生态学报  2014, Vol. 34 Issue (14): 3996-4005

文章信息

张璐, 文石林, 蔡泽江, 黄平娜
ZHANG Lu, WEN Shilin, CAI Zejiang, HUANG Pingna
湘南红壤丘陵区不同植被类型下土壤肥力特征
Characteristics of soil fertility under different vegetation types in the hilly red soil region of southern Hunan
生态学报, 2014, 34(14): 3996-4005
Acta Ecologica Sinica, 2014, 34(14): 3996-4005
http://dx.doi.org/10.5846/stxb201212041748

文章历史

收稿日期:2012-12-4
修订日期:2014-3-19
湘南红壤丘陵区不同植被类型下土壤肥力特征
张璐1, 2, 文石林1, 2 , 蔡泽江1, 2, 黄平娜1, 2    
1. 中国农业科学院农业资源与农业区划研究所, 农业部作物营养与施肥重点开放实验室, 北京 100081;
2. 中国农业科学院红壤实验站, 祁阳农田生态系统国家野外试验站, 祁阳 426182
摘要:以自然植被恢复长期定位试验为基础,通过分析自然恢复31a后形成的6 个植被类型区(樟树、枫树、梓树、白檵木、唐竹、白茅草)、2 个同期种植的人工植被区(湿地松、板栗)以及相邻裸地区0-100 cm土层pH值、有机质及主要养分含量的变化,明确了湘南红壤丘陵区不同植被类型对土壤肥力的影响。结果表明:(1)白茅草和唐竹区的土壤pH值显著高于裸地区,但枫树和白檵木区的土壤酸化明显。(2)土壤有机质、活性有机质、全P、速效P等指标表现为乔木 > 草本 > 灌木,碱解N、全K、速效K表现为灌木 > 乔木 > 草本,全N表现为乔木 > 灌木 > 草本。(3)土壤综合肥力优劣为:枫树区 > 梓树区 > 白檵木区 > 樟树区 > 唐竹区 > 白茅草区 > 湿地松区 > 板栗区 > 裸地区,自然恢复植被比人工植被更有利于土壤肥力的提高。
关键词红壤    植被类型    土壤肥力    自然恢复    
Characteristics of soil fertility under different vegetation types in the hilly red soil region of southern Hunan
ZHANG Lu1, 2, WEN Shilin1, 2 , CAI Zejiang1, 2, HUANG Pingna1, 2    
1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Beijing 100081, China;
2. Red Soil Experimental Station, Chinese Academy of Agricultural Sciences/National Observation and Research Station of Farmland Ecosystem in Qiyang, Qiyang Hunan 426182, China
Abstract:In Southern China, the hilly red soil region accounts for 2.0 × 106 km2 and is an important production base for agriculture, forestry and animal husbandry. However, because of the increasing demand for firewood, timber and food in recent decades, many types of vegetation have been destroyed, which has resulted in local soil degradation and soil fertility decline, giving the region the title "red desert". This soil degradation significantly limits sustainable economic development in this region and so restoring vegetation and improving soil fertility are vital. Natural vegetation restoration, by preventing human disturbance, is an important method for improving fertility by redistributing nutrients in degraded red soil in subtropical hilly regions. However, improving soil fertility by natural vegetation restoration is a long-term process, and the effect of different plants in improving soil fertility is not well understood. In this study, the distribution regularities of nutrients in the soil profile under natural vegetation restoration compared with that in artificial vegetation plots and bare plots were investigated and the effect of natural vegetation restoration on improving soil fertility in subtropical hilly regions was assessed.

A long-term natural vegetation restoration experiment (-2 hectares) was initiated in 1981 at the Red Soil Experiment Station of the Chinese Academy of Agricultural Sciences, Qiyang County, Hunan Province. The effect of natural vegetation on soil fertility was assessed based on six 31-year-old natural vegetation restoration zones, including three natural arbor plots (Cinnamomum camphora, Liquidambar formosana, and Catalpa ovate), two natural shrub plots (Loropetalum chinensis and Sinobambusa tootsik), and one natural herbage plot (Imperata cylindrica). Two artificial arbor plots (Pinus elliottii and Castanea mollissima) and one adjacent bare plot were also used. Soil samples were collected at 0-20, 20-40, 40-60, 60-80, and 80-100 cm depths in April 2012. Soil organic matter (SOM), labile organic matter (LOM), total nitrogen (TN), hydrolysable nitrogen (HN), total phosphorus (TP), available phosphorus (AP), total potassium (TK), available potassium (AK) and pH were determined.

