生态学报  2014, Vol. 34 Issue (17): 5052-5061

文章信息

李玮, 乔玉强, 陈欢, 曹承富, 杜世州, 赵竹
LI Wei, QIAO Yuqiang, CHEN Huan, CAO Chengfu, DU Shizhou, ZHAO Zhu
秸秆还田和施肥对砂姜黑土理化性质及小麦-玉米产量的影响
Effects of combined straw and N application on the physicochemical properties of lime concretion black soil and crop yields
生态学报, 2014, 34(17): 5052-5061
Acta Ecologica Sinica, 2014, 34(17): 5052-5061
http://dx.doi.org/10.5846/stxb201303210475

文章历史

收稿日期:2013-3-21
网络出版日期:2014-3-5
秸秆还田和施肥对砂姜黑土理化性质及小麦-玉米产量的影响
李玮1, 2, 乔玉强1, 2, 陈欢1, 2, 曹承富1, 2 , 杜世州1, 2, 赵竹1, 2    
1. 安徽省农业科学院作物研究所, 合肥 230031;
2. 安徽省农作物品质改良重点实验室, 合肥 230031
摘要:通过安徽省蒙城县砂姜黑土上连续4a的冬小麦-夏玉米连作长期定位试验,研究了秸秆还田配合施用不同量氮肥对土壤理化性质及作物产量的影响。结果表明,秸秆还田可降低土壤容重2.5%-9.2%,提高含水量8.2%-28.5%和表层土壤贮水量4.1%-19.9%;增加土壤总孔隙度1.1%-8.9%、毛管孔隙度18.9%-41.0%,非毛管孔隙度降低6.4%-38.8%,土壤毛管孔隙度占土壤总孔隙度的比例增加。秸秆还田所有处理耕层的土壤硝态氮含量高于秸秆移除处理,施氮540、630、720 kg N hm-2 a-1时,秸秆还田处理的硝态氮含量显著高于秸秆移除,而铵态氮含量无明显变化规律。无论秸秆还田还是秸秆移除,耕层土壤的硝态氮含量随氮肥用量的增加呈指数趋势增加,硝态氮含量与施氮量的相关性秸秆移除处理高于秸秆还田处理;秸秆还田处理的铵态氮含量随施氮量增加成指数趋势增加,而秸秆移除处理呈指数趋势减小,相关性均不显著。秸秆还田条件下,小麦和玉米获得高产的年氮肥用量分别为630、696 kg N hm-2 a-1,秸秆移除为579、627 kg N hm-2 a-1。经作用力分析,秸秆还田是影响土壤物理性质的最重要因素,作物产量受秸秆还田和施氮量的影响,但氮肥水平大于秸秆还田。
关键词秸秆还田    砂姜黑土    氮肥水平    理化性质    作物产量    
Effects of combined straw and N application on the physicochemical properties of lime concretion black soil and crop yields
LI Wei1, 2, QIAO Yuqiang1, 2, CHEN Huan1, 2, CAO Chengfu1, 2 , DU Shizhou1, 2, ZHAO Zhu1, 2    
1. Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
2. Anhui Key Laboratory of Quality Improvement of Crops, Hefei 230031, China
Abstract:The effects of a combination of returned straw and different N fertilizer application rates on the physical and chemical properties of lime concretion black soil and crop yields were systematically studied, based on data from a four year experiment using a winter wheat-summer maize rotation system in Mengcheng City, Anhui Province, China. The results showed that the bulk density of surface soil under areas where straw was either incorporated or removed were 1.14-1.20 g/cm3 and 1.24-1.31 g/cm3, respectively. Straw incorporation decreased soil density by 2.5%-9.2%, while soil water content and water storage increased over the four years by 8.2%-28.5% and 4.1%-19.9%, respectively, after the return of the straw. The total soil porosity and capillary soil porosity in the areas of returned straw treatments ranged from 3.0%-57.1% and 33.9%-41.0%, respectively, whilst the same parameters ranged from 50.7%-54.6% and 27.3%-29.5%, respectively, under the areas where straw was removed. In contrast, non-capillary porosity decreased by 6.4%-38.8%, showing a significant difference between areas where straw was incorporated or removed. The nitrate nitrogen content of top soil under the returned straw treatment areas was significantly increased by 9.80%-86.71% greater than that of the areas where straw was removed, especially with N application rates of 540, 630, and 720 kg N hm-2 a-1. Nitrogen accumulation in surface soil for N application rates of 360, 450, 540, 630 and 720 kg N hm-2 a-1 were 1.42, 1.53, 2.22, 2.51 and 2.12 times that of areas where no fertilizer was added, respectively, for the returned straw areas and 1.24, 1.38, 1.53, 1.59, 1.72 times the no added fertilizer accumulation for the area where straw was removed. For both straw incorporated areas or not, there were exponential relationships between the nitrate nitrogen content and N application amount, although the correlation coefficient was higher under the straw incorporation treatments than for those where straw was removed. Compared to nitrate, the ammonia nitrogen content showed no obvious differences between areas of straw incorporation and removal. Ammonia accumulation under different N application rates was affected by straw addition. Under straw return treatments, it increased exponentially with the increase of N application rates, and decreased exponentially under areas where straw was removed, but there was no significant correlation. The effects of straw incorporation and N application rates on maize and wheat yields were different. For maize, the yield gradually increased from 360 kg N hm-2 a-1 to 720 kg N hm-2 a-1of N application levels under both straw added areas and straw removed areas. However, the wheat yield gradually increased from 360 kg N hm-2 a-1 to 450 kg N hm-2 a-1 and from 360 kg N hm-2 a-1 to 630 kg N hm-2 a-1, and decreased when N exceeded 450 kg N hm-2 a-1and 630 kg N hm-2 a-1 under areas of straw removal and straw incorporation. The high yields of maize and winter-wheat with straw incorporation treatments would be obtained under the N application rates of 696, 630 kg N hm-2 a-1, respectively. N application rates of 579, 627 kg N hm-2 a-1 in straw removal areas would obtain high yields, but they were lower than that from areas of returned straw treatments. The force analysis showed that returning straw was the most important influencing factor of soil physical properties, and both straw incorporation and N application rates can compact crop yields, but the force of N level to yield is stronger than that for returning straw.
Key words: returning straw    lime concretion black soil    N application rate    physicochemical properties    crop yield    

