生态学报  2014, Vol. 34 Issue (19): 5398-5404

文章信息

吴美仙, 赵波, 张文, 陆洪良
WU Meixian, ZHAO Bo, ZHANG Wen, LU Hongliang
孵化温度对黄喉拟水龟胚胎发育和幼体特征的影响
Effects of incubation temperature on embryonic development and hatchling traits in the Asian yellow pond turtle, Mauremys mutica
生态学报, 2014, 34(19): 5398-5404
Acta Ecologica Sinica, 2014, 34(19): 5398-5404
http://dx.doi.org/10.5846/stxb201301150095

文章历史

收稿日期:2013-1-15
网络出版日期:2014-3-7
孵化温度对黄喉拟水龟胚胎发育和幼体特征的影响
吴美仙1, 2, 赵波2, 张文2, 陆洪良2     
1. 浙江海洋学院萧山科技学院, 杭州 311258;
2. 杭州师范大学生命与环境科学学院, 杭州 310036
摘要:用3个恒定温度(24、26和28℃)孵化黄喉拟水龟南方种群卵,检测孵化温度对孵化期、孵化成功率和孵出幼体特征的影响。孵化温度显著影响孵化期和孵化成功率、以及幼体的性别、大小和早期生长。黄喉拟水龟幼体的性别取决于孵化温度(属TSD Ⅰa型),26℃和28℃孵出幼体偏雄性,30℃孵出幼体都是雌性。随着孵化温度的升高,孵化期呈非线性缩短,而孵化成功率略微增加。较高温度下孵出的幼体较大且具有较好的功能表现,但生长较慢。低温孵出幼体较小,但胚后生长速率较快。低温孵出幼体较小可能与胚胎发育期长、总代谢消耗大有关;而生长速率快则可能是因为低温产生的雄性幼体生长快于高温产生的雌性幼体。与已报道的黄喉拟水龟北方种群卵孵化结果相比较,26℃和28℃条件下南方种群卵的孵化期和产生1:1性比的关键温度较大。这种地理上的变异可能反映不同种群对当地热环境适应性上的差异。
关键词黄喉拟水龟    孵化温度    幼体表型    胚胎发育    性别决定    
Effects of incubation temperature on embryonic development and hatchling traits in the Asian yellow pond turtle, Mauremys mutica
WU Meixian1, 2, ZHAO Bo2, ZHANG Wen2, LU Hongliang2     
1. Xiaoshan College of Science and Technology, Zhejiang Ocean University, Hangzhou 311258, China;
2. Hangzhou Key Laboratory of Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
Abstract:We incubated 84 eggs of the Asian yellow pond turtle (Mauremys mutica) from a hatchery in Guangzhou (the southern population) at three constant temperatures (26, 28 and 30℃) to assess the effects of temperature on incubation period, hatching success and hatchling traits (sexual phenotype, body size, righting performance and post-hatching growth). Because physiological and behavioral performances of reptiles are sensitive to temperature, we conducted to measure righting performance and post-hatching growth at the body temperature of 28℃. The righting response was assessed for each turtle in a temperature-controlled room on the second day of post-hatching. The turtles were placed upside down in an open area and their performance trials were recorded using a digital camera. Righting time was defined as the time required for a turtle to right itself after it began to move. After the righting trials, all turtles were reared in constant-temperature aquaria for about three months to evaluate the early growth and identify the sex by between-sex differences in morphological traits. Within the range of 26-30℃, hatching success increased with increasing incubation temperatures but, statistically, it did not differ among the three temperature treatments. Incubation period (the number of days from oviposition to pipping) was independent of initial egg mass within each temperature treatment, and decreased with increasing incubation temperature. The sex ratio of hatchlings varied among the three temperature treatments, with the treatments of 26℃ and 28℃ both leading to a male-biased sexual ratio, and the treatment of 30℃ to a female-biased sexual ratio. Hatchling mass and size (carapace length, width and height) were dependent on initial egg mass. Therefore, one-way analysis of covariance (ANCOVA) with egg mass as the covariate was used to examine the effects of incubation temperature on these traits. Temperature affected carapace length, width and body mass, but not carapace height. Hatchlings from the 30℃ treatment were larger than those from the 26℃ treatment after accounting for egg mass. This result was not consistent with those documented in a number of other studies where eggs incubated at relatively low temperatures produce larger hatchlings. The production of smaller hatchlings may result from an increased energy expenditure associated with a prolonged incubation length. A hatchling's righting performance was affected by incubation temperature. The proportion of hatchlings that successfully righted within 10 minutes was greater in the 28℃ (60.0%, 15/25) and 30℃ (64.3%, 18/28) treatments than in the 26℃ treatment (23.8%, 5/21); the mean righting time was shortest in the 30℃ treatment and longest in the 26℃ treatment, with the 28℃ treatment in between. Post-hatching growth differed among the three treatments. The daily growth rates of carapace length, width and body mass were highest in hatchlings from the 26℃ treatment and lowest in hatchlings from the 30℃ treatment, with hatchlings from the 28℃ treatment in between. The differences in hatchling growth among the three treatments might partly stem from the between-sex difference in growth rate, as revealed by the fact that male hatchlings from low-temperature treatments grew faster than females from high-temperature treatments. The mean incubation period was longer, and the pivotal temperature (the temperature that yields a 1:1 offspring sex ratio) was higher, in the southern population than in the northern population, presumably reflecting different adaptation to local thermal environment.
Key words: Mauremys mutica    incubation temperature    hatchling phenotype    embryonic development    sex determination    

