生态学报  2014, Vol. 34 Issue (17): 4882-4890

文章信息

王晨阳, 苗建利, 张美微, 马冬云, 冯伟, 谢迎新, 郭天财
WANG Chenyang, MIAO Jianli, ZHANG Meiwei, MA Dongyun, FENG Wei, XIE Yingxin, GUO Tiancai
高温、干旱及其互作对两个筋力小麦品种淀粉糊化特性的影响
Effects of post-anthesis high temperature, drought stress and their interaction on the starch pasting properties of two wheat cultivars with different gluten strength
生态学报, 2014, 34(17): 4882-4890
Acta Ecologica Sinica, 2014, 34(17): 4882-4890
http://dx.doi.org/10.5846/stxb201301050032

文章历史

收稿日期:2013-1-5
网络出版日期:2014-3-5
高温、干旱及其互作对两个筋力小麦品种淀粉糊化特性的影响
王晨阳1, 2, 苗建利1, 3, 张美微1, 马冬云1, 2, 冯伟1, 2, 谢迎新1, 2, 郭天财1, 2     
1. 河南农业大学/国家小麦工程技术研究中心, 郑州 450002;
2. 河南省粮食作物生理生态与遗传改良重点实验室, 郑州 450002;
3. 河南省开封市农业科学研究院, 开封 475004
摘要:以强筋和弱筋的两个代表性小麦品种为材料,采用盆栽与人工气候箱模拟的方法,研究了花后不同时期高温、干旱及其互作对籽粒淀粉糊化特性的影响。结果表明,高温和干旱均显著影响淀粉糊化特性,但两品种表现有所不同:高温胁迫使强筋小麦品种豫麦34的峰值黏度、最终黏度(除花后5 d外)、稀懈值(除花后15 d外)和反弹值显著增大;而弱筋小麦品种豫麦50低谷黏度和最终黏度显著下降,其峰值黏度、反弹值变化不明显,从不同时期看,花后15 d影响较大。干旱胁迫使豫麦34多数黏度参数增大;而使豫麦50峰值黏度、反弹值和稀懈值下降,其低谷黏度和最终黏度在灌浆前期和中期干旱胁迫下增大,后期干旱胁迫则明显下降。研究结果还表明,花后高温与干旱胁迫对小麦黏度参数的影响存在显著的互作效应。从F 值大小看,互作对弱筋小麦品种豫麦50多数黏度参数影响较大,而对强筋小麦品种豫麦34淀粉黏度参数影响较小,反映了高温、干旱及其互作对小麦淀粉特性的影响存在着显著的基因型差异。
关键词小麦    高温胁迫    干旱胁迫    互作效应    淀粉糊化特性    
Effects of post-anthesis high temperature, drought stress and their interaction on the starch pasting properties of two wheat cultivars with different gluten strength
WANG Chenyang1, 2, MIAO Jianli1, 3, ZHANG Meiwei1, MA Dongyun1, 2, FENG Wei1, 2, XIE Yingxin1, 2, GUO Tiancai1, 2     
1. National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, Henan 450002, China;
2. Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, Henan 450002, China;
3. Kaifeng Academy of Agricultural Science, Kaifeng, Henan 475004, China
Abstract:To evaluate the effects of post-anthesis high-temperature (HT) and drought stress (DS) and their interactions on starch pasting properties in wheat grains, two winter wheat cultivars differing in gluten strength, Yumai 34 (a strong-gluten cultivar) and Yumai 50 (a weak-gluten cultivar) were investigated in pot experiments at the experimental farm of Henan Agricultural University (E113°35', N34°51'). The experiment used a split-plot design of two factors, with three temperature regimes and two soil water treatments. HT treatments were performed in a climate-controlled greenhouse at 38℃ for 2 days (treatment 2, T2) or 4 days (treatment 3, T3) at 5 days after anthesis (5 DAA), 15 DAA or 25 DAA, while the control was treated at 28℃ (treatment 1, T1). For the two soil water treatments, the soil relative water content was maintained at (55±5)% (W2) for DS treatment and at (75±5)% for the control. The results indicated that both HT and DS and their interactions significantly influenced starch pasting properties in the grains of the two wheat cultivars. However, the responses of pasting parameters to HT and DS were very different between the two wheat cultivars. In the strong-gluten wheat cultivar Yumai 34, DS applied at any grain-filling stage increased most parameters such as peak viscosity, final viscosity and hold-through, among which the final viscosity was significantly improved at the early (5 DAA) and late grain-filling stages (25 DAA), and the peak viscosity was significantly increased at the late grain-filling stage. In Yumai 50, DS applied at any grain-filling stage (early, middle or late) decreased peak viscosity, setback and breakdown. Drought stress applied at the early and middle grain-filling stages (15 DAA) clearly improved hold-through and final viscosity, but significantly decreased both parameters when applied at the late grain-filling stage. Heat stress significantly increased peak viscosity, final viscosity (except when applied at 5 DAA), set-back and breakdown (except when applied at 15 DAA) in grains of the strong-gluten wheat cultivar Yumai 34, while the parameter of hold-through in grains of Yumai 34 had much different responses to HT applied at various stages: it was significantly decreased in both HT treatments (both T1 and T2) at 5 DAA, and was decreased in T2 (2 days HT) but significantly enhanced in T3 (4 days HT) at 15 DAA. In the weak-gluten wheat cultivar Yumai 50, HT significantly decreased hold-through and final viscosity in the grains, but had little influence on peak viscosity and setback. From the treatment stage results, we concluded that HT applied at the middle grain-filling stage (15 DAA) had the greatest impact on pasting properties in both wheat cultivars. The analysis also indicated that interaction between HT and DS had a significant effect on viscosity parameters in both cultivars, which was much greater in Yumai 50 than in Yumai 34. The effect of HT and DS interaction on pasting properties in Yumai 50 was greater when they were applied at the early grain-filling stage compared with the middle or late grain-filling stages. From our results, we conclude that different wheat genotypes show different responses in grain pasting properties to various environmental stresses, implying that such stresses have a complex effect on starch quality in the grains of winter wheat.
Key words: wheat    high temperature    drought stress    interactions    starch pasting properties    

