生态学报  2014, Vol. 34 Issue (18): 5182-5190

文章信息

许小伟, 樊剑波, 陈晏, 张其海, 何园球, 郑学博
XU Xiaowei, FAN Jianbo, CHEN Yan, ZHANG Qihai, HE Yuanqiu, ZHENG Xuebo
不同有机无机肥配施比例对红壤旱地花生产量、土壤速效养分和生物学性质的影响
Effects of combined application of organic and chemical fertilizers on the yield of peanut, soil available nutrient and biological properties in the upland red soil in subtropical China
生态学报, 2014, 34(18): 5182-5190
Acta Ecologica Sinica, 2014, 34(18): 5182-5190
http://dx.doi.org/10.5846/stxb201405110958

文章历史

收稿日期:2014-5-9
修订日期:2014-8-11
不同有机无机肥配施比例对红壤旱地花生产量、土壤速效养分和生物学性质的影响
许小伟1, 2, 樊剑波1, 陈晏1, 张其海3, 何园球1 , 郑学博1, 2    
1. 中国科学院南京土壤研究所, 南京 210008;
2. 中国科学院大学, 北京 100049;
3. 江西省山江湖治理委员会办公室, 南昌 330046
摘要:大田条件下,研究了不同有机无机配施比例对红壤花生旱地可培养微生物数量、土壤主要酶活性、土壤速效养分及花生产量的影响。结果表明:(1)有机肥配施花生产量显著高于其他处理,有机肥比例为40%时,荚果产量、籽仁产量、单株结果数及百粒重效果增加最明显,分别较常规施肥提高20.14%、26.92%、27.87%和7.08%;(2)有机肥配施可以显著提高土壤速效养分含量,40%有机肥在花生生育期结束后能显著提高土壤碱解氮、有效磷、速效钾含量,与常规施肥相比,分别增加了17.89%、22.96%、12.57%;(3)土壤中细菌、真菌、放线菌数量随着有机肥配施比例增高而增加;40%有机肥配施比常规施肥处理的细菌、真菌、放线菌数量全生育期平均值分别提高:71.62%、40.42%、43.94%。(4)施肥可以显著提高土壤脲酶、酸性磷酸酶、蔗糖转化酶活性,其中有机无机中量配施(40%有机肥)、高量配施(60%、80%有机肥)显著高于其他处理,低量有机肥配施(20%有机肥)接近于常规施肥水平。综上表明,在等量N、P、K养分条件下,配施40%猪粪N更有利于红壤地区土壤肥力及产量的改善。
关键词有机无机配施    红壤旱地    土壤生物学性质    土壤速效养分    花生产量    
Effects of combined application of organic and chemical fertilizers on the yield of peanut, soil available nutrient and biological properties in the upland red soil in subtropical China
XU Xiaowei1, 2, FAN Jianbo1, CHEN Yan1, ZHANG Qihai3, HE Yuanqiu1 , ZHENG Xuebo1, 2    
1. Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
2. University of Chinese Academy of Sciences, Beingjing 100049, China;
3. Mountain lakes Governance Committee Office of Jiangxi Province, Nanchang 330046, China
Abstract:Low yield of peanut production due to low soil fertility, and environmental pollution as a result of disorderly discharge of animal excretion from large-scale animal farms. Some researchers have proposed application of animal excretions as organic manure into farmlands and hold that it a win-win solution to the problems. However, some scientists have proved that long-term excessive application of pig manure will bring about heavy metal accumulations in the soil and pollution of groundwater with nitrate; and some others have found that application of pig manure, if low in rate, not only increases labor cost but also has little effect on yield. Hence, how to make use of organic manure properly to optimize crops in yield and soil in quality without any risk of environmental pollution has become a pressing issue. For that a filed experiment was carried out at the Yingtan National Agroecosystem Field Experiment Station located in Yujiang County, Jiangxi Province, a subtropical area of China, to tackle this problem. The experiment was designed to have six treatments, i.e. no fertilizer (CK), conventional chemical fertilization (T0), 80% chemical fertilizer N plus 20% manure N (T20), 60% chemical fertilizer N plus 40% manure N (T40), 40% chemical fertilizer N plus 60% manure N (T60), and 20% chemical fertilizer N plus 80% manure N (T80), with a view to exploring effects of application of organic manure, relative to its rate, on yield of peanut, soil available nutrient and biological properties and further-on an optimal combination of chemical fertilizer with organic manure for peanut production in this area. So this study not only has its important theoretical significance in enriching the physiological study on nutrition and quality of peanut, but also possesses some practical meaning in reducing the waste of organic manure resources and alleviating the potential risk of application of organic manure polluting the environment. Results of the field experiment are encouraging. (1) Combined application had significant effects of improving yield of peanut, the plants in Treatment T40 were the highest in pod yield, kernel yield, pods per plant, per hundred kernel weight, being 20.14%, 26.92%, 27.87% and 7.08%, respectively, higher than their respective ones in Treatment T0 (2) combination application of organic and inorganic fertilizer have great influence on the soil available nutrient. After harvesting the peanut, the T40 treatment of the available N, available P and available K increased by 17.89%、22.96%、12.57%, respectively as compared with Treatment T0. (3) Numbers of bacteria, actinomycetes and fungi were raised with the increase of amount combined application of organic and inorganic fertilizer. Compared to the T0, number of the three kind of microorganism were in creased by 71.62%、40.42%、43.94%, respectively.(4) Fertilization can significantly enhance the enzyme activity of urease, invertase, acid phosphatase. The enzyme activity of medium (T40) and high (T60, T80) level of combined application were much higher than that of the other treatments. The effect of low level of combined application (T20) was near to the pure inorganic fertilizer. Based on the above-described findings, it can be concluded that on the condition that equivalent N, P, K nutrients are supplied, the application of fertilizer containing 35% of N in the form of organic manure can not only turn large volumes of animal excretions into organic manure, but also reduce the use of chemical fertilizer and improve the yield, quality and physiological properties of peanut in red soil areas, which means a great augmentation of economic value and social benefit.
Key words: organic manure combined application of chemical fertilizer    red soil    peanut yield    soil available nutrient    biological properties    