卵生爬行动物的胚胎发育和孵出幼体的表型特征受许多环境因子的影响[1]。在这些环境因子中,温度无疑是最为重要的[1, 2]。在适宜孵化温度条件下,卵孵化率高,孵出幼体通常具有较好的功能表现、适应和生存能力;而过低或过高的孵化温度则会造成胚胎发育停滞、畸形甚至死亡[3]。此外,孵化温度诱导孵出幼体适合度紧密相关的表型特征发生永久性变异,从而影响幼体的后续生长与存活[4, 5]。温度对爬行动物卵孵化、幼体形态特征的影响已有较多报道[3, 4, 5, 6],但对幼体适合度影响的评估却很少见。在大多数龟鳖类动物中,孵化温度还能影响其性别,属温度依赖型性别决定(TSD)物种[7]。与适合度相关的某些性状(如生长速率、功能表现等)在许多龟鳖类动物中存在显著的两性间差异[8, 9]。较低或较高的孵化温度条件常使TSD龟鳖种类产生单一性别的后代,而这些后代的适合度变异并非仅由温度效应所导致,亦可能是温度与性别共同作用的结果。因此,在检测孵化温度对TSD龟鳖幼体适合度的影响时,需要考虑性别效应的作用。

黄喉拟水龟(Mauremys mutica)是低温偏雄、高温偏雌的TSD物种[10],广泛分布于我国大陆的东部、南部、西南及台湾等地,在我国已自然地形成具有明显差别的南北种群。分布于广西、广东、海南、福建等地种群被称为南方种群,而分布于安徽、浙江、江苏等地被称为北方种群[11]。孵化温度和湿度对黄喉拟水龟胚胎发育和幼体形态的影响已有一些报道[10, 12, 13, 14],然而这些研究极少涉及幼体适合度相关联特征的检测。本研究在3个温度条件下孵化黄喉拟水龟南方种群卵,进一步探讨温度对胚胎发育和幼体表型的影响,并检测温度对幼体功能表现和早期生长的作用;与原先报道的结果比较,分析温度效应的种群内、种群间差异,解释变异来源及不同种群胚胎对孵化热环境反应差异的适应意义。

1 材料与方法 1.1 龟卵收集与孵化

实验用84枚(由36只母龟产出,每窝卵中选取的可孵卵不超过3枚)黄喉拟水龟卵取自中国水产科学研究院珠江水产研究所。所有卵均于产出当天收集,随后运至杭州师范大学两栖爬行动物实验室。卵称重和编号后随机分配到3个孵化温度处理(同窝卵分配于不同处理)。卵半埋于内含潮湿基质(-220 kPa,干蛭石 ∶ 水= 1 ∶ 1)的孵化盒中,卵白斑朝上。孵化盒分别置于温度预先设置为26、28和30 ℃的人工气候箱(宁波莱福科技有限公司),每3d补充基质散失的水分以保持基质湿度恒定。孵化盒在气候箱中的位置按照事先设置好的顺序移动以减少箱内热梯度所造成的影响。