淀粉是小麦籽粒的主要成分,其含量约占籽粒总重量的四分之三,对面制食品的加工品质有重要影响[1]。小麦籽粒淀粉品质主要包括淀粉组分、糊化特性等,其中淀粉糊化特性是反映淀粉品质的重要指标,对小麦蒸煮品质、面条品质均有重要的影响[2, 3, 4, 5]。峰值黏度和稀懈值是两个比较重要的糊化特性指标。其中,峰值黏度与面条弹性、韧性和食用品质呈极显著的正相关,而稀懈值则与面条的滑爽性呈极显著正相关,与面条的弹性、韧性和爽口性呈显著负相关[6, 7, 8, 9, 10]。近年来有研究表明,通过水氮运筹、增施肥料、调整播期等措施可影响籽粒直链淀粉含量及淀粉直/支比,进而改变面食的食用品质和蒸煮品质[11, 12]。张勇等通过对47个春小麦不同地点试验,证明基因型、环境及其互作均不同程度地影响淀粉黏度参数[13];其中,淀粉峰值黏度主要受基因型与环境互作的影响,而稀懈值则受基因型的影响较大[2]

在我国黄淮海麦区,小麦生育中后期常出现极端高温与土壤干旱现象,或形成典型的干热风,使小麦提前结束灌浆,造成产量和品质的明显下降[14, 15, 16],其危害可发生在小麦灌浆的不同阶段。有研究表明,花后高温或干旱往往使小麦籽粒蛋白质含量增加[17],但通过削弱植株光合性能、降低籽粒淀粉合成关键酶活性,抑制淀粉积累并降低粒重[18];前期高温对淀粉积累的影响大于后期[19]。目前关于高温、干旱胁迫对淀粉特性影响的相关报道不多,尤其缺乏高温与干旱互作或复合胁迫影响淀粉品质的研究资料,而这方面的知识将有助于全面理解不同逆境胁迫影响小麦品质的范围、敏感时段和内在机制。为此,本试验选用两个具有代表性的强筋、弱筋冬小麦品种,在小麦灌浆不同阶段设置高温、干旱胁迫处理,旨在研究高温与干旱及其互作对不同类型专用小麦淀粉糊化特性的影响,以期为小麦淀粉品质改良和抗逆调优栽培提供理论依据。

1 材料与方法 1.1 供试材料与试验设计

试验于2005—2006年度在河南农业大学科教示范园区采用盆栽(25 cm×28 cm)方式进行。试验采用三因素(品种、高温和干旱)裂裂区设计,其中供试品种选用河南省生产上大面积推广种植的强筋小麦豫麦34和弱筋小麦豫麦50。高温处理在人工气候箱内进行,分别于花后5、15、25 d处理,设3个水平:对照28 ℃处理(T1),高温38 ℃处理2 d(T2)和38 ℃处理4 d(T3);气候箱内空气相对湿度控制在(60±5)%,每天自中午11:00—16:00,处理时间为每天5 h;处理结束后,将各处理移至田间自然条件下生长至成熟。土壤水分处理设2个水平:正常土壤水分处理W1 (相对含水量,RWC=(75±5)%)和轻度干旱W2(RWC=(55±5)%)。土壤水分的控制是遮雨条件下于高温处理前7 d开始的,采取水分平衡法使其在高温处理时达到控制指标,干旱处理在高温处理结束后恢复正常供水。土壤水分含量的测定采用称重法与时域反射仪结合的方法进行。各处理组合重复5次。

盆栽用土取自大田0—30 cm 耕层,土壤质地为壤质潮土,土壤有机质含量17.8 g/kg,全氮0.99 g/kg,碱解氮57.9 mg/kg,速效磷67.5 mg/kg,速效钾204.8 mg/kg,pH值为7.94。田间持水量为25.91%。每盆装过筛干土12 kg,于10月19日播种;盆栽埋于大田,盆内土壤与盆外大田土齐平,3叶期定苗,每盆留苗10株。生育期间用称重法保持土壤水分适宜且处理间一致,拔节期结合浇水每盆追施尿素1 g。