花生是我国亚热带红壤区重要的油料作物和经济作物。在江西省每年平均种植面积达1.3×106 hm2,产量为4.6×108 kg,占全省油料总产的37.5%[1],产值达27亿人民币[2]。虽然该地区光温水热等自然资源丰富,但红壤具有酸、粘、板、瘦的特点[3],导致花生产量不及我国其他地区。同时,随着畜禽养殖业集约化、规模化发展,全国每年的畜禽粪便排放量接近31.9亿t,而70%直接排放进入环境中[4],粪污无序排放不仅对环境有害,而且对人类和动物也能产生不利的影响[5],大量研究表明,施用粪肥不仅能减少环境污染[6],还能培肥土壤[7]、改变土壤养分循环[8]

近年来,土壤速效氮、磷、钾养分含量、土壤养分代谢酶活性、土壤微生物群落结构等土壤养分含量及生物性质作为反应土壤肥力的指标来指导土壤生态系统管理已逐渐成为热点[9, 10, 11, 12],通过土壤生物学性质和化学性质的变化反来映土壤质量的变化对土壤肥力预警体系具有重要意义。关于有机肥能提高旱地土壤养分含量和改善土壤生物学性质的报道有许多。大量研究表明:合理施肥可明显增强旱地土壤脲酶、蛋白酶、转化酶及磷酸酶等关键酶活性[13, 14, 15, 16];乔洁等研究表明,配施有利于提高土壤微生物生物量及土壤微生物活性[17],Mandal等报告了农家肥与无机化肥配合施用能显著提高土壤微生物量碳、氮以及酶活性[18]; Bloom 等认为,有机肥施入土提高土壤微生物生物量及活性,改善土壤微生物群落结构及多样性[19];Ndayeyamiya A在玉米田试验表明,有机肥或无机肥可提高酸性粉壤土土壤细菌、真菌和放线菌数量,同时显著增加氨化细菌、硝化细菌、自生固氮菌数量[20];同时,许多研究表明,施用有机肥对维持土壤氮、磷、钾养分也具有明显的效果[21]

然而,过量的施用有机肥不仅带来土壤重金属污染的风险[22, 23],而且会导致环境中氮、磷污染风险[24, 25]以及增加劳动力成本。所以,在没有环境污染风险的前提下如何精确配施有机肥使红壤旱地土壤肥力和生产力同时提升成为当前迫在眉睫的问题。因此,本研究通过设置有机无机肥配施田间实验,重点探讨不同配比对红壤旱地花生产量、土壤酶活性、可培养微生物数量、土壤速效养分的影响,得出能使红壤肥力和产量最优化的配施比例,以期为江西红壤旱薄地地区作物丰产和土壤培肥提供科学依据。

1 材料与方法 1.1 供试材料

供试土壤为第四纪红色黏土发育的红壤,有机质含量12. 15 g/kg、全氮含量0. 83 g/kg、 碱解氮含量35.54 mg/kg、速效磷含量 15. 41 mg/kg、速效钾含量 169. 21 mg/kg、pH4.94、有机质12.15 g/kg、土壤容重1.21 g/cm3、总孔隙度54.90%。供试花生品种为赣花1号,花生于4月13日播种,行距40 cm,株距20 cm,每穴播2粒,密度为25万株/hm2。供试化肥为尿素(含N46%)、钙镁磷肥(含P2O512%)、氯化钾(含K2O 60%)、有机肥用堆沤发酵的猪粪,鲜基猪粪养分含量为:N 8.87 g/kg、P2O57.41 g/kg、K2O 3.45 g/kg、有机质含量524.1 g/kg、含水量70%。