The different vegetation types had significant effects on soil fertility: (1) In Imperata cylindrica and Sinobambusa tootsik plots, the average pH values at different depths were 5.13 and 4.96, respectively, which was significantly higher than that in artificial vegetation and bare plots (average pH 4.56-4.62). Obvious acidification was found in Liquidambar formosana and Loropetalum chinensis plots (average pH 4.22 and 4.38, respectively) compared with that in the bare plot. (2) For all plots, soil nutrient concentrations except TK and TP significantly decreased with soil depth. The highest SOM, LOM, TP, and AP were observed in arbor plots, followed by the herbage plot, and the lowest values were found in shrub plots. Compared with artificial arbor, natural arbor increased SOM by 31.78%-113.19%. HN, TK and AK decreased in the following order: shrub plots > arbor plots > herbage plot. For TN, the decreasing order was arbor plots > shrub plots > herbage plot. (3) There was a significant positive correlation between SOM, LOM, TN and HN (P <0.01). (4) The integrated soil fertility decreased in the following order: Liquidambar formosana > Catalpa ovate > Loropetalum chinensis > Cinnamomum camphora, Sinobambusa tootsik > Imperata cylindrica > Pinus elliottii > Castanea mollissima > bare. In summary, the results illustrated that natural vegetation restoration is better for improving soil fertility than artificial vegetation.

Key words: red soil    vegetation types    soil fertility    natural vegetation restoration    

南方红壤丘陵区是我国重要的农林牧生产基地,该地区雨量充沛,热量丰富,动植物种类繁多,生物地球化学循环旺盛,有着巨大的生产潜力。然而,不少地方土壤退化、地力下降、水土流失严重,生态环境恶化,旱涝灾害频繁,退化程度仅次于黄土高原,曾一度被称为“南方红色沙漠”[1, 2],长期以来成为红壤资源利用的严重障碍。究其原因,无一不与自然植被的毁损与破坏密切相关。植被的恢复是土壤恢复的前提条件,在自然环境中,没有植被的恢复也就没有土壤肥力的恢复[3]。为此,基于人工植被重建的生态恢复作为治理红壤退化的重要技术途径在南方得到了广泛的推行,许多研究者围绕不同植被恢复措施对土壤质量的影响作了深入探讨,为指导红壤丘陵区的恢复实践起到了积极作用[4, 5, 6]。与此同时,由于侵蚀退化裸地生产力极低,人为扰动少,因而自然主导下退化红壤的植被恢复在我国南方侵蚀红壤区更为广泛的进行着,并且这种缓慢的自然植被演替对南方地区严重侵蚀退化红壤的理化性质的改善和复原起着至关重要的作用[7]。然而,依靠自然力恢复植被是一个长期的过程,有关这方面的研究结果还比较少。

中国农业科学院红壤实验站从1981 年开始对其所属一个仅有极为稀疏植被的小山(面积约2 hm2)采取了严格的保护措施,禁止人为破坏,这为植被自然恢复提供了理想的场所,经过31a封山育林,荒丘上发展了自然的草被、灌木和乔木。为了解不同植被对土壤肥力的恢复效果,在全面调查的基础上,根据典型性和代表性原则,本研究于2012 年4 月选择试验区内6 个天然植被(樟树、枫树、梓树、白檵木、唐竹、白茅草)区和1981 年人工种植的2 个植被(湿地松、板栗)区为研究对象,同时选取附近的裸地作为对照,研究了不同植被类型土壤养分状况,目的在于综合评价不同植被类型对侵蚀红壤养分的重建效果,为退化红壤的生态恢复管理提供基础资料。

1 材料与方法 1.1 研究区概况

研究区位于湖南祁阳的中国农业科学院红壤实验站的荒丘综合治理试验区内(26°45′N,111°52′E),海拔150—180 m。年均气温18.0 ℃,7 月最热,平均28.3 ℃,1 月最冷,平均气温4.7 ℃,≥10 ℃积温为5600 ℃,无霜期约300 d,年日照1610—1620 h,年均总辐射为108.66×4.18 kJ/cm2,年均蒸发量为1470 mm。全年平均降水量为1350 mm,4—8 月为雨季,降雨量占全年的68%,9 月至次年3 月为旱季,系典型的亚热带湿润季风气候。土壤为第四纪红色粘土发育的深厚红壤,属典型红壤丘陵区。试验区内小生境众多,植物种类达1000 余种,植被覆盖度基本均为100%。本研究选取的8 个主要植被类型区概况见表 1。白茅草、唐竹和白檵木、梓树和枫树和樟树是试验区具有代表性的草本、灌木、乔木,湿地松和板栗是生态恢复过程中人工改造的两种主要模式,1981 年种植后任其自然生长,无人为干扰。由于试验区范围不大,海拔梯度较小,植被覆盖度相似,因此本研究认为是在同一气候和地质背景条件下进行。