1.2 幼体形态、功能表现和生长

待幼体开始出壳,每天检查孵化盒至少两次,收集新生幼体,随即测定其体重以及背甲长、宽、高。孵化期为卵产出时间到幼体破壳时间的间隔。幼体孵出第2天测定其功能表现(翻身反应)。该实验在温度为(28.0±0.5) ℃的恒温室内进行。实验开始前,预先将动物置于恒温室内适应2 h。测定翻身反应时,将动物腹面朝上放在25 cm × 20 cm × 4 cm塑料盒的中央位置,同时用SONY DCR-SR220E数码摄像机拍摄动物的翻身过程,随后分析行为录像,记录动物成功翻身所需的时间。若在10 min内,动物未能成功翻身,对应数据将不用于统计分析。

功能表现测定后,幼体剪甲编号饲养于水温保持在(28.0 ± 1.0) ℃的水池中,每天水池给食足量龟鳖颗粒饲料,饲养约3个月后,根据两性形态差异鉴别幼体性别,并测定动物体重。幼体生长速率以3个月内的每日背甲大小(长、宽、高)增量和增重量表示。饲养期间共7只幼龟在不足3个月内死亡(26 ℃ 1只,28 ℃ 1只,30 ℃ 5只),相应个体鉴定性别,其生长数据不用于统计分析。

1.3 统计分析

用Statistica 6.0软件包进行统计分析。对数据进行参数统计分析前,分别检验其正态性(Kolmogorov-Smirnov检验)和方差同质性(Bartlett检验)。用单因子方差分析检测孵化温度对孵化期、翻身反应及生长速率的影响;单因子协方差分析检测孵化温度对幼体形态的影响;重复测量方差分析检测幼体大小的时间变异;Tukey多重比较检验多样本各处理彼此间的差异。文中涉及的非参数统计为G检验。描述性统计值用平均值 ± 标准误表示,显著性水平设置为α=0.05。

2 结果 2.1 孵化期和孵化成功率

不同窝卵的孵化期无显著差异(F35,36=1.38,P = 0.173)。线性回归分析显示孵化期与入孵卵重无显著相关性(r=0.04,F1,72=0.11,P = 0.741)。孵化温度显著影响黄喉拟水龟卵孵化期(F2,71=974.20,P < 0.0001,表 1)。28 ℃孵化期比26 ℃平均缩短12.7 d,30 ℃孵化期比28 ℃平均缩短9.2 d。在26—30 ℃范围内,卵孵化成功率随着孵化温度的升高而略微增加,但在统计上3个温度条件下的孵化成功率差异不显著(G=2.79,df=2,P > 0.10,表 1)。

表1 不同温度条件下黄喉拟水龟卵孵化期、孵化成功率及孵出幼体性比 Table 1 Incubation period,hatching success,and sex ratio of Mauremys mutica hatchlings from different temperature treatments
孵化温度/℃ Incubation temperature入孵卵数 Incubated eggs孵化期/d Incubation period孵化成功率/% Hatching success性比(♀♀/♂♂) Sex ratio
262583.5 ± 0.484.0 (21/25)2/19
282970.8 ± 0.489.7 (26/29)8/18
303061.7 ± 0.396.7 (29/30)29/0
2.2 幼体形态和功能表现

线性回归分析显示孵出幼体大小(背甲长、宽、高和体重)与入孵卵重显著相关。以入孵卵重为协变量的协方差分析显示孵化温度显著影响幼体背甲长(F2,70=6.92,P < 0.01)、背甲宽(F2,70=3.24,P < 0.05)和体重(F2,70=12.11,P < 0.0001),但不影响背甲高度(F2,70=0.45,P = 0.638)。在26—30 ℃范围内,孵化温度相对较高的条件下孵出幼体的个体较大(图 1)。孵化温度显著影响孵出幼体的功能表现。在26、28和30 ℃条件下孵出幼体在10 min内成功翻身的个体比例分别为23.8%(5/21)、60.0%(15/25)和64.3%(18/28),26 ℃条件下幼体成功翻身的个体比例显著低于28和30 ℃(G=9.33,df=2,P<0.01)。较低孵化温度条件下孵出幼体翻身所需的时间大于较高温度条件下的幼体(F2,35=3.28,P < 0.05,图 2)。