植物残体能有效增加土壤有机质含量、改良土壤、培肥地力,特别对缓解我国氮、磷、钾肥比例失调的矛盾,弥补磷钾肥不足等具有十分重要的意义。目前,秸秆覆盖在发达国家已相当完善,得到了较大普及,并且取得了较好的效果[1, 2, 3, 4, 5]。虽然国内关于秸秆还田的研究起步较晚,但涉及作物产量[6, 7]、土壤理化性状[8]、微生物群落[9, 10]等方面的研究文献报道目前也比较多。国内外已有的研究表明,秸秆覆盖可以显著改善土壤物理性状[11],缓和土壤温度的季、日变化[12, 13],减少土壤水分蒸发[14],提高土壤含水率[15, 16, 17]以及不同程度的增加土壤有机质、全磷和全氮的含量[18, 19, 20, 21]

安徽省黄淮海南部砂姜黑土区是全省主要的粮食产区,但该区土壤质地粘重、结构性差,加之有机质含量低,养分贫乏,严重影响作物的正常生长,导致土壤生产率较低。该区农业生产长期以来偏向于施用化学氮肥,盲目施肥不仅导致肥料的浪费,长此以往也将限制作物产量和品质的提高,而且更严重的是土壤结构以及土壤肥力持续性受到破坏,土壤质量下降[22, 23, 24]。近年来,该区也推广应用秸秆还田技术,但关于秸秆还田条件下土壤理化性质与作物产量的理论性探讨,尚未见试验性研究报道。因此,本文基于连续4a的小麦-玉米秸秆还田长期定位试验,探讨了长期秸秆还田同时配施不同量的化学氮肥对砂姜黑土理化性质及作物产量的影响,旨在为该区科学的进行秸秆还田和施肥提供理论依据和技术支持。

1 材料与方法 1.1 试验区概况

试验于2008—2012年度在安徽省蒙城县农业示范场进行,试验地土质为砂姜黑土,0—20 cm土层养分含量为:土壤有机质14.24 g/kg,全氮含量0.99 g/kg,碱解氮57.84 mg/kg,全磷含量0.67 g/kg,有效磷21.57 mg/kg,速效钾197.46 mg/kg。供试小麦品种为济麦22,玉米品种为郑单958。

1.2 田间试验设计

试验采用裂区设计,设秸秆还田和施氮量两因素。其中秸秆处理为主区,设小麦-玉米秸秆全量粉碎还田(S)和移除(R)两种方式,秸秆全量还田年还田量为21000 kg/hm2,其中小麦9000 kg/hm2,玉米12000 kg/hm2;氮肥施用为副区,设置6个处理,施氮量为0、360、450、540、630、720 kg N hm-2 a-1,分别用N0、N1、N2、N3、N4、N5表示;磷、钾肥施用量分别为180 kg P2O5 hm-2 a-1、180 kg K2O hm-2 a-1,除N0(对照)之外,其余氮肥处理均施用磷钾肥,且施用量一致。各处理氮、磷、钾肥小麦季施用量占年施用总量的45%,玉米季55%。小麦季氮肥基追比为55:45,追肥时期为拔节期,磷钾肥在小麦播种时一次性基施;玉米季氮肥基追比为45 ∶ 55,追肥时期为大喇叭口期,磷钾肥在玉米播种时一次性基施。小麦10月中旬播种,玉米6月中旬播种。小区面积21.6 m2,随机排列,3次重复。

1.3 样品采集

土样采集:土壤样品于2012年10月采集,取0—20 cm的土样,每个样品均为多点采集混合而成,然后用四分法取出足够的样品,保存于4℃冰箱中,4 d之内测完。

1.4 指标测定

无机氮 土样采集后测定土壤水分以及硝态氮和铵态氮含量。分析硝态氮和铵态氮时先将土壤解冻,称取10 g鲜土于震荡瓶(150 mL)中,加入 2 mol/L KCl溶液50 mL,震荡1 h后过滤,浸提液硝态氮采用双波长(220 nm,275 nm)法测定,铵态氮采用靛酚蓝比色法(625 nm)测定,同时测定土壤含水量以矫正水分系数[25]

土壤容重 采集0—20 cm原状土壤样品,环刀法测定。

土壤孔隙度 通过土壤容重和密度计算得到,公式如下:

式中,Pt表示土壤总孔隙度,%;Bd表示土壤容重,g/cm3Ds表示土壤密度,通常采用的密度值为2.65 g/cm3

土壤毛管孔隙度用下式计算:

式中,Pc表示土壤毛管孔隙度,%;Wc表示土壤毛管含水量,%;V表示土壤体积,为100 cm3

作物产量 小麦和玉米成熟后实收每小区产量。

1.5 数据分析

试验数据采用SPSS 16.0和Excel 2003软件进行处理和作图。分析试验中秸秆还田、氮肥水平及秸秆还田×氮肥水平交互效应对试验结果的作用力,用变异度表示。分析过程中按照导致试验结果产生差异的来源,将作用力分为区组、秸秆还田、氮肥水平、秸秆还田×氮肥水平、误差共5种。

2 结果与分析 2.1 对土壤容重和含水量的影响

土壤容重可以概括地反映土壤质地、结构状况以及腐殖质含量的高低,是土壤重要的物理特性之一,而土壤含水量则决定了土壤的宜耕性,并与作物的正常生长发育紧密相关。砂姜黑土土壤物理性状差、土壤粘重、容重大、通气透水性能差,进行秸秆还田处理4a后,于2012年玉米收获期对0—20 cm土层的土壤容重和含水量进行了测定,其不同处理间存在显著差异(表 1)。秸秆移除(R)各处理在1.24—1.31 g/cm3之间,而秸秆还田(S)各处理在1.14—1.20 g/cm3范围内,秸秆还田处理均较秸秆移除处理土壤容重降低,下降幅度为2.5%—9.2%。所有秸秆还田和秸秆移除处理施用氮肥后土壤容重均较不施氮肥降低,但过量增施氮肥后土壤容重又有所增加,其中高量氮肥处理(N5)秸秆移除较秸秆还田容重增加幅度可达到9.2%。秸秆还田提高了土壤含水量,秸秆还田较秸秆移除处理土壤含水量提高了 8. 2%—28. 5%,表层土壤贮水量提高了4.1%—19.9%。

表 1 秸秆还田对耕层土壤容重和含水量的影响 Table 1 Effects of straw incorporating on soil buck density and soil water content
处理 Treatments容重 Soil buck density /(g/cm3)比秸秆移除降低 Decrease/% 含水量 Soil water content /(g/cm3)比秸秆移除降低 Decrease/% 土壤贮水量 Soil water storage /(g/cm3)比秸秆移除降低 Decrease/%
表中数据为 3 次重复平均值; 同一列数据后不同字母表示不同处理间差异显著(P< 0. 05) (LSR 法检验) ; S 表示秸秆还田,R表示秸秆移除;N0,N1,N2,N3,N4,N5表示施氮量分别为0、360、450、540、630、720 kg N hm-2 a-1; Each value in the table is mean of 3 replicates. Values followed by a different letter within a column are significantly different at P < 0. 05 according to LSR test. In the 1st column,S denotes straw mulching,R indicates straw removed. N0,N1,N2,N3,N4,N5 indicate N application rates of 0、360、450、540、630、720 kg N hm-2 a-1,respectively. The below is same
R+N01.29 bc 19.0 ab 48.9 ab
S+N01.20 bc7.024.5 g28.558.7 c19.9
R+N11.24 bc 19.5 abcd 48.2 ab
S+N11.19 abc4.021.4 cdef9.950.5 ab4.9
R+N21.27 bc 19.7 abcd 50.1 ab
S+N21.19 bc6.321.3 bcdef8.254.0 bc7.8
R+N31.20 bc 19.1 abc 45.9 a
S+N31.17 ab2.522.7 efg19.153.2 bc16.1
R+N41.21 bc 20.4 abcde 49.2 ab
S+N41.14 a5.823.2 fg13.552.6 abc6.9
R+N51.31 c 18.9 a 49.5 ab
S+N51.19 bc9.221.7 def14.951.5 ab4.1
2.2 对耕层土壤孔隙度的影响

表 2所示,土壤总孔隙度、土壤毛管孔隙度及毛管孔隙度/总孔隙度各处理变化趋势一致,所有秸秆还田处理高于秸秆移除处理。土壤总孔隙度各处理在 50.7%—57.1% 之间,秸秆还田较秸秆移除处理增加1.1%—8.9%;其中秸秆移除(R)的土壤总孔隙度变化范围在50.7%—54.6%之间,秸秆还田为53.0%—57.1%,秸秆还田显著高于秸秆移除。土壤毛管孔隙度秸秆移除各处理在27.3%—29.5%范围变化,而秸秆还田在33.9%—41.0%之间,秸秆还田较秸秆移除增加18.9%—41.0%,二者之间差异达显著水平。土壤非毛管孔隙度与土壤总孔隙度、土壤毛管孔隙度的变化趋势相反,秸秆还田比秸秆移除处理降低6.4%—38.8%,二者之间差异显著;土壤毛管孔隙度占总孔隙度比例秸秆还田显著高于秸秆移除处理,变化幅度分别为秸秆还田61.7%—75.4%、秸秆移除50.1%—56.9%。