1.2 测定项目与方法 1.2.1 制粉

小麦成熟期收获每盆籽粒,储存1月后用万能粉碎机磨制全粉,用于糊化特性的测定。

1.2.2 淀粉糊化特性

用Brabender微型糊化黏度仪(Micro Visco-Amylo-Graph,Germany)测定。每个样品随机称取面粉15 g,重复2次。具体操作如下:量取蒸馏水100 mL倒入锥形瓶中,将称量好的面粉也倒入锥形瓶中,塞紧橡胶塞,晃匀,倒入黏度筒中,将黏度筒卡入MVAG旋转塔,将测量搅拌棒卡入测量头中,压下测量头,MVAG在电脑控制下运作,测定面粉的糊化温度、峰值黏度、低谷黏度、最终黏度、稀懈值、反弹值,绘制黏度图。

1.2.3 数据处理

实验数据使用SPSS 10.0(Statistic Package for Social Science,SPSS Inc. IL,USA)进行方差分析。存在显著差异的进行邓肯(Duncan)多重比较,并用字母进行标记。绘图由Excel 完成。

2 结果与分析 2.1 高温胁迫对两品种淀粉糊化特性影响

两品种对高温胁迫的反应表现不同(表 1)。强筋小麦品种豫麦34在高温胁迫下,其淀粉峰值黏度、最终黏度、稀懈值和反弹值均显著增大,其中T3较T1增大达1%极显著水平(花后5 d除外)。低谷黏度在灌浆的不同时段和不同胁迫强度下表现不同:花后5 d高温胁迫下低谷黏度显著下降,花后15 d高温胁迫下T2显著下降,而T3则显著升高。从影响程度看,高温胁迫2 d(T2)对黏度参数的影响不大,而4 d(T3)影响较大,使峰值黏度、最终黏度等显著增大。不同阶段比较,以花后15 d高温处理,即进入灌浆盛期时影响较大,T3处理峰值黏度、最终黏度分别较T1对照增大28.4%和33.7%(表 1)。

表 1 花后高温对两品种小麦籽粒淀粉糊化特性的影响 Table 1 Effects of post-anthesis high temperature at different grain-filling stages on starch pasting properties in grains of two wheat cultivars
品种 Cultivars处理时间 Treatment stage处理 Treatments峰值黏度 Peak viscosity (BU)低谷黏度 Hold through (BU)最终黏度 Final viscosity (BU)稀懈值 Breakdown (BU)反弹值 Setback (BU)
T1:对照处理(28 ℃);T2:高温(38 ℃)处理2d;T3:38 ℃处理4d; 同列内平均值后有相同小写或大写字母表示差异未达到5%或1%显著水平
豫麦34花后5 dT1495.00bA416.75aA651.50aA92.00cB178.25bB
T2540.75aA326.50bB613.00aA209.50aA237.25aA
T3522.75abA338.75bB617.50aA178.80bA232.25aA
花后15 dT1495.00bB416.75bAB651.50bB92.00aA178.25cB
T2476.50bB357.75bB619.25bB110.50aA213.00bAB
T3635.50aA509.25aA817.25aA118.75aA254.25aA
花后25 dT1495.00bB416.75aA651.50bB92.00bA178.25bB
T2529.75bAB451.75aA700.25bAB97.50bA193.50bAB
T3591.25aA475.75aA777.25aA115.25aA244.00aA
豫麦50花后5 dT1412.00aA292.75aA500.50aA110.00bB160.00aA
T2399.00aA280.75aA450.50bB160.75aA135.75bA
T3388.50aA217.75bB389.00cC162.25aA134.00bA
花后15 dT1412.00aA292.75aA500.50aA110.00bB160.00aA
T2373.25aA205.00cB390.25cB157.75aA146.50aA
T3356.50aA269.50bA468.00bA95.50cB161.50aA
花后25 dT1412.00aA292.75aA500.50aA110.00bB160.00aA
T2410.75aA284.25aA481.50aA118.50bB156.00aA
T3445.50aA219.25bB431.25bA222.00aA175.50aA

弱筋小麦品种豫麦50高温胁迫下其黏度参数的变化与豫麦34显著不同:高温胁迫使其低谷黏度和最终黏度均显著下降,峰值黏度下降不显著,而稀懈值则呈显著增大。从不同时期看,以花后15 d的影响较大。如花后5、25 d高温处理2 d时(T2),其低谷黏度较T1分别下降4.1%和2.9%,而花后15 d高温处理2 d时下降30.0%。最终黏度与低谷黏度表现出相同的趋势。