1.2 试验设计

实验于2013年在中国科学院江西红壤生态试验站进行,采用田间小区试验,小区面积30m2,各小区间用宽50cm,高25cm的田埂封隔。该小区进行试验前是花生萝卜轮作,按照当地常规施肥种植。花生常规N、P2O5、K2O施用量分别为:121、90、135kg/hm2,有机粪肥与化肥配施处理以氮素施用量为计算标准,补足磷、钾含量,确保各处理氮、磷、钾施用量相等。试验共设6个处理:CK(不施肥处理)、T0(常规施肥:纯化肥N)、T20(20%有机猪粪N+80%化肥N)、T40(40%有机猪粪N+60%化肥N)、T60(60%有机猪粪N+40%化肥N)、T80(80%有机猪粪N+20%化肥N),每个处理设置3个重复,随机区组排列。有机肥和化肥全部一次性基施,采用常规田间管理。

1.3 采样时间

分别于花生播种期、始花期、花针期、结荚期和成熟期采集土样

1.4 样品采集与处理

每区采用五点法混合法取0—30cm土层土样,一部分新鲜土壤带回实验室,4°保存,经过预处理后测定土壤酶活性;另一部分自然风干,过2mm筛,用于测定土壤有效养分;收获测定植株主要农艺性状,按实际面积计产。此外,每区采集5株植株根际土壤带回实验室-20°保存,经过预处理后测定土壤微生物量。

1.5 测定项目及方法

土壤有机质:浓硫酸钾重铬酸钾外加热法;有效磷:双酸浸提钼蓝比色法;有效钾:CH3COONH4提取,火焰光度计法;碱解氮:间接扩散滴定法[26]

土壤脲酶活性用靛酚蓝比色法测定;酸性磷酸酶活性用磷酸苯二钠比色法测定;蔗糖酶活性用3,5-二硝基水杨酸比色法测定[27]

根际土壤微生物区系的测定:放线菌培养采用高氏1 号培养基,细菌培养采用牛肉膏蛋白胨培养基,真菌培养采用马丁氏培养基。放线菌、细菌、真菌计数采用稀释涂抹平板法[28]。微生物数量以每克土壤样品所含菌数表示。每克土壤样品所含菌数=同一个稀释度几次重复的菌落平均数×10×稀释倍数。

1.6 数据分析

采用Word2007、Excel2007及DPS、SPSS16.0软件数据处理、统计分析、绘图与作表。

2 结果分析 2.1 对花生产量的影响

花生产量及产量构成因素结果表明(表 1):CK的各指标显著低于施肥处理,产量指标随着配施比例呈现倒U型的变化,T40处理最好。与CK和T0处理相比,T40处理的荚果增产率分别为50.96%和20.14%,籽仁增产率分别为60.61%和26.92%,单株结果数分别了提高93.93%和29.08%,百粒重分别提高了16.18%和7.09%;但是荚果产量、籽仁产量、单株结果数及百粒重在T20、T40、T60、T80等4个处理之间没有明显的差异。

表 1 不同有机无机肥配施比例对花生产量的影响 Table 1 Effects of combined application of chemical fertilizer plus organic manure on on peanut yield
处理 Treat ments荚果产量 Pod Yield/ (kg/hm2)籽仁产量 Kemel yield/ (kg/hm2)单株结果数 Pods per plant百果重 Weight of 100-pod/g出仁率 Kernel rate/ %
不同小写字母代表同一采样期处理间差异显著,P<0.05
CK2883.56d2015.03d11.71c179.43c69.88b
T03623.19c2550.00c17.87b194.67b70.38ab
T203858.07b2736.48b19.18ab198.55b70.93ab
T404352.97a3236.54a22.71a208.47a71.40a
T603918.04ab2801.37ab22.56a192.13b71.56a
T803768.12bc2649.74bc18.27ab191.46b70.32ab
2.2 对土壤速效养分的影响 2.2.1 对土壤碱解氮的影响

不同有机无机配施比例下,土壤碱解氮变化总体上以花生花针期为分界呈先上升后下降的趋势(图 1)。

图 1 不同有机无机肥配施比例对土壤碱解氮含量动态变化的影响 Fig. 1 Effects of combined application on available N