表 2 秸秆还田对耕层土壤孔隙度的影响 Table 2 Effects of straw incorporation on soil porosity in tilth layer of soil
处理 Treatments 土壤总孔隙度 Total soil porosity 比秸秆 移除提高 Increase/% 土壤毛管孔隙度 Soil capillary porosity 比秸秆 移除提高 Increase/% 土壤非 毛管孔隙度 Soil aeration porosity 比秸秆 移除提高 Increase/% 毛管孔隙度/ 总孔隙度 Soil capillary porosity/ Total soil porosity 比秸秆 移除提高 Increase/%
R+N051.5 ab 29.1 a 22.4 bcd 56.6 abc
S+N054.7 abc1.141.0 c41.013.7 a38.875.4 e33.2
R+N153.3 abc 28.5 a 24.8 cd 53.6 abc
S+N155.3 abc3.733.9 b18.921.4 abcd13.761.7 bcd15.1
R+N253.0 ab 27.6 a 24.4 cd 53.1 ab
S+N254.3 ab2.536.3 b31.515.9 ab34.869.6 de31.1
R+N354.6 abc 27.3 a 27.3 d 50.0 a
S+N355.8 bc2.236.3 b33.019.5 abc28.665.1 cde30.2
R+N454.4 abc 29.5 a 25.0 cd 54.1 abc
S+N457.1 c5.036.5 b23.721.7 bcd13.262.1 bcd16.3
R+N550.7 a 28.7 a 22.0 bcd 56.9 abc
S+N555.2 abc8.934.6 b20.620.6 abcd6.463.2 bcd11.6
2.3 对土壤耕层速效氮的影响

秸秆还田和氮肥施用对土壤中硝态氮、铵态氮含量的影响如图 1所示。土壤耕层硝态氮、铵态氮含量的变化范围分别为秸秆还田(S)处理26.90—67.54、15.43—26.87 kg/hm2,秸秆移除(R)处理24.49—42.33、15.44—20.87 kg/hm2;S和R处理土壤中硝态氮、铵态氮含量随氮肥用量呈增加—下降的趋势,各处理土壤硝态氮含量高于铵态氮,施用氮肥比不施氮肥处理显著增加了土壤中的硝态氮含量,S+N4处理的硝态氮和铵态氮含量最高,而R+N5处理其硝态氮含量最高。方差分析表明(表 3),氮肥用量相同时,土壤硝态氮含量S处理均显著高于R处理,提高幅度达9.80%—86.71%,其中N4水平的提高幅度最大,比R处理增加31.37 kg/hm2的硝态氮含量,即使不施肥,S比R的土壤硝态氮也要高出2.40 kg/hm2。与土壤硝态氮含量比较,铵态氮含量表现规律各处理不一致。图 2显示,夏玉米收获后表层土壤的硝态氮含量随着氮肥用量的增加呈指数趋势增加,硝态氮含量与施氮量的相关性R处理高于S处理;氮肥施用分别为N1、N2、N3、N4和N5处理时,秸秆还田条件下耕层土壤硝态氮累积量分别为N0处理的1.42、1.53、2.22、2.51和2.12倍,秸秆移除条件下分别为1.24、1.38、1.53、1.59和1.72,显然,随着施氮量的增加硝态氮的累积越明显。铵态氮含量在秸秆还田时随施氮量增加呈指数趋势增加,而秸秆移除条件下呈指数趋势减小,相关系数分别为0.0487、0.3173。

图 1 秸秆还田配施不同量氮肥条件下耕层土壤无机氮变化 Fig. 1 Change in soil inorganic nitrogen in soil tilth layer under the combination of straw mulching and nitrogen fertilizer application 图中字母表示秸秆相同还田条件下氮肥水平处理之间的差异显著性,不同字母表示差异达显著水平(P<0.05)
表 3 秸秆还田条件下耕层土壤无机氮方差分析 Table 3 Variance analysis of soil inorganic nitrogen in soil tilth layer under the straw incorporation
处理Treatments硝态氮 Nitrate nitrogen/(kg/hm2) 铵态氮 Ammonium nitrogen/ (kg/hm2)
N0N1N2N3N4N5 N0N1N2N3N4N5
S26.90 a38.27 a41.28 a59.92 a67.55 a57.10 a20.40 a16.34 a19.60 a15.43 a26.87 a21.28 a
R24.49 b30.38 b33.87 b37.52 b39.17 b42.33 b20.87 a18.33 b15.68 b18.67 b15.44 b18.65 b
图 2 2012年玉米收获后耕层土壤无机氮与施氮量的关系 Fig. 2 Correlation of soil inorganic nitrogen content and nitrogen application rates after maize harvesting in 2012
2.4 长期秸秆还田对小麦、玉米产量的影响

图 3可以看出,对单施氮肥的处理来说,在一定范围内,施用氮肥可以增加玉米籽粒产量,施氮量从360 kg N hm-2 a-1上升到 720 kg N hm-2 a-1,玉米籽粒产量逐渐增加,增加率为 0.2%—2.9% 。但对于小麦产量,施氮量从360 kg N hm-2 a-1增加到450 kg N hm-2 a-1时,产量随施氮量增加呈递增趋势,增加幅度为1.5%—6.7%;但施氮量从540 kg N hm-2 a-1上升到720 kg N hm-2 a-1时,产量不再增加反而下降了 2.4%。说明过量施用氮肥并不能有效提高小麦产量,但能提高玉米产量。对秸秆还田加施氮处理来说,玉米产量随施氮量的增加呈递增趋势;对于小麦产量,施氮量从360 kg N hm-2 a-1上升到630 kg N hm-2 a-1,产量逐渐增加,增加率为1.3%—6.2%,随着施氮量的增大增加率降低,但施氮量从630 kg N hm-2 a-1达到720 kg N hm-2 a-1时,产量不再增加反而下降了0.4%。说明秸秆还田条件下过量施用氮肥并不能有效提高小麦产量,而显著提高了玉米产量。小麦和玉米的年产量变化趋势与玉米一致,随施氮量增加呈递增趋势变化。