2.2 干旱胁迫对两品种淀粉糊化特性影响

干旱胁迫对两个不同筋力型品种淀粉黏度参数的影响亦有所不同(表 2)。干旱使豫麦34淀粉黏度参数均呈增大趋势。其中花后5 d和25 d干旱胁迫使峰值黏度和最终黏度增大均达显著或极显著水平;而花后15 d干旱处理,多数黏度参数的增大均未达显著水平。对豫麦50而言,干旱使峰值黏度、稀懈值和反弹值呈下降趋势,尤其是花后15 d和25 d峰值黏度下降达到显著水平;低谷黏度和终结黏度在灌浆前、中期(花后5 d和15 d)的干旱胁迫下明显增大,而在后期(花后25 d)却显著下降。

表 2 花后干旱胁迫对两品种籽粒淀粉糊化特性的影响 Table 2 Effects of post-anthesis drought stress at different grain-filling stages on starch pasting properties in grains of two wheat cultivars
品种 Cultivars处理时间 Treatment stage处理 Treatments峰值黏度 Peak viscosity (BU)低谷黏度 Hold through (BU)最终黏度 Final viscosity (BU)稀懈值 Breakdown (BU)反弹值 Setback (BU)
W1 : RWC=(75±5)%,W2: RWC=(55±5)%,RWC相对含水量Relative water content; 同列内平均值后有相同小写或大写字母表示差异未达到5%或1%显著水平
豫麦34花后5 dW1479.33bA318.50bB569.83bB153.33aA204.33aA
W2559.67aA402.83aA685.17aA166.33aA227.50aA
花后15 dW1498.83aA390.33aA654.83aA99.17aA212.00bA
W2572.50aA465.50aA737.17aA115.00aA218.33aA
花后25 dW1498.50bA405.17aA650.33bB96.67bA190.50aA
W2578.83aA491.00aA769.00aA106.50aA220.00aA
豫麦50花后5 dW1408.00aA230.83bB423.67bA171.33aA153.33aA
W2391.67aA296.67aA469.67aA117.33bA133.17aA
花后15 dW1387.50aA240.50aA438.00bA147.83aA155.83aA
W2373.67bB271.00aA467.83aA94.33bB156.17aA
花后25 dW1457.00aA297.67aA525.50aA150.83aA180.67aA
W2388.50bA233.17bA416.67bA149.50aA147.00aA
2.3 花后高温与干旱互作对淀粉糊化特性的影响

分析了花后高温与干旱互作对淀粉糊化特性的影响效应(表 3)。结果表明,高温×干旱互作对豫麦34峰值黏度、低谷黏度和稀懈值的影响达5%或1%显著水平,而对最终黏度和反弹值无显著影响;高温×时期互作对所有黏度参数的影响均达显著水平,而干旱×时期对所有参数的影响均不显著。豫麦50除高温×时期和干旱×高温×时期互作对反弹值的影响不显著外,其他互作效应均达显著或极显著水平。还可以看出,高温×干旱互作对豫麦50淀粉黏度参数的影响较豫麦34明显。

表 3 两品种淀粉糊化特性的方差分析表(F) Table 3 Variance analysis on starch pasting properties in grains of two wheat cultivars(F)
品种 Cultivars项目 Items高温 HT干旱 DS时期 S干旱×高温 DS×HT高温×时期 HT×S干旱×时期 DS×S干旱×高温× 时期 DS×HT×S
HT:高温处理High Temperature processing;DS:干旱胁迫Drought Stress;S:处理时期Stage; *,**分别表示差异达到5%或1%显著水平
豫麦34峰值黏度 Peak viscosity(BU)33.40* *71.88* *1.675.33*10.71* *0.060.38
低谷黏度 Hold through(BU)10.96* *55.26* *23.08* *4.01*11.25* *0.090.63
最终黏度 Final viscosity(BU)31.79* *98.99* *23.01* *3.2915.25* *1.21.18
稀懈值Breakdown(BU)43.30* *7.56*62.74* *13.20* *19.14* *0.143.12*
反弹值Setback(BU)47.24* *12.82* *1.570.933.65*1.580.42
豫麦50峰值黏度 Peak viscosity(BU)3.70*32.83* *18.04* *7.57* *7.17* *9.64* *6.34* *
低谷黏度 Hold through(BU)91.57* *9.23* *2.9222.59* *50.86* *124.13* *43.21* *
最终黏度 Final viscosity(BU)46.81* *2.915.16*21.88* *17.29* *58.11* *20.32* *
稀懈值Breakdown(BU)44.70* *66.74* *16.01* *23.01* *43.39* *15.48* *13.51* *
反弹值Setback(BU)2.7712.33* *5.58*11.12* *1.943.79*2.35

分阶段分析表明(表 4),豫麦34在花后25 d高温×干旱互作对稀懈值的影响达极显著水平,而对其他黏度参数影响不显著。豫麦50的高温×干旱互作,除花后5 d对峰值黏度、花后15 d对低谷黏度和稀懈值、花后25 d对反弹值影响不显著外,对多数黏度参数的影响均达5%或1%的显著水平。