表 1 不同植被类型区概况 Table 1 General situation of different vegetation plots
植被区
Vegetation plot
地理位置
Geographic
position
海拔
Altitude/m
密度
Density
/(株/hm2)
平均树高
Average
height/m
乔木平均胸径
Average diameter
of plant/cm
枯落物干物重
Dry weight
of litter
/(kg/m2)
优势物种
Dominant species
天然乔木区
Natural arbor plot
樟树区
Cinnamomum camphora plot
N26°45′40.8″,
E111°52′29.3″
15316009.918.40.96樟树[Cinnamomum camphora(L.)Presl];华山矾[Symplocos chinensis(Lour.)Druce],满树星(Ilex aculeolata Nakai),乌饭树(Vaccinium bracteatum Thunb.),树莓(Rubus corchorifolius Linn.f.),小果蔷薇(Rosa cymosa Tratt.),海金沙(Lygodium japonicum (Thunb.) Sw.),油茶(Camellia oleifera Abel),乌药[Lindera aggregate (Sims) Kosterm],苦楝树(Melia azedarach L.),长叶冻绿(Rhamnus crenata Sieb. et Zucc.);兰草(Eupatorium fortunei Turcz.),艾草(Artemisia argyi H. Lév. et Vaniot),五节芒[Miscanthus floridulus (Labill.) Warburg ex K. Schumann];贯众(Cyrtomium fortunei J. Sm.)
枫树区
Liquidambar formosana plot
N26°45′38″,
E111°52′30.6″
174120016.234.11.52枫树(Liquidambar formosana Hance);油茶,乌药,华山矾,长叶冻绿,满树星,油桐[Vernicia fordii (Hemsl.) Airy Shaw],肖菝葜(Heterosmilax japonica Kunth),栀子(Gardenia jasminoides Ellis),枸骨(Ilex cornuta Lindl. et Paxton)
梓树区
Catalpa ovata plot
N26°45′38.7″,
E111°52′28.0″
17980023.027.91.86梓树(Catalpa ovata G. Don);乌药,大青(Clerodendrum cyrtophyllum Turcz.),华山矾,大红泡(Rubus eustephanos Focke),肖菝葜,冬青(Ilex chinensis Sims)
人工乔木区
Artificial forest plot
湿地松区
Pinus elliottii plot
N26°45′37.4″,
E111°52′27.8″
172200013.120.81.75湿地松(Pinus elliottii Engelm.);华山矾,胡枝子(Lespedeza bicolor Turcz.),大红泡,大青,野柿树(Diospyros kaki Thunb.),了哥王(Wikstroemia indica (L.) C. A. Mey),冬青,油桐,油茶,白背叶[Mallotus apelta (Lour.) Müll. Arg.],肖菝葜;橘草[Cymbopogon goeringii (Steud.) A. Camus],芒草(Miscanthus sinensis Andersson),蛇莓[Duchesnea indica (Andrews) Focke],醡浆草(Oxalis corniculata L.),鸡脚草(Calathodes oxycarpa Sprague),兰草
板栗区
Castanea mollissima plot
N26°45′40.3″,
E111°52′24.6″
14412006.824.91.26板栗(Castanea mollissima Bl.);肖菝葜,大青,大红泡,小果蔷薇,毛蓼(Polygonum barbatum L.),臭菜藤[Acacia pennata (Linn.) Willd.],枸骨,野南瓜(Glochidion puberum (Linn.) Hutch.),胡枝子,野胡萝卜(Daucus carota L.),满树星,乌药,了哥王,油桐,华山矾,油茶树;兰草,鸡脚草,香薷[Elsholtzia ciliata (Thunb.) Hyland.],醡浆草,蛇莓,五节芒,飞蓬[Erigeron acer L.],猪殃殃[Galium aparine Linn.],犁头尖[Typhonium blumei Nicolson et Sivadasan];蕨[Pteridium aquilinum (L.) Kuhn]
天然灌木区
Natural shrub plot
白檵木区
Loropetalum chinensis plot
N26°45′37.8″,
E111°52′30.5″
183144005.2-2.48白檵木[Loropetalum chinensis (R. Br.) Oliv.],满树星,油茶树,肖菝葜,栀子,小果蔷薇和长叶冻绿
唐竹区
Sinobambusa tootsik plot
N26°45′39.4″,
E111°52′29.9″
1661800004.1-1.12唐竹[Sinobambusa tootsik (Sieb.) Makino],长叶冻绿,肖菝葜,栀子和鸡血藤(Millettia reticuiata Benth)
天然草本区
Natural herbage plot
白茅草区
Imperata cylindrica plot
N26°45′38.1″,
E111°52′28.0″
162---0白茅草[Imperata cylindrica (Nees) C. E. Hubb.],野蔷薇(Rose multiflora Thunb.)
裸地区
Bare land plot
裸地区
Bare land plot
N26°45′39.6″,
E111°52′10.8″
156---0-
1.2 研究方法