图 3 4年连续秸秆还田条件下不同施氮量小麦和玉米的平均产量 Fig. 3 Yields of crops under the straw incorporation continuously for four years

相同施氮量条件下,秸秆还田与秸秆移除的产量比较,各氮肥处理玉米季4a平均产量秸秆还田高于秸秆移除109.5—562.5 kg/hm2,N3处理的增幅最高;小麦季在施氮量降低时,秸秆还田有降低产量的趋势,但施氮量增加至630 kg N hm-2 a-1时,其产量超过秸秆移除处理最高,为286.5 kg/hm2。从施氮量与作物产量的关系看(图 4),无论秸秆还田还是秸秆移除,小麦和玉米产量均与施氮量呈二次曲线关系,但是秸秆还田条件下,产量与施氮量的相关性高于秸秆移除。玉米季,秸秆还田施氮量为696 kg N hm-2 a-1时获得最高产量,达10360.5 kg/hm2,而秸秆移除在施氮量为627 kg N hm-2 a-1时达到高产9861.5 kg/hm2,相对秸秆移除,秸秆还田条件下获得高产的施氮量增加了69 kg N hm-2 a-1;小麦季,秸秆还田氮肥用量为630 kg N hm-2 a-1时产量最高,达7900.5 kg/hm2,而秸秆移除在施氮量为580.5 kg N hm-2 a-1时达到高产7782.0 kg/hm2,相对秸秆移除,秸秆还田获得高产的施氮量增加了51 kg N hm-2 a-1。可见,秸秆还田条件下要取得高产,必须要多施一定量氮肥。

图 4 连续秸秆还田条件下施氮量和作物产量的关系 Fig. 4 Correlation of nitrogen application rates and crop yields under the straw incorporation
2.5 单项技术对土壤理化性质的作用力及交互效应分析

由分析可知,在各因素独立效应中,秸秆还田措施对土壤容重、土壤毛管持水量、土壤总孔隙度和作物产量的影响达显著水平,对土壤含水量、土壤贮水量、土壤毛管孔隙度、土壤非毛管孔隙度、土壤毛管孔隙度/土壤总孔隙度、土壤耕层硝态氮含量的影响均达到极显著,而对铵态氮含量没有显著影响。氮肥水平仅对土壤耕层硝态氮含量和作物产量有极显著影响,各测定指标均不受秸秆还田×氮肥水平的交互效应(表 4)。

表 4 单项技术措施对土壤物理性质和作物产量的作用力及交互效应分析 Table 4 Force analysis of single and interactive measure on soil physical properties and crop yields
差异源Source of variance变异度 The level of variation%
土壤 含水量 土壤 贮水量土壤 容重土壤毛管 持水量土壤总 孔隙度土壤毛管 孔隙度土壤非毛管 孔隙度毛管 孔隙度/ 总孔隙度耕层 硝态氮耕层 铵态氮年产量
* 表示显著水平,**表示极显著水平; 土壤含水量 Soil water content; 土壤贮水量Soil water storage; 土壤容重Soil bulk density; 土壤毛管持水量Soil capillary water capacity; 土壤总孔隙度Total soil porosity; 土壤毛管孔隙度Soil capillary porosity; 土壤非毛管孔隙度Soil non-capillay porosity; 毛管孔隙度/总孔隙度Soil capillary porosity/ total soil porosity; 耕层硝态氮Soil nitrate nitrogen; 耕层铵态氮Soil ammonium nitrogen; 年产量Annual yield
区组2.915.933.962.984.977.788.641.771.612.444.38
秸秆还田(S)72.74* *68.35* *61.25*72.38*85.22*79.43* *82.50* *65.43* *45.82* *28.9822.54*
氮肥水平(N)0.630.8810.780.130.571.463.802.2925.76* *26.3053.42* *
S×N13.2516.4921.2617.284.098.862.2221.6313.3735.261.091
误差10.488.352.757.235.152.462.848.8813.447.028.75
3 结论与讨论

土壤容重、孔隙度反映了土壤的紧实状况,关系到土壤水、气、热状况和养分的调节,以及作物根系的伸展和生长发育。国内外研究认为,连续秸秆还田结合土壤浅耕,能够降低耕层土壤容重[26];在施氮、磷化肥的基础上秸秆还田可降低土壤容重1.2%—7.1%,提高土壤含水量4.7%—13.5%[19]。北方干旱地区18年的长期秸秆还田田间定位试验表明,长期秸秆覆盖玉米生育期耗水量减少,土壤贮水量增加,水分利用效率明显增加[27]。本研究结果表明,秸秆还田能降低土壤容重和非毛管孔隙度,提高耕层贮水量,增加土壤总孔隙度和毛管孔隙度。可见,逐年连续全量秸秆还田,能起到疏松土壤、降低土壤容重、增强土壤蓄水能力、增加孔隙度的作用;与之相反,氮肥施用对土壤物理性状没有显著的 改善作用。这与秸秆还田使秸秆纤维腐解残体与土壤团粒结合改善了土壤结构,增加土壤入渗、减少土面蒸发有关。降雨过程中,土壤表层的秸秆覆盖物对雨滴起到缓冲和吸附水分的作用,使土壤免受雨水的直接冲击,利于水分入渗土壤;另外,有利于雨水快速下渗,也增强了土壤的保水性能。秸秆覆盖使土面蒸发受到明显的抑制,并且表层水分含量明显高于秸秆移除,土壤贮水量增加。