在花生花针期,各施肥处理的土壤碱解氮均达生育期内的最大值,而且随着无机肥比例增高而增高。T0处理在数值上分别高出CK、T20、T40、T60、T80处理48.05%、8.39%、15.89%、19.25%、29.93%。在花生结荚期,各施肥处理土壤碱解氮急剧下降,尤其是T0处理,下降了21.51%,而有机肥配施的各处理下降相对较平缓。在整个生育季后期(花生成熟期)各处理下降幅度较大,整个生育期结束后,除CK处理土壤碱解氮相对于播种期有所下降外,其余各施肥处理均有不同程度的提高,以T40提升效果最明显,相对于播种期提升了19.66%,相对于T0提升了12.01%。

2.2.2 对土壤有效磷的影响

图 2为有机无机配施条件下土壤有效磷在整个生育季的动态变化情况,从图可以看出:土壤有效磷含量在花生花针期急剧上升,达到全生育期的峰值,然后不同程度下降。

图 2 不同有机无机肥配施比例对土壤有效磷含量动态变化的影响 Fig. 2 Effects of combined application on available P

花针期各施肥处理土壤有效磷含量的大小顺序为:T0>T20>T40>T60>T80>CK,T0分别高出CK和T20处理75.67%和5.36%。从花生花针期到成熟期,各施肥处理有不同程度的下降趋势,以T0下降幅度最大,下降了55.67%;而配施有机肥处理下降的最大幅度为:40.70%,最小下降幅度为:32.37%。在花生收获后,各施肥处理的土壤有效磷含量顺序为:T60≈T40>T20>T80>T0>CK,CK和T0处理相对播种期分别下降了26.45%和16.00%;而各配施处理的均有小幅度的提升,最高3.87%。

2.2.3 对土壤速效钾的影响

图 3为有机无机配施条件下土壤速效钾的动态变化,从图中可以看出,土壤速效钾的变化趋势与碱解氮、有效钾动态变化趋势一致,均为在花针期达到峰值,然后呈下降趋势。试验结果表明,T0处理的土壤速效钾在花针期的含量最高,为303.47mg/kg,数值比同期有机肥配施高。花针期各处理土壤速效钾含量高低顺序为:T0>T20>T40>T60>T80>CK。随着生育期推进,速效钾含量逐渐下降,其中T0处理下降的幅度最大。从全年对土壤速效钾提升比例来看,最高的为配施40%处理,提升比例为9.94%;其次为配施20%处理,提升5.85%;再次为配施60%,提升比例为4.67%;配施80%处理则升高了2.92%;CK和T0处理在全生育期结束后,速效钾含量降低了8.77%和2.34%。

图 3 不同有机无机肥配施比例对土壤速效钾含量动态变化的影响 Fig. 3 Effects of combined application on available K
2.3 对土壤微生物数量的影响

表 2可以看出,土壤0—30cm耕层土壤微生物组成以细菌为主,放线菌次之,真菌最少。从花生生长全生育期来看,土壤可培养微生物数量呈先增加后减少的单峰曲线变化趋势,真菌数量最大值出现在花针期,而细菌和放线菌数量最大值则出现 在结荚期。从全生育期平均值来看,施肥对细菌的 影响明显大于放线菌和真菌。

表 2 不同有机无机肥配施比例对土壤可培养微生物数量动态变化的影响 Table 2 Amounts of soil microorganism of different combination application ratio at different growing stage of peanut
指标 Indices处理 Treatment始花期 Flowering stage花针期 Pegging stage结荚期 Pod setting stage饱果期 Pod filling stage全生育期平均 Average
真菌数量T8015a28a26a16a21.25
Number of fungi/ T6011b23b22b14b17.5
(×104cfu /g)T4010bc22bc21bc13bc16.5
T209bc21c19c11c12.5
T07cd16d14d10c11.75
CK4d16e13e7d10
细菌数量 T8039a40a48a44a42.75
Number of bacteria/T6026b33b46a37b35.5
(×106cfu /g)T4025b31c38b33c31.75
T2023c31c35b30c29.75
T015d28d15c16d18.5
CK8e23e13c12d14
放线菌数量T8025a33a38a34a32.5
Number of actinnomycetes/T6020b30b30b27b26.75
(×105cfu/g) T4018c27c27c23c23.75
T2017c23d26c21c21.75
T014d22d18d12d16.5
CK11e17e14e10d13

同一生长期内,各施肥处理间的真菌、细菌、放线菌的数量级大小顺序一致:T80>T60>T40>20>T0>CK。其中,配施高量和中高量有机肥(T80、T60)显著高于常规施肥(T0)和对照(CK),尤其是在始花期,高量配施处理的三类微生物分别是常规施肥处理的2.14、2.6以及1.79倍。