表 4 两品种淀粉糊化特性的高温×干旱互作效应方差分析(F) Table 4 Variance analysis of high temperature and drought interaction on starch pasting properties in grains of two wheat cultivars(F)
品种 Cultivars项目 Items处理时间(花后天数)Treatment stage (days after anthesis)
51525
*,**分别表示差异达到5%或1%显著水平
豫麦34峰值黏度Peak viscosity(BU)3.2482.0131.147
低谷黏度Hold through(BU)2.3671.8011.253
最终黏度Final viscosity(BU)1.8292.7470.874
稀懈值Breakdown(BU)3.421.6230.715* *
反弹值Setback(BU)1.070.0370.807
豫50峰值黏度Peak viscosity(BU)2.3245.416*8.385*
低谷黏度Hold through(BU)29.528* *1.06468.857* *
最终黏度Final viscosity(BU)46.994* *10.212*16.333* *
稀懈值Breakdown(BU)37.277* *2.9468.929*
反弹值Setback(BU)13.167* *10.367*0.379
2.4 不同高温与干旱组合对豫麦50淀粉糊化特性的影响

由于豫麦50高温与干旱互作效应明显,进一步分析了不同处理组合对其部分黏度参数的影响。图 1显示不同水、温处理下峰值黏度、最终黏度、稀懈值和反弹值的变化,可以看出,在正常水分条件下(W1),随高温胁迫的加强峰值黏度和最终黏度均降低,而在干旱胁迫下(W2)黏度参数均以T2处理最低;在正常水分条件下(W1)2 d高温胁迫对稀懈值影响不大,4 d高温使稀懈值显著升高(比T1增大了29.47%),而干旱条件下,高温2 d即导致稀懈值显著升高,较T1增大了91.40%,表明高温×干旱互作对黏度参数的影响具有叠加效应。反弹值在正常水分条件下(W1)高温2 d和4 d分别下降15.44%和17.62%,而在干旱(W2)条件下,2 d高温胁迫对反弹值影响不大,4 d高温胁迫使反弹值增加19.29%。显著的互作效应存在不仅说明高温与干旱复合胁迫对黏度参数影响具有叠加效应,而且反映了影响籽粒发育、改变蛋白质和淀粉品质性状的复杂性。

图 1 高温干旱互作对豫麦50淀粉糊化参数的影响 Fig. 1 Interactions of high temperature and drought stress on starch pasting parameters in grains of Yumai 50 T1:对照处理(28 ℃);T2:高温(38 ℃)处理2d;T3:38 ℃处理4d; W1 : RWC=(75±5)%,W2: RWC=(55±5)%
3 讨论 3.1 花后不同时段高温对小麦淀粉组成及特性的影响

国内外学者围绕高温胁迫对小麦淀粉组成、特性开展了一些有益的研究。Yanagisawa等[20]比较了大田条件(超过25 ℃)和温室(15 ℃和20 ℃)下Wx-D1缺失突变体籽粒淀粉含量和淀粉糊化特性,表明在较高温度条件下(大田)籽粒直链淀粉含量和湖化参数均有所增加;Stone和Nicolas将75个温室种植的小麦品种进行40 ℃高温处理3 d,结果发现64%品种直链淀粉含量下降,33%没有变化,1%直链淀粉含量增加[21],反映了不同品种对高温胁迫响应的差异。有研究表明,高温对济麦20淀粉合成与积累的影响大于鲁麦21[18]。在极端高温胁迫下籽粒总淀粉含量(绝对值)下降4%—19%[22, 23, 24],其下降与淀粉合成关键酶活性降低有关。赵辉等[25]研究发现灌浆初期高温提高了低蛋白含量品种扬麦9号籽粒GBSS活性,但显著降低了高蛋白含量品种徐州26 SSS酶活性,表明高蛋白含量品种的支链淀粉合成更易受高温的影响。苗建利、王晨阳等研究表明,高温胁迫对强筋小麦豫麦34 支链淀粉含量影响相对较大,不同时段比较则以灌浆前期(花后5 d)高温胁迫下的降幅较大[24]。而刘萍等通过花后第15d至成熟期短暂高温试验,表明花后25—27 d高温胁迫对淀粉形成影响较大[26]

围绕淀粉糊化特性研究相对较少。李永庚等通过比较35 ℃/25 ℃与30 ℃/20 ℃ 昼夜温度模式,发现前期高温使淀粉膨胀势和峰值黏度显著增加,中期和后期高温使其下降[27]。Shi等[28]研究表明,随着灌浆期温度的增加,淀粉凝胶温度增加,而成熟期高温高湿则导致峰值黏度的降低[29]。本试验结果表明,花后短期高温胁迫显著影响淀粉黏度参数,但不同时期、不同胁迫程度及品种表现出明显差异。如豫麦34,花后5 d高温胁迫使其低谷黏度显著下降,而花后25 d高温胁迫下反而呈增大趋势。逆境条件下不同品种淀粉黏度参数的差异性响应与其淀粉含量、组成、直/支比的变化有密切关系。