每一植被类型设置3 个10 m×10 m的样区,样区间距不小于10 m,测定样地内乔木的树高和胸径。每一样区采用S形土壤样品采集的布设方法挖取5 个土壤剖面,记录剖面特征,从表层向下按0—20 cm,20—40 cm,40—60 cm,60—80 cm,80—100 cm分层取样。将每一样区5 个点同一层次的土样混合,然后用四分法取出1 kg左右样品,挑出杂物,风干,研磨,过筛备用。

土壤pH值采用水土比2.5 ∶ 1提取,电极电位法测定;有机质采用重铬酸钾-外加热法测定;活性有机质采用高锰酸钾氧化法测定;全氮采用半微量凯氏定氮法测定;碱解氮采用1.2 mol/L氢氧化钠碱解-扩散法测定;全磷采用氢氧化钠熔融-钼锑抗比色法测定;速效磷采用0.5 mol/L碳酸氢钠浸提-钼锑抗比色法测定;全钾采用氢氧化钠熔融-火焰光度法测定;速效钾采用1 mol/L乙酸铵浸提-火焰光度法测定[8, 9]

1.3 数据处理

数据质量以每次测定插入已知含量的标准土样加以控制,数据计算统计及相关分析采用Microsoft Excel 2003软件和SPSS16.0软件进行,采用Duncan多重比较各植被类型或不同土层之间的差异,用回归分析法研究不同指标的相关关系,用主成分分析法评价土壤综合肥力[10]

2 结果与分析 2.1 土壤pH值

土壤pH值通过影响土壤微生物活动、有机质分解、矿质营养的有效状态等影响土壤的肥力状态[11]图 1显示,白茅草区和唐竹区土壤剖面各点pH值均在4.80 以上,0—100 cm 土层平均pH值分别为5.13和4.96,显著高于其它植被类型区,可能是由于这两个植被类型区枯落物较少,植物根系较浅,因此产生的有机酸较少,pH值相对较高。枫树区0—100 cm土层平均pH值为4.22,在所有植被类型区中处于最低。白檵木区土壤pH值为4.38,可能是因为白檵木区地表枯落物较多,土壤微环境相对更湿润,土壤淋溶作用相对较强,所以pH值也相对较低。樟树、梓树、湿地松和板栗区土壤pH值差异不大且变化趋势基本一致,均随土层深度增加而增加,0—100 cm土层平均pH值为4.56—4.64;与裸地区相比,樟树、梓树、湿地松、板栗区0—40 cm土层pH值平均降低0.27 个单位,40—100 cm提高0.13 个单位,主要原因可能是表层有机质含量高,腐殖酸的积累致使表层土壤pH值较低,而受母质、生物与淋溶作用的影响,处于底层的低风化母质含阳离子较高而具有较高的pH[12, 13]。可见,在酸度较强的湘南红壤丘陵区,不同类型植被(枫树和白檵木除外)对于提高深层土壤pH值效果好于裸地。

图 1 不同植被类型区0—100 cm土壤pH值 Fig. 1 Soil pH in 0—100 cm of different vegetation type plots
2.2 不同植被类型土壤养分含量变化

土壤有机质、活性有机质、全N、碱解N、速效P和速效K随土层深度的增加而降低,表聚效应明显(图 2),这与很多学者研究结果相同[14, 15, 16, 17]。主要是因为地表凋落物和植物根系分解所形成的有机碳首先进入土壤表层,而土表温度较低,含水量较高,有机质因分解减缓而剧增于土壤表层;同时由于缺少人为的干扰,土壤透气性较差,表层有机碳因向下输送困难而明显高于深层[18, 19]。植物可利用的N和P大多数存在于地表枯落物和土壤有机质中[20],而速效K与有机质呈极显著正相关[10],所以表现出相同的下降趋势。土壤全P含量整体上各土层间差异不显著,均值为0.25—0.26 g/kg,主要是由于P在 土壤中不易移动。土壤全K含量,0—20 cm土层(17.83 g/kg)最小,80—100 cm土层(19.85 g/kg)最大,可能是由于土壤钾素易被淋溶至深层,且上层土壤的部分钾素已被植物吸收。