同一施肥处理在不同时期对微生物数量影响的程度和作用效果不同,真菌数量在花生始花期和花针期存在极显著差异,最高提高了220%;放线菌数量和细菌数量在花生花针期和结荚期差异水平达极显著,最高分别提高了100%和45%。

2.4 对土壤酶活性的影响 2.4.1 对土壤脲酶活性的影响

图 4 可以看出:脲酶活性在花生整个生育期成单峰曲线,在花生花针期达到峰值,而且土壤脲酶活性随着配施有机肥比例增大而提高。

图 4 不同有机无机肥配施比例对土壤脲酶活性动态变化的影响 Fig. 4 Effects of combined application on Urease activities 图中不同小写字母表示同一采样期处理间差异显著,P<0.05

除T20处理外,其余各配施处理在四个时期的脲酶活性显著高于常规施肥及不施肥处理。有机无机中量配施(T40)、高量配施(T60、T80)显著高于其他试验处理,但不同时期内,中、高量配施处理之间差异不显著。低量配施(T20)在生育后期与常规施肥(T0)和CK差异显著,生育前期差异不显著。表明,中量以上有机无机肥配施有利于提高花生整个生育期内土壤脲酶活性,纯化肥施用在生育前期对土壤脲酶作用不明显,而低量有机肥配施效果介于中高量配施和纯化肥之间。

2.4.2 对土壤蔗糖转化酶的影响

与脲酶变化规律近似,土壤蔗糖转化酶活性随着生育期的延长,先增加后降低,在花生结荚期达到最大值。而不同施肥处理对土壤蔗糖酶活性的影响表现为:随着配施比例的增高,土壤蔗糖转化酶活性随之增高,酶活性大小顺序为:T80>T60>T40>T20>T0>CK(图 5),但高量有机无机配施的两个处理(T80、T60)在4个生长时期内并无显著性异。此外,除花针期和结荚期低量有机无机配施(T20)与常规施肥(T0)差异不显著外,其余各处理之间均达显著水平。表明增施肥量可以提高土壤蔗糖酶活性,有机肥效果更好,且随着用量的增加效果更明显。

图 5 不同有机无机肥配施比例对土壤蔗糖酶活性动态变化的影响 Fig. 5 Effects of combined application on Invertase activities
2.4.3 对酸性磷酸酶的影响

图 6 可以看出,(1)随着配施比例增加,土壤酸性磷酸酶活性逐渐增大,大小顺序为:T80>T60>T40>T20>T0>CK,在花生结荚期达到峰值。(2)花生始花期,土壤酸性磷酸酶活性较低,施肥能显著提高土壤酸性磷酸酶活性,但不同的施肥处理间差异较小;随着生育期的推进,土壤酸性磷酸酶活性逐渐拉大。(3)生育中期(花针期和结荚期),低量配施(T20)和纯化肥处理(T0)差异不显著,但在生育始花期和成熟期T20处理显著高于T0处理。(4)四个生育期内,T40-T80显著高于其他处理,但T40、T60、T80三个处理之间没有显著性差异。表明,配施有机肥能在花生生育后期能显著提高土壤酸性磷酸酶含量。

图 6 不同有机无机肥配施比例对土壤酸性磷酸酶活性动态变化的影响 Fig. 6 Effects of combined application on soil Acid Phosphatase activities
3 讨论 3.1 有机无机配施对花生产量的影响

花生产量的高低取决于单位面积内株数和单株生产力,而单株生产力取决于单株结荚数和荚果重。因此,单位面积株数,单株果数和果重是花生产量构成的三要素。本试验研究结果表明,施肥能显著提高花生产量,而有机无机肥配施处理的花生产量产量则明显高于纯常规施肥处理(纯化肥N)处理,配施40%有机猪粪N处理的产量达到最大值。其主要原因可能是,花生产量形成最重要的时期花针期和结荚期,一方面40%有机肥配施土壤速效养分、土壤可培养微生物数量以及酶活性均较高,多种无机营养和有机营养能被花生植株直接吸收利用,特别是有机肥在微生物作用下产生的氨基酸、糖、核酸降解物等成分是果仁中蛋白质和碳水化合物的合成材料,促进了花生的新陈代谢和生殖生长;另一方面,在单位面积株数相同的情况下,40%有机猪粪N处理单株结荚数和百粒重值均最大,因此产量也最大。单株结果数增加可能是因为有机肥含有的微量元素硼减少了花生的花而不实,增加了结实率[29],而百粒重增加的原因可能与花生籽仁的品质因素有关,总脂肪含量和蛋白质含量越大,花生越饱满,百粒重越大。因此,合适的配施比例有利于提高花生产量,增加农民收益。