3.2 花后干旱胁迫对小麦淀粉组成及特性的影响

干旱胁迫对淀粉品质的影响大小取决于小麦发育阶段和品种差异性[30]。范雪梅等[31]研究指出,花后干旱胁迫降低直链淀粉和支链淀粉的含量;鲁麦21对干旱胁迫的适应性较强,其淀粉含量、支链淀粉含量均高于济南17;而淀粉含量及组分的改变对面食加工品质会造成影响[32]。王晨阳等在遮雨控水条件下研究了24个小麦品种(23个春小麦)不同水处理下淀粉糊化特性的变化,结果表明干旱胁迫下淀粉峰值黏度、低谷黏度、最终黏度、稀懈值及反弹值等糊化参数均增大[33]。Sandeep[30]研究表明花后15 d 实施的干旱胁迫降低直链淀粉含量和糊化温度,但提高峰值黏度、最终黏度和反弹値。本试验结果表明,不同品种对干旱的反应有差异:干旱胁迫使豫麦34黏度参数增大,而导致豫麦50峰值黏度、反弹值和稀懈值下降,其低谷黏度和最终黏度在灌浆前期和中期干旱胁迫下增大,后期干旱胁迫则明显下降。豫麦50淀粉糊化特性受逆境胁迫的影响大于豫麦34,这与张学林等报道的弱筋品种环境变异大于强筋品种相一致[5]

3.3 花后高温与干旱互作对小麦淀粉品质的影响

在我国北方麦区,小麦生育后期,高温与干旱常相伴发生,小麦植株的受害程度因高温与干旱胁迫的叠加作用而加剧。但目前结合高温、干旱及其互作的相关报道较少。戴廷波等[17]研究表明,在高温和水分逆境下,温度对籽粒淀粉含量的影响较水分大。前文报道花后高温与干旱互作对籽粒淀粉及组分的影响显著[24]。本试验结果表明,高温与干旱对糊化特性的影响存在显著的互作效应,尤其是对弱筋小麦豫麦50糊化参数的影响多达极显著水平。如在正常水分条件下,高温胁迫使淀粉峰值黏度和反弹值下降,而在干旱胁迫下则表现出不同的趋势,反映了逆境复合胁迫影响淀粉品质的复杂性。从不同时期看,前期高温与干旱互作对豫麦50最终黏度、稀懈值和反弹值的影响明显高于中期和后期。

4 结论

花后高温、干旱胁迫均显著影响小麦淀粉糊化特性,不同品种反应有差异:38 ℃高温胁迫下强筋小麦品种豫麦34的黏度参数和反弹值显著增大,而弱筋小麦品种豫麦50低谷黏度和最终黏度则显著下降;干旱胁迫使豫麦34黏度参数增大,而导致豫麦50峰值黏度、反弹值和稀懈值下降。不同品种间的这种差异性响应与逆境胁迫下籽粒淀粉组成变化有密切相关。同时研究发现高温、干旱对淀粉糊化特性的影响存在显著的互作效应。

