns in soil ecosystems of Leymus chinensis steppes. Acta Prataculturae Sinica, 2011, 20(4): 27-33.
[20] Mummey D L, Stahl P D, Buyer J S. Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation. Applied Soil Ecology, 2002, 21(3): 251-259.
[21] Gholz H L, Wedin D A, Smitherman S M, Harmon M E, Parton W J. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 2000, 6(7): 751-765.
[22] Frey S D, Drijber R, Smith H, Melillo J. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biology and Biochemistry, 2008, 40(11): 2904-2907.
[23] Rinnan R, Michelsen A, Bååth E, Jonasson S. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biology, 2007, 13(1): 28-39.
[24] Allison S D, Treseder K K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 2008, 14(12): 2898-2909.
[25] Björk R G, Björkman M P, Anderssonet M X, Klemedtsson L. Temporal variation in soil microbial communities in alpine tundra. Soil Biology and Biochemistry, 2008, 40(1): 266-268.
[26] Lipson D A, Schadt C W, Schmidtet S K. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microbial Ecology, 2002, 43(3): 307-314.
[27] Jin V L, Schaeffer S M, Ziegleret S E, Evans R D. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2. Journal of Geophysical Research, 2011, 116(G02001).
[28] Chen Q H, Feng Y, Zhang Y P, Zhang Q C, Shamsi I H, Zhang Y S, Lin X Y. Short-term responses of nitrogen mineralization and microbial community to moisture regimes in greenhouse vegetable soils. Pedosphere, 2012, 22(2): 263-272.
[29] Rustad L E, Campbell J L, Marion G M, Norby R J, Mitchell M J, Hartley A E, Cornelissen J H C, Gurevitch J. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 2001, 126(4): 543-562.
[30] Hartley I P, Heinemeyer A, Ineson P. Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response. Global Change Biology, 2007, 13(8): 1761-1770.
[14] 黄锡畴, 李崇稿. 长白山高山苔原的景观生态分析. 地理学报, 1984, 39(3): 285-297.
[15] 白军红, 邓伟. 长白山苔原湿地资源及可持续利用研究. 山地学报, 2002, 20(2): 228-231.
[17] 齐鸿雁, 薛凯, 张洪勋. 磷脂脂肪酸谱图分析方法及其在微生物生态学领域的应用. 生态学报, 2003, 23(8): 1576-1582.
[18] 向光明, 张颖, 张旭东, 徐慧, 王纯利. 东北黑土在不同处理条件下微生物量与菌群多样性的变化. 江西农业学报, 2007, 19(6): 68-71.
[19] 邹雨坤, 张静妮, 杨殿林, 陈秀蓉, 张天瑞, 赵建宁, 赵帅. 不同利用方式下羊草草原土壤生态系统微生物群落结构的PLFA分析. 草业学报, 2011, 20(4): 27-33.