3.2 有机无机配施对土壤速效养分含量的影响

氮、磷、钾3种元素是作物生长发育的3种必需营养元素,但红壤地区的3种元素的有效营养元素含量都比较低。本研究试验结果表明,不同施肥处理的土壤碱解氮、有效磷、速效钾3种速效养分在花生4个生育期中含量变化有着巨大的差异。花生生长最旺盛的花针期,常规施肥处理的3种速效养分显著高于其他处理,而在花生生育后期,常规施肥处理的速效养分含量仅高于不施肥处理,出现这种情况的原因可能是:由于在播种的时候大量的化肥施入土壤,导致在花针期土壤碱解氮、有效磷、速效钾随着无机肥配施比例增高含量增大;在作物生长后期,大量的无机氮被地表径流和淋溶等作用带走,而此时配施处理有机肥矿化速率加快,产生大量的有机养分,因此在生育后期配施处理的土壤速效养分显著高于常规施肥和不施肥处理。此外,在成熟期,随着配施比例增加,土壤速效养分的含量均呈现出先增加后降低,配施40%有机肥明显高于其他比例配施处理。出现这种的原因可能是这个配施比例能有效的均衡有机养分和无机养分,配施比例较低的在该时期的由于无极养分有余而有机养分不足,而配施比例较高的则可能是有机养分有余而无机养分不足,只有恰当的配施比例使其在每个时期都的速效养分均比较高,所以配施40%有机肥有利于提高土壤速效养分。

3.3 有机无机配施对土壤可培养微生物数量和土壤酶活性的影响

土壤中微生物种群及数量是反映土壤肥力的主要指标之一[30]。细菌、真菌、放线菌直接参与了土壤碳、氮、硫等营养元素的循环和能量流动,其数量和活性反映了微生物对土壤肥力、植物生长的作用和影响[31]。本研究结果表明,3种可培养为数量随着生育期的延长先增加后降低,在花针期和结荚期两个时期达到峰值;而不同配施比例之间则表现为随着配施比例增大可培养微生物数量随即增多,与王才斌等[32]研究结果一致;这是因为有机肥中含有大量的碳水化合物和矿质元素,为细菌的生长提供了丰富的碳氮源,比化肥更能激发可培养细菌的生长和繁育,从而极大地提高土壤中可培养细菌的数量[33],与此同时,无机肥提供的无机养分促进了花生的生长发育,增加了花生根系分泌物的释放,而这些根系分泌物不仅能供给微生物能源,还与其繁殖密切相关[34];此外,可培养微生物数量随着生长期的延长先增加后降低,在花针期达最大值,出现在这样的情况可能是花针期是花生生长最旺盛的时期,根际活性较强,进而对土壤微生物产生强烈的影响。因此有机肥配施有利于增加土壤可培养微生物数量。

土壤酶与土壤微生物密切相关,土壤酶来自于动物、植物和微生物,其中微生物是脱离活体酶的唯一来源,因此土壤酶活性常被作为微生物活性的指示物[35],此外,土壤酶在生态系统的有机质分解和养分循环所必须的催化反应中起重要作用[36]。试验研究表明,即使在花生当季施肥,对土壤脲酶、酸性磷酸酶以及蔗糖转化酶活性的影响也很大。总体趋势是:有机无机肥配施效果好于单施无机肥,随着有机肥的用量增加,对土壤酶活性的促进作用随之增强;单纯的无机肥施用虽然对土壤酶活性有一定的促进作用,但是明显低于低量有机肥配施。出现这种趋势的原因是因为土壤酶与土壤微生物密切相关,脱离活体酶的唯一来源是微生物,所以不同配施比例条件下,土壤酶活性的变化趋势和土壤可培养微生物一致。

4 结论

综合以上结果得出,配施有机肥不仅能提高花生旱地的土壤酶活性、土壤可培养微生物数量、土壤速效养分含量还能提高花生产量。尤其是配施40%猪粪N和60%猪粪N两个处理,本研究中的大部分指标较其他处理均有显著提高。综合中国科学院鹰潭红壤生态试验站的长期试验地10a监测结果显示,不施肥处理Hg、As、Cu、Cr、Zn、Pb的10a平均累积含量分别为:52.94、13.89、34.11、75.34、86.28、33.10 mg/kg;配施中量有机肥Hg、As、Cu、Cr、Zn、Pb的10a平均累积含量分别为:54.63、13.83、41.12、76.82、84.55、31.45 mg/kg。中量有机肥处理的6种重金属含量与不施肥处理均没有显著增加。所以,在应用中应选择配施40%猪粪N+60%猪粪N,不仅有利于缓解畜禽粪便无序排放所带来的环境污染还能减少化肥施用量以及增加经济社会效益。