8个植被区土壤有机质、活性有机质、全N和碱解N含量高于裸地区(图 2)。8 个植被区中,梓树区0—100 cm土层平均有机质、活性有机质和全P含量最高,分别为15.94、6.34 g/kg和0.32 g/kg;枫树区全N、速效P、全K和速效K平均含量最高,分别为0.88 g/kg、3.77 mg/kg、22.41 g/kg和97.40 mg/kg;樟树区碱解N含量最高,为53.69 mg/kg。天然乔木区0—100 cm土层中的有机质和氮磷钾养分含量最高,比人工乔木区提高31.78%—113.19%,比白茅草区提高26.49%—56.08%,主要原因是天然乔木区均为阔叶林,阔叶林枯落物中养分浓度高、易于分解,而且各级根系的C/N和C/P值低,分解速率快[21];另外,乔木生物量较大、林下灌木和草本植物丰富、土壤酶活性较强可能也是乔木区养分含量高于灌木区和草本区的原因之一。白檵木区全K(21.84 g/kg)和速效K(95.90 mg/kg)、唐竹区全N(0.87 g/kg)和碱解N(52.78 mg/kg)含量也相对较高。板栗区0—100 cm土层平均有机质、活性有机质、全N、碱解N、全K和速效K含量均为最低,分别为8.73 g/kg、2.97 mg/kg、0.65 g/kg、40.74 mg/kg、14.73 g/kg、53.70 mg/kg。湿地松区各养分含量也多属于相对较低的水平,主要是由于凋落物以及根系中难分解物质含量较多,C/N值较高,分解缓慢,大量累积于地表,土壤有机质输入减少,因此养分含量较低[22];田大伦等[23]也曾对湿地松人工林养分循环特征进行研究,结果显示湿地松林养分循环速率低,周转时间长,需要的养分多,维持地力能力差,如果处理不好养地与用地之间的关系,会造成林地生产力的下降。

图 2 不同植被类型区0—100 cm土壤养分含量 Fig. 2 Soil nutrient content in 0—100 cm of different vegetation type plots

试验区植被自然恢复31a后,依据湖南省分级标准[24],速效磷仍为最低的第6 级水平,极度匮乏;碱解氮为第5 级水平,含量偏低;有机质含量多为第4、5 级水平,速效钾为第4 级水平,属于中等偏低水平。因此在生态重建过程中仍需注重提高土壤氮磷钾等养分含量。

2.3 土壤肥力指标相关性分析

土壤肥力指标间具有相关性,但不同地区、不同植被类型其相关性也不相同[14, 25]。本研究通过对湘南红壤丘陵区9 种植被类型5 层土壤肥力指标相关性分析得知(表 2),有机质、活性有机质、全N、碱解N表现出极显著正相关,相关系数均在0.86以上,主要是因为红壤本身固定铵的能力比较差,约有95%的氮素存在于有机质中,所以有机质的多少,可大体反映出氮素的丰缺状况[11]。有机质、活性有机质、全N、碱解N与速效P和速效K也达到极显著正相关,但相关系数相对较小,为0.404—0.631。全K与速效K呈显著相关。pH值和全P与其它指标相关系数较小,在0.01和0.05水平上均未达到显著相关。

表 2 不同土壤肥力指标间的相关系数(r) Table 2 The correlation coefficient among different soil fertility indexes(r)
pHSOMLOMTNHNTPAPTKAK
*表示在P <0.05水平上显著相关(P0.05=0.288),**表示在P <0.01水平上极显著相关(P0.01=0.372); SOM:有机质Soil organic matter,LOM:活性有机质Labile organic matter,TN:全氮Total nitrogen,HN:碱解氮Hydrolysable nitrogen,TP:全磷Total phosphorus,AP:速效磷Available phosphorus,TK:全钾Total potassium,AK:速效钾Available potassium
pH1.000
SOM-0.1191.000
LOM-0.1050.978* *1.000
TN-0.1530.941* *0.910* *1.000
HN-0.1570.894* *0.860* *0.929* *1.000
TP-0.178-0.0140.020-0.098-0.2631.000
AP-0.2820.484* *0.501* *0.513* *0.404* *0.1891.000
TK-0.256-0.227-0.268-0.033-0.095-0.0960.1011.000
AK-0.2560.517* *0.453* *0.631* *0.572* *-0.0880.592* *0.305*1.000
2.4 不同植被类型区土壤综合肥力