据慕平等[28]研究,全量秸秆连续还田能增加耕层0—30 cm土层有机质、全氮、全磷含量,速效氮、速效钾显著增加。本研究中秸秆还田处理耕层的土壤硝态氮含量高于秸秆移除处理,施氮540、630、720 kg N hm-2 a-1时,硝态氮含量秸秆还田处理显著高于秸秆移除处理,表明长期秸秆还田能提高土壤的速效养分,主要是因为秸秆还田与秸秆移除对土壤有机氮的矿化程度不同,秸秆还田可明显增强土壤有机养分的矿化,秸秆自身腐解也会释放出丰富的碳、氮、磷、钾等速效养分,但是秸秆的分解程度与氮肥的施用量有密切联系[29]

有文献报道秸秆还田对小麦、玉米有增产作用[30, 31],但也有减产的报道[32]。本研究结果表明,秸秆还田配施适量化学氮肥可以提高作物产量。秸秆还田配施纯氮630 kg N hm-2 a-1时冬小麦产量最高,增产幅度最大,比秸秆移除增产3.8%;配施纯氮 720 kg N hm-2 a-1的夏玉米产量最高,增产幅度最大,同样比秸秆移除增产4.5%。关于秸秆还田增产的原因,研究结果不尽一致。刘义国等[33]认为,秸秆还田提高了小麦叶绿素含量,促进了旗叶的光合作用与蒸腾作用,进而促进了物质的合成和转化;赵鹏等[34]认为,秸秆还田配施适量氮肥可以解决土壤微生物与作物竞争土壤中氮源的问题,提高了冬小麦的氮效率。还有研究者认为,秸秆还田向土壤微生物提供了碳源,可刺激微生物生长和酶的活性,促进土壤的供养能力,提高作物产量[35]

作用力分析结果证明,秸秆还田是土壤理化性质最重要的变异源,其作用力大于氮肥水平及秸秆还田×氮肥水平的交互效应;对于土壤耕作层硝态氮含量和作物产量,氮肥水平因素的独立效应均大于秸秆还田及秸秆还田×氮肥水平的交互效应,各测定指标均不受秸秆还田×氮肥水平交互效应的影响。