图 1 不同温度条件下黄喉拟水龟孵出幼体的背甲长、宽、高和体重 (入孵卵重设定为16.5g) Fig. 1 Body mass,carapace length,width and height of Mauremys mutica hatchlings from different temperature treatments
图 2 不同温度条件下黄喉拟水龟孵出幼体的翻身时间 Fig. 2 The righting time of Mauremys mutica hatchlings from different temperature treatments
2.3 幼体性比和生长

黄喉拟水龟孵出幼体性别受孵化温度的影响(G=60.00,df=2,P<0.001)。3个孵化温度条件下,孵出幼体性比均偏离1 ∶ 1(G检验,P<0.05)。26和28 ℃下孵出幼体主要为雄性,而30 ℃下全部幼体为雌性(表 1)。经3个月饲养后,幼体的大小增加明显(背甲长:F1,66=342.98,P<0.001;背甲宽:F1,66=508.52,P<0.001;背甲高:F1,66=104.58,P<0.001;体重:F1,66=173.51,P<0.001,表 2)。方差分析显示孵化温度显著影响幼体背甲长(F2,64=3.20,P < 0.05)、背甲宽(F2,64=3.48,P < 0.05)和体重(F2,64=4.49,P < 0.02)的日生长速率,但不影响背甲高度的日生长速率(F2,64=1.99,P = 0.145)(图 3)。

表2 黄喉拟水龟孵出幼体饲养3个月后的大小 Table 2 The size (carapace length,width,height and body mass) of 3-month-old juvenile Asian yellow pond turtles (Mauremys mutica)
孵化温度/℃ Incubation temperature背甲长 Carapace length/mm背甲宽 Carapace width/mm背甲高 Carapace height/mm体重 Body mass/g
2645.5 ± 0.939.1 ± 0.819.4 ± 0.515.6 ± 1.0
2844.6 ± 0.838.1 ± 0.618.5 ± 0.414.4 ± 0.8
3044.7 ± 0.638.0 ± 0.518.9 ± 0.313.6 ± 0.5
图 3 不同温度条件下黄喉拟水龟孵出幼体的生长速率 Fig. 3 The daily growth rate of carapace length,width,height and body mass of Mauremys mutica hatchlings from different temperature treatments
3 讨论

孵化温度影响黄喉拟水龟胚胎发育、孵出幼体形态特征、功能表现以及早期生长,这与该种先前的一些研究得出的结果一致[12, 13, 14]。在24—31 ℃范围内,黄喉拟水龟胚胎能较好地存活,而高于32 ℃的孵化温度会导致高死亡率和幼体畸形率[14]。本研究中的3个温度条件下孵化成功率都高于80%以上,孵出幼体亦未出现明显的畸形,26—30 ℃处于该种胚胎发育的适宜温度范围之内。在该温度范围内,南方种群卵孵化成功率似乎随温度升高而略微增加,但北方种群则略微下降[12],这一结果可能反映了南方种群胚胎发育的最适温度高于北方种群。