参考文献
[1] Jing H X, Wang C Y, Zuo Y L, Hu J B, Wang Y H, Guo T C. Effect of post-anthesis high temperature stress on grain yield and protein content of different wheat cultivars. Journal of Triticeae Crops, 2010, 30(3): 459-463.
[2] Yan J, Zhang Y, He Z H. Investigation on paste property of Chinese wheat. Scientia Agricultura Sinica, 2001, 34(1): 9-13.
[3] Oh N H, Seib P A, Ward A B, Deyoe C W. Noodles. IV. Influence of flour protein, extraction rate, particle size, and starch damage on the quality characteristics of dry noodle. Cereal Chemistry, 1985, 62(6): 441-446.
[4] Ross A S, Quail K J, Crosbie G B. Physicochemical properties of Australian flours influencing the texture of yellow alkaline noodles. Cereal Chemistry, 1997, 74(6): 814-820.
[5] Zhang X L, Guo T C, Zhu Y J, Li Z Q, Wang C Y, Ma D Y, Peng Y. Environmental effects of different latitudes on starch paste property of three types of gluten wheat in He'nan province. Acta Ecologica Sinica, 2004, 24(9): 2050-2055.
[6] Konik C M, Moss R. Relationship between Japanese noodle Quality and RVA paste viscosity//Proceedings of the 42nd Royal Australian Chemistry. Institute Cereal Chemistry Conference. Christchurch, New Zealand RACI Parkville, Australia, 1992: 209-212.
[7] Crosbie G B, Miskelly D, Dewan T. Wheat quality for Japanese flour milling and noodle industries. Journal of Agriculture, Western Australia, 1990, 31(3): 83-94.
[8] Miskelly D M, Moss H J. Flour quality requirements for Chinese noodle manufacture. Journal of Cereal Science, 1985, 3(4): 379-387.
[9] Oda M, Yasuda Y, Okazaki S, Yamauchi Y, Yokoyama Y. A method of flour quality assessment for Japanese noodles. Cereal Chemistry, 1980, 57: 253-254.
[10] Toyokawa H, Rubenthaler G L, Powers J R, Schanus E G. Japanese noodle qualities. II. Starch components. Cereal Chemistry, 1989, 66: 387-391.
[11] Zhang M W, Wang C Y, He D X, Ma D Y. Effects of location and different ratios of nitrogen and phosphorus fertilizers on starch pasting properties of strong-gluten wheat cultivar Zhengmai 9023. Journal of Triticeae Crops, 2010, 30(5): 905-909.
[12] Zheng Z S, Wang C Y, Zhang M W, Zhang J, Yao Y Q, Niu J Y. Effects of water, nitrogen and phosphorus coupling on starch paste properties of winter wheat. Chinese Journal of Eco-Agriculture, 2012, 20(3): 310-314.
[13] Zhang Y, He Z H. Investigation on paste property of Spring-snow Chinese wheat. Scientia Agricultura Sinica, 2002, 35(5): 471-475.
[14] Fu X L, Wang C Y, Guo T C, Zhu Y J, Ma D Y, Wang Y H. Effects of water-nitrogen interaction on the contents and components of protein and starch in wheat grains. Chinese Journal of Applied Ecology, 2008, 19(2): 317-322.
[15] Guo T C, Wang C Y, Zhu Y J, Zhu Y J, Wang H C, Li J X, Zhou J Z. Effects of post-anthesis high temperature stress on senility of root system and aboveground part of winter wheat. Acta Agronomica Sinica, 1998, 24(6): 957-962.
[16] Wang C Y, Guo T C, Yan Y L, Zhu Y J, Xia G J, Wang H C, Zhou J Z. Effects of short post-anthesis high temperature stress on leaf photosynthetic potential in winter wheat. Acta Agronomica Sinica, 2004, 30(1): 88-91.
[17] Dai T B, Zhao H, Jing Q, Jiang D, Cao W X. Effects of temperature and water stress during grain filling on grain protein and starch formation in winter wheat. Acta Ecologica Sinica, 2006, 26(11): 3670-3676.
[18] Yan S H, Yin Y P, Li W Y, Li Y, Liang T B, Wu Y H, Geng Q H, Wang Z L. Effect of high temperature after anthesis on starch formation of two wheat cultivars differing in heat tolerance. Acta Ecologica Sinica, 2008, 28(12): 6138-6147.
[19] Wang J, Feng C N, Guo W S, Zhu X K, Li C Y, Peng Y X. Effects of high temperature after anthesis on starch traits of grain in wheat. Journal of Triticeae Crops, 2008, 28(2): 260-265.
[20] Yanagisawa T, Kiribuchi-Otobe C, Fujita M. Increase in apparent amylose content and change in starch pasting properties at cool growth temperatures in mutant wheat. Cereal Chemistry, 2004, 81(1): 26-30.
[21] Stone P J, Nicolas M E. A survey of the effects of high-temperature during grain filling on yield and quality of 75 wheat cultivars. Australian Journal of Agricultural Research, 1995, 46(3): 475-492.