参考文献
[1] Huang M M, Luo Z L, Sun M Z. Current situation and development counter ensure of peanut production in Jiangxi. Jiangxi Agricultural Science, 2013, (2): 15-16.
[2] Chen Z C, Zhou X F, Song L Q, Zou X Y, Zhang J M, Chen L L, Li S Y. Current situation and development counter ensure of peanut production in Jiangxi. Bulletin of Agricultural Science and Technology, 2010, (6): 18-21.
[3] Liu X, He X Y. Progress and achievement in the research on red soil in Jiangxi. Acta Agriculturae Jiangxi, 1991, 3(1): 66-75.
[4] Tian W, Li L Z, Liu F, Zhang Z H, Yu G H, Shen Q R, Shen B. Assessment of the maturity and biological parameters of compost produced from dairy manure and rice chaff by excitation-emission matrix fluorescence spectroscopy. Bioresource Technology, 2012, 110: 330-337.
[5] Cao Y, Chang Z Z, Wang J D, Ma Y, Fu G Q. The fate of antagonistic microorganisms and antimicrobial substances during anaerobic digestion of pig and dairy manure. Bioresource Technology, 2013, 136: 664-671.
[6] Forge T A, Bittman S, Kowalenko C G. Responses of grassland soil nematodes and protozoa to multi-year and single-year applications of dairy manure slurry and fertilizer. Soil Biology and Biochemistry, 2005, 37(10): 1751-1762.
[7] Yanget Z, Singh B R, Sitaula B K. Fractions of organic carbon in soils under different crop rotations, cover crops and fertilization practices. Nutrient Cycling in Agroecosystems, 2004, 70(2): 161-166.
[8] Aoyama M, Kumakura N. Quantitative and qualitative changes of organic matter in an Ando soil induced by mineral fertilizer and cattle manure applications for 20 years. Soil Science and Plant Nutrition, 2001, 47(2): 241-252.
[9] Bossio D A, Fleck J A, Scow K M, Fujii R. Alteration of soil microbial communities and water quality in restored wetlands. Soil Biology and Biochemistry, 2006, 38(6): 1223-1233.
[10] Van Bruggen A H C, Semenov A M. In search of biological indicators for soil health and disease suppression. Applied Soil Ecology, 2000, 15(1): 13-24.
[11] Harris J A. Measurements of the soil microbial community for estimating the success of restoration. European Journal of Soil Science, 2003, 54(4): 801-808.
[12] Schloter M, Dilly O, Munch J C. Indicators for evaluating soil quality. Agriculture, Ecosystems and Environment, 2003, 98(1/3): 255-262.
[13] Zakarauskaite D, Vaisvila Z, Motuzas A, Grigaliūnien K, Buivydait V V, Vaisvalavi c ˇ ius R, Butkus V. The influence of long-term application of mineral fertilizers on the biological activity of Cambisols. Ekologija, 2008, 54(3): 173-178.
[14] Balezentiene L, Klimas E. Effect of organic and mineral fertilizers and land management on soil enzyme activities. Agronomy Research, 2009, 7: 191-197.
[15] Yuan L, Huang J Q, Yu S Q. Responses of nitrogen and related enzyme activities to fertilization in the rhizosphere of wheat. Pedosphere, 1997, 7(2): 141-148.
[16] Monokrousos N, Papatheodorou E M, Diamantopoulos J D, Stamou G P. Soil quality variables in organically and conventionally cultivated field sites. Soil Biology and Biochemistry, 2006, 38(6): 1282-1289.
[17] Qiao J, Bi L D, Zhang W J, Shen R F, Zhang B, Hu F, Liu Y L. Effects of long-term chemical fertilization on soil microbial biomass, activity and community in paddy soil in red soil region of China. Soils, 2007, 39(5): 772-776.
[18] Mandal A, Patra A K, Singh D, Swarup A, Masto R E. Effect of long-term application of manure and fertilization and biochemical activities in soil during crop development stages. Bioresource Technology, 2006, 98(18): 3585-3592.
[19] Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M. Proteasome-mediated degradation of P21via N-terminal ubiquitinylation. Cell, 2003, 115(1): 71-82.