低温条件下的黄喉拟水龟卵孵化期显著长于高温条件下的卵孵化期。在爬行动物胚胎可耐受的温度范围内,提高孵化温度可加速胚胎发育,缩短卵孵化期。结合郭捡红等[13]报道的同一种群数据,显示孵化期随孵化温度的升高呈非线性缩短(图 4)。胚胎发育的加快随孵化温度的升高并不等速。与Du等[12]报道的北方种群卵孵化数据比较,显示在较低温度条件下南方种群卵孵化期大于北方种群,而在较高温度(30 ℃)下无明显差异(图 4)。来自低纬度种群的卵孵化期大于同种高纬度种群见于其它爬行动物种类[15, 16]。孵化期的纬度变异趋势可能由于:(1)新生卵内胚胎或孵出幼体发育程度存在种群间差异;(2)卵内胚胎发育速率存在种群间差异。若北方种群新生卵胚胎发育历期高于南方种群,那么在任一温度条件下北方种群卵的孵化期都应小于南方种群卵。但是本研究中这种差异仅出现在26和28 ℃条件下,随孵化温度升高而减小,在30 ℃条件下南北方种群卵孵化期相近。同样,若孵出幼体发育程度存在南北方种群间差异,那么卵孵化期在不同温度条件下的差异也应是一致的。因此,可以推测黄喉拟水龟南北方种群新生卵内胚胎或孵出幼体发育程度不应存在差异。卵孵化期的种群间差异亦可能是因卵内胚胎发育速率的差异。高纬度种群卵内胚胎发育速率大于低纬度种群卵已在一些蜥蜴种类中得到验证。例如,高纬度种群的东强棱蜥(Sceloporus undulatus)和丽斑麻蜥(Eremias argus)新生卵内胚胎时期均与低纬度种群相近,但在相同孵化温度下孵化期较短,胚胎心率(反映发育速率)较快[15, 16]。有意思的是,来自高纬度种群的丽斑麻蜥胚胎心率在较高温度下大于低纬度种群,但在较低温度下这种差异不明显[16]。因此,爬行动物胚胎对不同温度条件的生长反应可能具有种群间差异。若黄喉拟水龟胚胎对温度反应的变异是产生卵孵化期种群间差别的主要原因,那么按本研究结果推测北方种群卵在较低温度下胚胎发育速率应大于南方种群,而在较高温度下与南方种群相近。这一推测仍需进一步验证。

图 4 孵化温度对黄喉拟水龟卵孵化期的影响 (实心圆点来自本研究,空心方格来自Du等[12],空心圆点来自郭捡红等[13]) Fig. 4 The effect of incubation temperature on incubation period in Mauremys mutica (Data supporting the solid dots are from this study,open squares from an earlier study of Du et al. 2010[12],and open dots from an earlier study of Guo et al. 2010[13])

相对较高的孵化温度条件下孵出较大幼体(图 2)。郭捡红等在另3个温度条件下孵化来自同一种群的黄喉拟水龟卵显示:高温33 ℃条件下孵出幼体显著小于25和29 ℃下幼体[13]。高温下孵出幼体较小与卵黄转化率低、卵内物质利用不充分有关[17]。另一方面,孵出幼体的大小也可能受孵化过程中胚胎能量代谢的影响。虽然较低的孵化温度导致较低的胚胎代谢水平,但是可能因孵化期的延长而使整个孵化时期的总代谢消耗高于较高温度条件下的消耗[18]。本研究中26 ℃条件下孵出幼体相对较小可能与该温度下胚胎发育过程中的总代谢消耗较大有关。因此可以认为温和的孵化温度条件有助于黄喉拟水龟卵孵出较大幼体,这一现象也见于其它一些爬行动物种类[19]。Du等在24—30 ℃范围内孵化黄喉拟水龟北方种群卵,结果显示孵化温度并不影响孵出幼体的背甲长和体重,但较高温度下孵出幼体背甲宽较小[12]。此外,较高温度条件下孵出的黄喉拟水龟幼体成功翻身个体比例大于较低温度下幼体,翻身时间也明显较短,说明在适宜温度范围内较高的孵化温度可孵出表现良好的幼体。较高温度孵出幼体的功能表现较好也见于其它一些龟鳖类动物[3, 19, 20]。但对黄喉拟水龟北方种群的研究显示孵化温度对幼体游泳速度的影响并不显著[12]。来自不同种群的黄喉拟水龟胚胎对相似孵化温度的表型反应可能存在差异。与北方种群相比,南方种群胚胎对孵化热环境的反应较为敏感,而且相对较高的孵化温度更适于南方种群的胚胎发育,可使代谢消耗相对较低而孵出相对较大、功能表现较好的个体。