[22] Zhao H, Dai T, Jiang D, Cao W. Effects of high temperature on key enzymes involved in starch and protein formation in grains of two wheat cultivars. Journal of Agronomy and Crop Science, 2008, 194(1): 47-54.
[23] Hurkman W J, McCue K F, Altenbach S B, Korn A, Tanaka C K, Kothari K M, Johnson E L, Bechtel D B, Wilson J D, Anderson O D. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 2003, 164(5): 873-881.
[24] Miao J L, Wang C Y, Guo T C, Ma D Y, Hu J B, Feng H. Effects of post-anthesis interactions of high temperature and drought stresses on content and composition of grain starch in two wheat cultivars with different gluten strength. Journal of Triticeae Crops, 28(2): 254-259.
[25] Zhao H, Dai T B, Jing Q, Jiang D, Cao W X, Lu W, Tian X W. Effects of high temperature during grain filling on key enzymes involved in starch synthesis in two wheat cultivars with different quality types. Acta Agronomica Sinica, 2006, 32(3): 423-429.
[26] Liu P, Guo W S, Pu H C, Feng C N, Zhu X K, Peng Y X. Effects of transient high temperature during grain filling period on starch formation in wheat (Triticum aestivum L.). Acta Agronomica Sinica, 2006, 32(2): 182-188.
[27] Li Y G, Yu Z W, Zhang X J, Gao L M. Response of yield and quality of wheat to heat stress at different grain filling stages. Acta Phytoecologica Sinica, 2005, 29(3): 461-466.
[28] Shi Y C, Seib P A, Bernardin J E. Effects of temperature during grain-filling on starches from six wheat cultivars. Cereal Chemistry, 1994, 71: 369-383.
[29] Ames N P, Clarke J M, Marchylo B A, Dexter J E, Woods S M. Effect of environment and genotype on durum wheat gluten strength and pasta viscoelasticity. Cereal Chemistry, 1999, 76(4): 582-586.
[30] Singh S, Singh G, Singh P, Singh N. Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat varieties. Food Chemistry, 2008, 108(1): 130-139.
[31] Fan X M, Jiang D, Dai T B, Jing Q, Cao W X. Effects of post-anthesis drought and waterlogging on the quality of grain formation in different wheat varieties. Acta Phytoecologica Sinica, 2004, 28(5): 680-685.
[32] Xu Z Z, Yu Z W, Zhang Y L. The effects of soil moisture on grain starch synthesis and accumulation of winter wheat. Acta Agronomica Sinica, 2003, 29(4): 595-600.
[33] Wang C Y, Ji T H, Guo T C, Ma D Y, Zhu Y J, Fu D. Effects of drought stress on starch pasting characteristics of different spring wheat cultivars. Journal of He'nan Agricultural Science, 2008, (8): 32-37.
[1] 敬海霞, 王晨阳, 左学玲, 胡吉帮, 王永华, 郭天财. 花后高温胁迫对小麦籽粒产量和蛋白质含量的影响. 麦类作物学报, 2010, 30(3): 459-463.
[2] 阎俊, 张勇, 何中虎. 小麦品种糊化特性研究. 中国农业科学, 2001, 34(1): 9-13.
[5] 张学林, 郭天财, 朱云集, 李志强, 王晨阳, 马冬云, 彭羽. 河南省不同纬度生态环境对三种筋型小麦淀粉糊化特性的影响. 生态学报, 2004, 24(9): 2050-2055.
[11] 张美微, 王晨阳, 贺德先, 马冬云. 环境和氮磷肥对强筋小麦品种郑麦9023淀粉糊化特性的影响. 麦类作物学报, 2010, 30(5): 905-909.
[12] 郑志松, 王晨阳, 张美微, 张洁, 姚宇卿, 牛俊义. 水、氮磷肥及其互作对小麦淀粉糊化特性的影响. 中国农业生态学报, 2012, 20(3): 310-314.
[13] 张勇, 何中虎. 我国春播小麦淀粉糊化特性研究. 中国农业科学, 2002, 35(5): 471-475.
[14] 付雪丽, 王晨阳, 郭天财, 朱云集, 马冬云, 王永华. 水氮互作对小麦籽粒蛋白质、淀粉含量及其组分的影响. 应用生态学报, 2008, 19(2): 317-322.
[15] 郭天财, 王晨阳, 朱云集, 王化岑, 李久星, 周继泽. 后期高温对冬小麦根系及地上部衰老的影响. 作物学报, 1998, 24(6): 957-962.
[16] 王晨阳, 郭天财, 阎耀礼, 朱云集, 夏国军, 王化岑, 周继泽. 花后短期高温胁迫对小麦叶片光合性能的影响. 作物学报, 2004, 30(1): 88-91.
[17] 戴廷波, 赵辉, 荆奇, 姜东, 曹卫星. 灌浆期高温和水分逆境对冬小麦籽粒蛋白质和淀粉含量的影响. 生态学报, 2006, 26(11): 3670-3676.
[18] 闫素辉, 尹燕枰, 李文阳, 李勇, 梁太波, 邬云海, 耿庆辉, 王振林. 花后高温对不同耐热性小麦品种籽粒淀粉形成的影响. 生态学报, 2008, 28(12): 6138-6147.
[19] 王珏, 封超年, 郭文善, 朱新开, 李春燕, 彭永欣. 花后高温胁迫对小麦籽粒淀粉积累及晶体特性的影响. 麦类作物学报, 28(2): 260-265.
[24] 苗建利, 王晨阳, 郭天财, 马冬云, 胡吉帮, 冯辉. 高温与干旱互作对两种筋力小麦品种籽粒淀粉及其组分含量的影响. 麦类作物学报, 2008, 28(2): 254-259.
[25] 赵辉, 戴廷波, 荆奇, 姜东, 曹卫星, 陆玮, 田孝威. 灌浆期高温对两种品质类型小麦品种籽粒淀粉合成关键酶活性的影响. 作物学报, 2006, 32(3): 423-429.
[26] 刘萍, 郭文善, 蒲汉春, 封超年, 朱新开, 彭永欣. 灌浆期短暂高温对小麦淀粉形成的影响. 作物学报, 2006, 32(2): 182-188.
[27] 李永庚, 于振文, 张秀杰, 高雷明. 小麦产量与品质对灌浆不同阶段高温胁迫的响应. 植物生态学报, 2005, 29(3): 461-466.
[31] 范雪梅, 姜东, 戴廷波, 荆奇, 曹卫星. 花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响. 植物生态学报, 2004, 28(5): 680-685.
[32] 许振柱, 于振文, 张永丽. 土壤水分对小麦籽粒淀粉合成和积累特性的影响. 作物学报, 2003, 29(4): 595-600.
[33] 王晨阳, 冀天会, 郭天财, 马冬云, 朱云集, 扶定. 干旱胁迫对春小麦淀粉糊化特性的影响. 河南农业科学, 2008, (8): 32-37.