[20] Ndayeyamiye A, Cote D. Effect of long-term pig slurry and solid cattle manure application on soil chemical and biological properties. Canadian Journal of Soil Science, 1989, 69(1): 3-47.
[21] Gilly J E, Eghball B. Residual effects of compost and fertilizer applications on nutrients in runoff. Transactions of the American Society of Agricultural Engineers, 2002, 45(6): 1905-1910.
[22] Yu Y H. The heavy metal pollution of feed and its prevention. Cereal and Feed Industry, 2001, (6): 12-14.
[23] Moreno-Caselles J, Moral R, Perez-Murcia M D, Perez-Espinosa A, Paredes C, Agulló E. Fe, Cu, Mn and Zn input and availability in calcareous soils amended with the solid phase of pig slurry. Communications in Soil Science and Plant Analysis, 2005, 36(4/6): 525-534.
[24] Navarro Pedreo J, Moral R, Gómez I, Mataix J. Reducing nitrogen losses by decreasing mineral fertilisation in horticultural crops of eastern Spain. Agriculture, Ecosystems & Environment, 1996, 59(3): 217-221.
[25] Townsend M A, Sleezer R O, Macko S A. Effects of agricultural practices and vadose zone stratigraphy on nitrate concentration in ground water in Kansas, USA. Water Science and Technology, 1996, 33: 219-226.
[26] Lu R K. Soil Agro Chemistry Analysis. Beijing: Chinese Agricultural Science and Technology Press, 2000: 128-129.
[27] Guan S Y. Soil Enzyme and Its Research Methods. Beijing: China Agricultural Press, 1986: 62-142.
[28] Li Z G, Luo Y M, Teng Y. Soil and Soil Microbial Research Methods. Beijing: Science Press, 2008.
[29] Hu X. Effect of Returning Whole Straw Associated with Chemical Nitrogen and Organic Fertilizer on Rice Yield Formation[D]. Yangzhou: Yang Zhou University, 2008.
[30] Fan J, Hao M D. Study on long-term experiment of crop rotation and fertilization in the Loess Plateau I. Effect of crop rotation and continuous planting on soil enzyme activities. Plant Nutrition and Fertilizer Science, 2003, 9(1): 9-13.
[31] Yang H F, Xie Y L, Fan J F, Li J. The research of different fertilization impact on soil fertility and yield of crop fruits. Chinese Agricultural Science Bulletin, 2006, 22(9): 250-254.
[32] Wang C B, Zheng Y P, Liang X Y, Wang J G, Zheng Y M, Sun X W, Feng H, Wu Z F, Sun X S. Effects of fertilization on soil fertility indices and yield of dry-land peanut. Acta Ecologica Sinica, 2013, 33(4): 1300-1307.
[33] Ndayegamiye A, Cote D. Effect of long-term pig slurry and solid cattle manure application on soil chemical and biological properties. Canadian Journal of Soil Science, 1989, 69(1): 39-47.
[34] Jiao X G, Sui Y Y, Wei D, Liu Z K, Huang J H. Effect of long-term fertilization on enzyme activities and soil fertility for the black soil in the farmland. System Sciences and Comprehensive Studies in Agriculture, 2010, 26(4): 443-447.
[35] Doran J W, Safley M. Defining and assessing soil health and sustainable productivity // Biological Indicators of Soil Health. Wallingford: CAB International, 1997: 1-28.
[36] Allison V J, Condron L M, Peltzer D A, Richardson S J, Turner B L. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology and Biochemistry, 2007, 39(7): 1770-1781.
[1] 黄梅梅, 骆赞磊, 孙明珠. 江西花生生产现状与发展对策. 江西农业, 2013, (2): 15-16.
[2] 陈志才, 邹晓芬, 宋来强, 邹小云, 张建模, 陈伦林, 李书宇. 江西省花生生产现状及发展对策. 农业科技通讯, 2010, (6): 18-21.
[3] 刘勋, 贺湘逸. 江西红壤科研进展与成就. 江西农业学报, 1991, 3(1): 66-75.
[17] 乔洁, 毕利东, 张卫建, 沈仁芳, 张斌, 胡锋, 刘艳丽. 长期施用化肥对红壤性水稻土中微生物生物量、活性及群落结构的影响. 土壤, 2007, 39(5): 772-776.
[26] 鲁如坤. 土壤农业化学分析. 北京: 中国农业科技出版社, 2000: 128-129.
[27] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986: 62-142.
[28] 李振高, 骆永明, 滕应. 土壤与环境微生物研究法. 北京: 科学出版社, 2008.
[29] 胡星. 秸秆全量还田与有机无机肥配施对水稻产量形成的影响 [D]. 扬州: 扬州大学, 2008.
[32] 王才斌, 郑亚萍, 梁晓艳, 王建国, 郑永美, 孙学武, 冯昊, 吴正峰, 孙秀山. 施肥对旱地花生主要土壤肥力指标及产量的影响. 生态学报, 2013, 33(4): 1300-1307.
[34] 焦晓光, 隋跃宇, 魏丹, 刘真可, 黄金花. 长期施肥对农田黑土酶活性及土壤肥力的影响. 业系统科学与综合研究, 2010, 26(4): 443-447.