孵化温度影响黄喉拟水龟孵出幼体的早期生长,较高温度下幼体的生长速率低于较低温度下幼体,该现象亦见于北方种群[12]。黄喉拟水龟属于TSD Ⅰa物种,低温幼体多为雄性,高温幼体则多为雌性[13]。而该种生长速率存在显著的两性间差异,雄性生长速率大于雌体[21]。因此,低温孵出幼体生长快于高温孵出幼体可能来源于生长速率的两性间差异,而并非是孵化温度的直接效应。相似地,同为TSD Ⅰa物种的乌龟(Chinemys reevesii)雌性生长速率大于雄性。高温孵出幼体生长快于低温幼体被认为主要是生长速率的两性间差异所致[8]。当然,孵化温度对幼体生长的影响也可能是直接的。Du等检测到不同温度条件下孵出的北方种群雌性幼体生长速率差异显著[12]。新生幼体的大小和功能表现同样可能存在两性间差异。例如,低温条件下孵出的雄性乌龟幼体大于高温条件下的雌性[8];而雄性绿海龟(Chelonia mydas)幼体游泳能力较雌性弱[20]。高温条件下黄喉拟水龟幼体较大、翻身能力较好亦可能与这些特征的两性间差异有关。本研究中,26 ℃处理仅产生2个雌性而30 ℃无雄性,因而无法检验孵化温度对单一性别个体大小、翻身能力和生长的影响,以及是否与性别存在交互作用。为辨别孵化温度和性别效应对幼体表型的独立贡献,需要通过某些技术方法(例如激素调控)调控幼体性别(偏雄温度范围逆转产生雌性,偏雌温度范围逆转产生雄性)。

通过对3个孵化温度条件下孵出幼体性比进行对数拟合显示:雌雄性比为1 ∶ 1的对应温度约为28.7 ℃。该值与朱新平等报道的结果(29 ℃)相接近[10]。黄喉拟水龟性比1 ∶ 1的关键温度亦存在种群间差异,南方种群高于北方种群(26—28 ℃)[12]。不同种群关键温度存在差别也见于一些地理分布较广的淡水龟类[22]。综上所述,黄喉拟水龟南北种群在适宜孵化温度、关键温度及表型反应等方面的差异可能反映了不同种群的爬行动物胚胎对当地环境热适应的差别。