通过主成分分析可以看出,前3个主成分的累积贡献率为85.132%,表明这3个主成分已提供了全部指标85%以上的信息(表 3)。其中有机质、活性有机质、全N、碱解N、全K在第一主成分中发挥了重要作用,pH值、速效P、速效K在第二主成分中发挥了重要作用,全P在第三主成分中发挥了重要作用。

表 3 主成分分析的特征根及其贡献率 Table 3 Eigen value and contribution rate in principal components analysis
主成分
Component
特征根值
Eigen value
贡献率
Variance/%
累积贡献率
Cumulative%
of variance/%
13.92043.55643.556
22.36326.25669.812
31.37915.32085.132
40.6467.18192.313
50.4504.99897.311
860.1461.61998.930
70.0810.90599.835
80.0150.165100
91.67×10-161.86×10-15100

土壤肥力综合指标值是选择各个主要的单项肥力指标,运用因子分析,以各主成分特征贡献率为权重,加权计算而得的综合评价指标,更能直观地反映土壤总体肥力。本研究经标准化后(以字母Z表示)计算得到的主成分综合模型为:F=-0.219 Z(pH)+0.199Z(有机质)+0.182Z(活性有机质)+0.215Z(全N)+0.104Z(碱解N)+0.077Z(全P)+0.310Z(速效P)+0.242Z(全K)+0.225Z(速效K)

由不同类型植被群落的土壤养分指标综合主成分值F表明,不同类型植被群落的土壤综合肥力不同,枫树、梓树、白檵木、樟树、唐竹、白茅草、湿地松、板栗区土壤肥力综合指标较裸地区依次分别增加229.69%、165.62%、149.17%、108.93%、82.03%、73.82%、71.77%、18.96%,说明枫树、梓树、白檵木、樟树、唐竹、白茅草、湿地松、板栗区养分状况依次降低,但均好于裸地区(图 3),可见植被自然恢复有助于提高土壤肥力,而自然生长起来的植被类型比起引进的物种来说提升效果更显著。种植板栗或许可以得到更多的经济利益,但是并不利于土壤肥力的提高。因此,建议在我国南方自然植被破坏较严重的红壤荒山丘陵区,对荒山丘陵严加监护,诱导天然树种进入,从而形成多层次生物栖息繁衍的环境,以此达到提高土壤肥力的目的。

图 3 土壤肥力综合指标值 Fig. 3 Soil integrated fertility index of different vegetation types
3 结论 3.1

在侵蚀退化较严重的红壤丘陵荒地封山育林31a后,白茅草和唐竹区的土壤pH值明显高于裸地区,但枫树和白檵木区的土壤酸化明显。

3.2

与31a前人工种植的植被类型相比,自然恢复的植被类型更有利于提高土壤有机质和氮磷钾等养分含量。其中,梓树对于提高土壤有机质和活性有机质效果最显著;樟树和唐竹有利于提高土壤碱解氮,但不利于提高磷含量;枫树对于提高土壤速效磷有显著效果;枫树和白檵木能够显著提高土壤速效钾含量;白茅草不利于提高土壤氮、钾养分含量。

3.3

试验区不同植被类型区土壤综合肥力优劣为:枫树区>梓树区>白檵木区>樟树区>唐竹区>白茅草区>湿地松区>板栗区>裸地区,就提高土壤综合肥力的效果来看,枫树为最优选择,梓树其次。