参考文献
[1] Unger P W. Straw mulch effects on soil temperatures and sorghum germination and growth. Agronomy Journal, 1978, 70(5): 858-864.
[2] Duley F L, Russel J C. The use of crop residues for soil and moisture conservation. Agronomy Journal, 1939, 31(8): 703-709.
[3] Cook H F, Valdes G S, Lee H C. Mulch effects on rainfall interception, soil physical characteristics and temperature under Zea mays L. Soil and Tillage Research, 2006, 91(1): 227-235.
[4] Lal R. Long-term tillage and maize monoculture effects on a tropical alfisol in western Nigeria. I. Crop yield and soil physical properties. Soil and Tillage Research, 1997, 42(3): 145-160.
[5] Lal R. Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Security, 2010, 2(2): 169-177.
[6] Tan D S, Jin J Y, Huang S W, Li S T, He P. Effect of long-term application of K fertilizer and wheat straw to soil on crop yield and soil K under different planting systems. Scientia Agricultura Sinica, 2007, 40(1): 133-139.
[7] Wang R F, Zhang J W, Dong S T, Liu P. Present situation of maize straw resource utilization and its effect in main maize production regions of China. Chinese Journal of Applied Ecology, 2011, 22(6): 1504-1510.
[8] Lao X R, Wu Z Y, Gao Y C. Effect of long-term returning straw to soil on soil fertility. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(2): 49-52.
[9] Wang X Y, Jiang Y J, Sui Y Y, Sun B. Changes of microbial communities during decomposition of wheat and maize straw: analysis by BIOLOG. Acta Pedologica Sinica, 2012, 49(5): 1003-1011.
[10] Wu R M, Wang Y P, Li F M, Li X G. Effects of coupling film-mulched furrow-ridge cropping with maize straw soil-incorporation on maize yields and soil organic carbon pool at a semiarid loess site of China. Acta Ecologica Sinica, 2012, 32(9): 2855-2862.
[11] Boto K G, Wellington J T. Soil characteristics and nutrient status in a northern Australian mangrove forest. Estuaries, 1984, 7(1): 61-69.
[12] Mao R H. Effects analysis on improving yield under the wheat bran covering of summer fallow. Chinese Journal of Agrometeorology, 1993, 14(4): 36-38.
[13] Cai T Y. Effects of Different Rates of Straw Mulch on Farmland Environment and Physiological Ecology of Spring Maize (Zea maysl) in Weibei Highland Area, China . Yangling: Northwest A&F University, 2011.
[14] Zhang J P, Sun J S, Liu Z G, Li X D, Liu X F. Effects of different straw mulching quantity on soil evaporation and soil temperature in summer corn field. Agricultural Research in the Arid Areas, 2009, 27(1): 95-100.
[15] Wang X, Jia Z K, Han Q F, Yang B P, Nie J F. Effects of different straw mulching quantity on soil water and WUE in semiarid region. Agricultural Research in the Arid Areas, 2009, 27(4): 196-202.
[16] Wang Z W, Hao W P, Gong D Z, Mei X R, Wang C T. Effect of straw mulch amount on dynamic changes of soil moisture and temperature in farmland. Chinese Journal of Agrometeorology, 2010, 31(2): 244-250.
[17] Gao F, Jia Z K, Lu W T, Han Q F, Yang B P, Hou X Q. Effects of different straw returning treatments on soil water, maize growth and photosynthetic characteristics in the semi-arid area of Southern Ningxia. Acta Ecologica Sinica, 2011, 31(3): 777-783.
[18] Du S Y, Tian E P, Wen M, Wu Q S. The overall effects of stubble mulching farmlads and its technical series. Agricultural Research in the Arid Areas, 1994, 12(2): 88-94.
[19] Zhang Y L, Lü J L, Jin J Y, Li S T, Chen Z Q, Gao X S. Effects of chemical fertilizer and straw return on soil fertility and spring wheat quality. Plant Nutrition and Fertilizer Science, 2012, 18(2): 307-314.
[20] Yang F, Dong Y, Xu M G, Bao Y X. Effects of straw returning on the integrated soil fertility and crop yield in southern China. Chinese Journal of Applied Ecology, 2012, 23(11): 3040-3044.
[21] Xu R L, Wang J F, Zhang G L, Dai Q G. Changes of microbe and organicmatter content in paddy soil applied with straw, manure and nitrogen fertilizer. Acta Ecologica Sinica, 2010, 30(13): 3584-3590.
[22] Zhang X P. Study on fertilization management technology of high-yield grain production and soil fertility characteristics in Huaibei Shajiang black area. Research of Agricultural Modernization, 1996, 17(4): 218-224.
[23] Li W G. Study on the combined application of organic and chemical fertilizer for the improvement of Shajiang black soil. Jorunal of Anhui Agricultural Sciences, 2000, 28(5): 636-637.