致谢: 中国科学院动物研究所杜卫国研究员对本文写作给予帮助,陈页、孙波参加部分实验工作,特此致谢。

参考文献
[1] Deeming D C. Reptilian Incubation: Environment, Evolution and Behaviour. Nottingham: Nottingham University Press, 2004.
[2] Booth D T. Influence of incubation temperature on hatchling phenotype in reptiles. Physiological and Biochemical Zoology, 2006, 79(2): 274-281.
[3] Booth D T, Burgess L, McCosker J, Lanyon J. The influence of incubation temperature on post-hatching fitness characteristics of turtles. International Congress Series, 2004, 1275: 226-233.
[4] O'Steen S. Embryonic temperature influences juvenile temperature choice and growth rate in snapping turtles Chelydra serpentina. Journal of Experimental Biology, 1998, 201(3): 439-449.
[5] Ji X, Chen F, Du W G, Chen H L. Incubation temperature affects hatchling growth but not sexual phenotype in the Chinese soft-shelled turtle, Pelodiscus sinensis (Trionychidae). Journal of Zoology, 2003, 261(4): 409-416.
[6] Rhen T, Lang J W. Temperature during embryonic and juvenile development influences growth in hatchling snapping turtles, Chelydra serpentina. Journal of Thermal Biology, 1999: 24(1): 33-41.
[7] Ewert M A, Etchberger C R, Nelson C E. Turtle sex determining modes and TSD patterns, and some TSD pattern correlates//Valenzuela N, Lance V A, eds. Temperature Dependent Sex Determination in Vertebrates. Washington, DC: Smithsonian Books, 2004: 21-32.
[8] Du W G, Shen J W, Hu L J, Wang L. Temperature and sex effects on size and growth of hatchlings in the Chinese three-keeled pond turtle (Chinemys reevesii). Acta Ecologica Sinica, 2010, 30(14): 3766-3771.
[9] Rhen T, Lang J W. Phenotypic plasticity for growth in the common snapping turtle: effects of incubation temperature, clutch, and their interaction. The American Naturalist, 1995, 146(5): 726-747.
[10] Zhu X P, Chen Y L, Wei C Q, Liu Y H, Gui J F. Temperature effects on sex determination in yellow pond turtle (Mauremys mutica Cantor). Acta Ecologica Sinica, 2006, 26(2): 620-625.
[11] Zhu X P, Zhou L, Chen Y L, Du H J, Gui J F. Phenotypic and genetic variation between two populations of the Chinese yellow pond turtle, Mauremys mutica (Cantor, 1842). High Technology Letters, 2008, 14(1): 104-111.
[12] Du W G, Wang L, Shen J W. Optimal temperatures for egg incubation in two geoemydid turtles: Ocadia sinensis and Mauremys mutica. Aquaculture, 2010, 305(1/4): 138-142.
[13] Guo J H, Zhu X P, Zhao W H, Wei C Q, Chen Y L. Effects of incubation temperature and substrate humidity on embryonic development of Mauremys mutica. Chinese Journal of Applied Ecology, 2010, 21(1): 215-220.
[14] Zhu X P, Wei C Q, Zhao W H, Du H J, Chen Y L, Gui J F. Effects of incubation temperatures on embryonic development in the Asian yellow pond turtle. Aquaculture, 2006, 259(1/4): 243-248.
[15] Du W G, Warner D A, Langkilde T, Robbins T, Shine R. The physiological basis of geographic variation in rates of embryonic development within a widespread lizard species. The American Naturalist, 2010, 176(4): 522-528.
[16] Sun B J, Li S R, Xu X F, Zhao W G, Luo L G, Ji X, Du W G. Different mechanisms lead to convergence of reproductive strategies in two lacertid lizards (Takydromus wolteri and Eremias argus). Oecologia, 2013, 172(3): 645-652.
[17] Du W G, Ji X. Influence of incubation temperature on embryonic use of material and energy in the Chinese soft-shelled turtle (Pelodiscus sinensis). Acta Zoologica Sinica, 2001, 47(5): 512-517.
[18] Reid K A, Margaritoulis D, Speakman J R. Incubation temperature and energy expenditure during development in loggerhead sea turtle embryos. Journal of Experimental Marine Biology and Ecology, 2009, 378(1/2): 62-68.
[19] Du W G, Ji X. The effects of incubation thermal environments on size, locomotor performance and early growth of hatchling soft-shelled turtles, Pelodiscus sinensis. Journal of Thermal Biology, 2003, 28(4): 279-286.
[20] Burgess E A, Booth D T, Lanyon J M. Swimming performance of hatchling green turtles is affected by incubation temperature. Coral Reefs, 2006, 25(3): 341-349.
[21] Zhu X P, Chen Y L, Wei C Q, Liu Y H. Diversity of male and female Mauremys mutica in growth and morphology. Journal of Fishery Sciences of China, 2003, 10(5): 434-436.
[22] Ewert M A, Lang J W, Nelson C E. Geographic variation in the pattern of temperature-dependent sex determination in the American snapping turtle (Chelydra serpentina). Journal of Zoology, 2005, 265(1): 81-95.
[8] 杜卫国, 沈建伟, 胡凌君, 王磊. 孵化温度与性别对乌龟幼体大小和生长的影响. 生态学报, 2010, 30(14): 3766-3771.
[10] 朱新平, 陈永乐, 魏成清, 刘毅辉, 桂建芳. 温度对黄喉拟水龟性别决定的影响. 生态学报, 2006, 26(2): 620-625.
[13] 郭捡红, 朱新平, 赵伟华, 魏成清, 陈永乐. 温度、湿度对黄喉拟水龟胚胎发育的影响. 应用生态学报, 2010, 21(1): 215-220.
[17] 杜卫国, 计翔. 孵化温度对中华鳖胚胎物质和能量利用的影响. 动物学报, 2001, 47(5): 512-517.
[21] 朱新平, 陈永乐, 魏成清, 刘毅辉. 黄喉拟水龟雌、雄生长及形态差异. 中国水产科学, 2003, 10(5): 434-436.