参考文献
[1] Zhou X J, Xia W S. Granite geomorphic development of granite and expedited soil erosion in Hengshan mountain area. Acta Pedologica Sinica, 2004, 41(4): 624-627.
[2] Yang Y S, Wang Z Q, Chen X, Zhang R L. Effects of different utilization model on soil and water conservation and ecology in red soil region of South China. Journal of Soil and Water Conservation, 2004, 18(5): 84-87.
[3] Yang X B, Zhang T L, Wu Q S. The relationship between biodiversity and soil fertility characteristics on abandoned fields in the tropical region of Southern China. Acta Ecologica Sinica, 2002, 22(2): 190-196.
[4] Guo X M, Niu D K, Liu Y Q, Du T Z, Xiao S Z, Ye X H. The vegetation restoration and reconstruction of different types of degraded barren ecosystems in Jiangxi. Acta Ecologica Sinica, 2002, 22(6): 878-884.
[5] Zheng H, Ouyang Z Y, Wang X K, Miao H, Zhao T Q, Peng T B. Effects of forest restoration types on soil quality in red soil eroded region, Southern China. Acta Ecologica Sinica, 2004, 24(9): 1995-2002.
[6] Wang X L, Hu F, Li H X, Liu M Q, Qin J T, Zhang B. Characteristics of biological property of erosive degraded red soil under nature restoration. Acta Ecologica Sinica, 2007, 27(4): 1404-1411.
[7] Zhao P. Advances in plant ecophysiological studies on re-vegetation of degraded ecosystems. Chinese Journal of Applied Ecology, 2003, 14(11): 2031-2036.
[8] Bao S D. Soil and Agricultural Chemistry Analysis. Beijing: China Agricultural Press, 2000.
[9] Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466.
[10] Pang X Y, Liu Q, Liu S Q, Wu Y, Lin B, He H, Zhang Z J. Changes of soil fertility quality properties under subalpine spruce plantation in Western Sichuan. Acta Ecologica Sinica, 2004, 24(2): 261-267.
[11] Deng H, Zhang B, Wang H L, Yin R. The comparison of soil fertility among severely eroded red soils regenerated with different vegetation types. Journal of Agricultural Science and Technology, 2007, 9(3): 79-85.
[12] Li Z A, Zou B, Cao Y S, Ren H, Liu J. Nutrient properties of soils in typical degraded hilly land in South China. Acta Ecologica Sinica, 2003, 23(8): 1648-1656.
[13] Jiang Y J, Zhang C, Yuan D X. Temporal-spatial variability of soil fertility and its affecting factors of variability in Karst region: a case study of Xiaojiang watershed, Yunnan Province. Acta Ecologica Sinica, 2008, 28(5): 2288-2299.
[14] Wei Q, Ling L, Chai C S, Zhang G Z, Yan P B, Tao J X, Xue R. Soil physical and chemical properties in forest succession process in Xinglong Mountain of Gansu. Acta Ecologica Sinica, 2012, 32(15): 4700-4713.
[15] Cheng R M, Xiao W F, Wang X R, Feng X H, Wang R L. Soil nutrient characteristics in different vegetation successional stages of Three Gorges reservoir area. Scientia Silvae Sinicae, 2010, 46(9): 1-6.
[16] Liu X Z, Zhou G Y, Zhang D Q, Liu S Z, Chu G W, Yan J H. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 2010, 34(1): 64-71.
[17] Geng Y Q, Yu X X, Yue Y J, Niu L L. Variation of forest soil nutrient content in mountainous areas, Beijing. Scientia Silvae Sinicae, 2010, 46(5): 169-175.
[18] Liu S Y, Liu Y X, Ye J S, Gong Y Z, Zeng S C. Soil organic carbon density of Eucalyptus plantations in Guangdong Province of China and related affecting factors. Chinese Journal of Applied Ecology, 2010, 21(8): 1981-1985.