[24] Zhang X B. Fertilization techniques of high-yield wheat in Huaibei Shajiang black soil area. Soils, 1994, 26(1): 14-18.
[25] Lu R K. Analysis Method of Soil Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press, 2000: 156-160.
[26] Mu P, Zhang E H, Wang H N, Fang Y F. Effects of continuous returning straw to maize tilth soil on chemical character and microbial biomass. Journal of Soil and Water Conservation, 2011, 25(5): 81-85.
[27] Xie W Y, Fan G S, Zhou H P, Guan C L, Yang Z X. Effect of straw-incorporation on corn yield and water use efficiency in arid farming areas. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(11): 60-67.
[28] Mu P, Zhang E H, Wang H N, Fang Y F. Effects of continuous straw return to soil on maize growth and soil chemical and physical characteristics. Chinese Journal of Eco-Agriculture, 2012, 20(3): 291-296.
[29] Chen S H, Zhu Z L, Wu J, Liu D H, Wang C Q. Decomposition characteristics of straw return to soil and its effect on soil fertility in purple hilly region. Journal of Soil and Water Conservation, 2006, 20(6): 141-144.
[30] Ma C, Zhou J, Zheng X B, Liu M Q, Li H X, Jiang Z S, Wang W G. Effects of returning rice straw into field on soil nutrients and wheat yields under promoting decay condition. Soil, 2012, 44(1): 30-35.
[31] Zheng X B, Zhang X Z, Cui J, Zhou J, Ma C. Effects of combined chemical fertilizer with return of total wheat straw on soil nutrient and maize yield in Shajiang Black Soil region along Huai River. Soils, 2012, 44(6): 972-976.
[32] Liu X H. The Mechanism and Technology of Straw Returning Mode. Beijing: China Agriculture Press, 2001: 12-23.
[33] Liu Y G, Lin Q, Wang Y F, Guo J X, Liu H J. Effects of coupling of straw-return and nitrogen fertilizer on photosynthetic characters and yield of winter wheat. Chinese Journal of Eco-Agriculture, 2007, 15(1): 42-44.
[34] Zhao P, Chen F. Effects of straw mulching plus nitrogen fertilizer on nitrogen efficiency and grain yield in winter wheat. Acta Agronomica Sinica, 2008, 34(6): 1014-1018.
[35] Xu J B, Feng Y Z, Wang Y M, Wang J H, He X H, Lin X G. Soil microbial mechanisms of Stevia rebaudiana (Bertoni) residue returning increasing crop yield and quality. Biology and Fertility of Soils, 2013: 1-8, doi: 10.1007/s00374-013-0777-7.
[6] 谭德水, 金继运, 黄绍文, 李书田, 何萍. 不同种植制度下长期施钾与秸秆还田对作物产量和土壤钾素的影响. 中国农业科学, 2007, 40(1): 133-139.
[7] 王如芳, 张吉旺, 董树亭, 刘鹏. 我国玉米主产区秸秆资源利用现状及其效果. 应用生态学报, 2011, 22(6): 1504-1510.
[8] 劳秀荣, 吴子一, 高燕春. 长期秸秆还田改土培肥效应的研究. 农业工程学报, 2002, 18(2): 49-52.
[9] 王晓玥, 蒋瑀霁, 隋跃宇, 孙波. 田间条件下小麦和玉米秸秆腐解过程中微生物群落的变化——BIOLOG 分析. 土壤学报, 2012, 49(5): 1003-1011.
[10] 吴荣美, 王永鹏, 李凤民, 李小刚. 秸秆还田与全膜双垄集雨沟播耦合对半干旱黄土高原玉米产量和土壤有机碳库的影响. 生态学报, 2012, 32(9): 2855-2862.
[12] 毛瑞洪. 夏闲地麦糠覆盖增产效果分析. 中国农业气象, 1993, 14(4): 36-38.
[13] 蔡太义. 渭北旱塬不同秸秆覆盖量对农田环境和春玉米生理生态的影响 [D]. 杨凌: 西北农林科技大学, 2011.
[14] 张俊鹏, 孙景生, 刘祖贵, 李晓东, 刘小飞. 不同麦秸覆盖量对夏玉米田棵间土壤蒸发和地温的影响. 干旱地区农业研究, 2009, 27(1): 95-100.
[15] 王昕, 贾志宽, 韩清芳, 杨保平, 聂俊峰. 半干旱区秸秆覆盖量对土壤水分保蓄及作物水分利用效率的影响. 干旱地区农业研究, 2009, 27(4): 196-202.
[16] 王兆伟, 郝卫平, 龚道枝, 梅旭荣, 王春堂. 秸秆覆盖量对农田土壤水分和温度动态的影响. 中国农业气象, 2010, 31(2): 244-250.
[17] 高飞, 贾志宽, 路文涛, 韩清芳, 杨宝平, 侯贤清. 秸秆不同还田量对宁南旱区土壤水分、玉米生长及光合特性的影响. 生态学报, 2011, 31(3): 777-783.
[18] 杜守宇, 田恩平, 温敏, 吴青山. 秸秆覆盖还田的整体功能效应与系列化技术研究. 干旱地区农业研究, 1994, 12(2): 88-94.
[19] 张亚丽, 吕家珑, 金继运, 李书田, 陈占全, 高旭升. 施肥和秸秆还田对土壤肥力质量及春小麦品质的影响. 植物营养与肥料学报, 2012, 18(2): 307-314.
[20] 杨帆, 董燕, 徐明岗, 包耀贤. 南方地区秸秆还田对土壤综合肥力和作物产量的影响. 应用生态学报, 2012, 23(11): 3040-3044.
[21] 许仁良, 王建峰, 张国良, 戴其根. 秸秆、有机肥及氮肥配合使用对水稻土微生物和有机质含量的影响. 生态学报, 2010, 30(13): 3584-3590.
[22] 张效朴. 淮北砂姜黑土的肥力特点与高产高效粮食生产的施肥管理技术研究. 农业现代化研究, 1996, 17(4): 218-224.
[23] 李文高. 有机-无机肥料配施培肥砂姜黑土研究. 安徽农业科学, 2000, 28(5): 636-637.
[24] 张效朴. 淮北砂姜黑土区小麦高产高效的施肥技术. 土壤, 1994, 26(1): 14-18.
[25] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000: 156-160.
[26] 慕平, 张恩和, 王汉宁, 方永丰. 连续多年秸秆还田对玉米耕层土壤理化性状及微生物量的影响. 水土保持学报, 2011, 25(5): 81-85.
[27] 解文艳, 樊贵盛, 周怀平, 关春林, 杨振兴. 秸秆还田方式对旱地玉米产量和水分利用效率的影响. 农业机械学报, 2011, 42(11): 60-67.
[28] 慕平, 张恩和, 王汉宁, 方永丰. 不同年限全量玉米秸秆还田对玉米生长发育及土壤理化性状的影响. 中国生态农业学报, 2012, 20(3): 291-296.
[29] 陈尚洪, 朱钟麟, 吴婕, 刘定辉, 王昌全. 紫色土丘陵区秸秆还田的腐解特征及对土壤肥力的影响. 水土保持学报, 2006, 20(6): 141-144.
[30] 马超, 周静, 郑学博, 刘满强, 李辉信, 姜中山, 王维国. 秸秆促腐还田对土壤养分和小麦产量的影响. 土壤, 2012, 44(1): 30-35.
[31] 郑学博, 张祥志, 崔键, 周静, 马超. 秸秆全量还田条件下配施化肥对沿淮砂姜黑土培肥及玉米产量的影响. 土壤, 2012, 44(6): 972-976.
[32] 刘巽浩. 秸秆还田的机理与技术模式. 北京: 中国农业出版社, 2001: 12-23.
[33] 刘义国, 林琪, 王月福, 郭家选, 刘洪军. 秸秆还田与氮肥耦合对冬小麦光合特性及产量形成的影响. 中国生态农业学报, 2007, 15(1): 42-44.
[34] 赵鹏, 陈阜. 秸秆还田配施化学氮肥对冬小麦氮效率和产量的影响. 作物学报, 2008, 34(6): 1014-1018.