[19] Tian D L, Fang X, Xiang W H. Carbon density of the Chinese fir plantation ecosystem at Huitong, Hu'nan Province. Acta Ecologica Sinica, 2004, 24(11): 2382-2386.
[20] Yildiz O, Esen D, Karaoz O M, Sarginci M, Toprak B, Soysal Y. Effects of different site preparation methods on soil carbon and nutrient removal from Eastern beech regeneration sites in Turkey's Black Sea region. Applied Soil Ecology, 2010, 45(1): 49-55.
[21] Morrison I K, Foster N W. Fifteen-year change in forest floor organic and element content and cycling at the Turkey Lakes Watershed. Ecosystems, 2001, 4(6): 545-554.
[22] Chen H, Harmon M E, Griffiths R P. Decomposition and nitrogen release from decomposing woody roots in coniferous forests of the Pacific Northwest: a chronosequence approach. Canadian Journal of Forest Research, 2001, 31(2): 246-260.
[23] Tian D L, Xiang W H, Yan W D. Comparison of biomass dynamic and nutrient cycling between Pinus massomiana plantation and Pinus elliottii plantation. Acta Ecologica Sinica, 2004, 24(10): 2207-2210.
[24] Tong F P, Xu Y P, Long Y Z, Yi J X, Song Q A, Yi A Q, Shi W F, Li G, Zou L W, Dong X H. Study on physical and chemic character of forestry soil polluted by heavy metals in antimony mine of Len-Shuijiang city. Chinese Agricultural Science Bulletin, 2009, 25(10): 246-250.
[25] Chang C, Xie Z Q, Xiong G M, Zhao C M, Shen G Z, Lai L S, Xu X W. Characteristics of soil nutrients of different vegetation types in the Three Gorges reservoir area. Acta Ecologica Sinica, 2009, 29(11): 5978-5985.
[1] 周学军, 夏卫生. 衡山土壤加速侵蚀与花岗岩地貌发育问题研究. 土壤学报, 2004, 41(4): 624-627.
[2] 杨一松, 王兆骞, 陈欣, 张如良. 南方红壤坡地不同利用模式的水土保持及生态效益研究. 水土保持学报, 2004, 18(5): 84-87.
[3] 杨小波, 张桃林, 吴庆书. 海南琼北地区不同植被类型物种多样性与土壤肥力的关系. 生态学报, 2002, 22(2): 190-196.
[4] 郭晓敏, 牛德奎, 刘苑秋, 杜天真, 肖舜祯, 叶学华. 江西省不同类型退化荒山生态系统植被恢复与重建措施. 生态学报, 2002, 22(6): 878-884.
[5] 郑华, 欧阳志云, 王效科, 苗鸿, 赵同谦, 彭廷柏. 不同森林恢复类型对南方红壤侵蚀区土壤质量的影响. 生态学报, 2004, 24(9): 1995-2002.
[6] 王晓龙, 胡锋, 李辉信, 刘满强, 秦江涛, 张斌. 侵蚀退化红壤自然恢复下土壤生物学质量演变特征. 生态学报, 2007, 27(4): 1404-1411.
[7] 赵平. 退化生态系统植被恢复的生理生态学研究进展. 应用生态学报, 2003, 14(11): 2031-2036.
[8] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[10] 庞学勇, 刘庆, 刘世全, 吴彦, 林波, 何海, 张宗锦. 川西亚高山云杉人工林土壤质量性状演变. 生态学报, 2004, 24(2): 261-267.
[11] 邓欢, 张斌, 王会利, 尹睿. 侵蚀红壤区不同人工植被恢复下的土壤肥力比较. 中国农业科技导报, 2007, 9(3): 79-85.
[12] 李志安, 邹碧, 曹裕松, 任海, 刘俭. 南方典型丘陵退化荒坡地土壤养分特征分析. 生态学报, 2003, 23(8): 1648-1656.
[13] 蒋勇军, 章程, 袁道先. 岩溶区土壤肥力的时空变异及影响因素——以云南小江流域为例. 生态学报, 2008, 28(5): 2288-2299.
[14] 魏强, 凌雷, 柴春山, 张广忠, 闫沛斌, 陶继新, 薛睿. 甘肃兴隆山森林演替过程中的土壤理化性质. 生态学报, 2012, 32(15): 4700-4713.
[15] 程瑞梅, 肖文发, 王晓荣, 封晓辉, 王瑞丽. 三峡库区植被不同演替阶段的土壤养分特征. 林业科学, 2010, 46(9): 1-6.
[16] 刘兴诏, 周国逸, 张德强, 刘世忠, 褚国伟, 闫俊华. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 2010, 34(1): 64-71.
[17] 耿玉清, 余新晓, 岳永杰, 牛丽丽. 北京山地森林的土壤养分状况. 林业科学, 2010, 46(5): 169-175.
[18] 刘姝媛, 刘月秀, 叶金盛, 宫彦章, 曾曙才. 广东省桉树人工林土壤有机碳密度及其影响因子. 应用生态学报, 2010, 21(8): 1981-1985.
[19] 田大伦, 方晰, 项文化. 湖南会同杉木人工林生态系统碳素密度. 生态学报, 2004, 24(11): 2382-2386.
[23] 田大伦, 项文化, 闫文德. 马尾松与湿地松人工林生物量动态及养分循环特征. 生态学报, 2004, 24(10): 2207-2210.
[24] 童方平, 徐艳平, 方应忠, 易建新, 宋庆安, 易霭琴, 石文峰, 李贵, 邹丽伟, 董晓辉. 冷水江锑矿区重金属污染林地土壤理化特性研究. 中国农学通报, 2009, 25(10): 246-250.
[25] 常超, 谢宗强, 熊高明, 赵常明, 申国珍, 赖江山, 徐新武. 三峡库区不同植被类型土壤养分特征. 生态学报, 2009, 29(11): 5978-5985.