生态学报  2014, Vol. 34 Issue (14): 3924-3931

文章信息

于立忠, 苗杰, 张金鑫, 徐阳, 张文儒
YU Lizhong, MIAO Jie, ZHANG Jinxin, XU Yang, ZHANG Wenru
不同透光环境下红松光合色素含量的季节变动及应对策略
Seasonal variation of photosynthetic pigment content in Pinus koraiensis:the role of different light-induced strategies
生态学报, 2014, 34(14): 3924-3931
Acta Ecologica Sinica, 2014, 34(14): 3924-3931
http://dx.doi.org/10.5846/stxb201212031737

文章历史

收稿日期:2012-12-3
修订日期:2014-2-27
不同透光环境下红松光合色素含量的季节变动及应对策略
于立忠1, 2, 3 , 苗杰4, 张金鑫1, 2, 3, 徐阳5, 张文儒5    
1. 中国科学院沈阳应用生态研究所, 沈阳 110016;
2. 中国科学院清原森林生态实验站, 沈阳 110016;
3. 辽宁省生态公益林经营管理重点实验室, 沈阳 110016;
4. 烟台市林业科学研究所, 烟台 264000;
5. 清原县大苏河林场, 清原 113312
摘要:研究了辽东山区天然次生林内3种不同透光环境(强度透光、中度透光和弱度透光)下红松针叶光合色素(叶绿素a(Chl a)、叶绿素b(Chl b)、类胡萝卜素(Car)和叶绿素总量(Chl T))应对光环境季节变动做出的适应性调整。结果表明,随季节的变动(从春季至秋季),林分透光孔隙度逐渐减小。春季,透光度越大,红松叶绿素含量越高,Chl a/b值升高,Car /Chl T值降低;夏季,不同透光条件对红松光合色素含量无影响;秋季,各类透光条件下红松光合色素含量总体表现为升高的趋势,强度透光与中度透光条件红松针叶Chl a/b显著大于弱度透光,3种透光条件下红松Car/Chl T均降低。在春季红松开始生长前进行适当抚育,能提高光合色素含量,增强光合作用能力,促进生长。
关键词红松    透光孔隙度    季节变动    策略    
Seasonal variation of photosynthetic pigment content in Pinus koraiensis:the role of different light-induced strategies
YU Lizhong1, 2, 3 , MIAO Jie4, ZHANG Jinxin1, 2, 3, XU Yang5, ZHANG Wenru5    
1. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
2. Qingyuan Experimental Station of Forest Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
3. Liaoning Key Laboratory for Management of Non-commercial Forests, Shenyang 110016, China;
4. Yan Tai Institute of Forestry Science, Yantai 264000, China;
5. Dasuhe Forest Farm Qingyuan County, Qingyuan 113312, China
Abstract:Broad-leaved Korean pine forest (BKPF) is one of several zonal climax vegetation types dominated by Korean pine (Pinus koraiensis) in the temperate forest region of Northeast China. Unfortunately, intense human activities and extreme natural disturbances have continuously affected the succession of the BKPFs for the past century. Most of the historic areas of BKPFs have succeeded into secondary forests that are not dominated by Korean pine. As a result, since the 1960s, P. koraiensis seedlings have been planted under the canopy of secondary forests in an effort to restore the BKPFs. The status of the survival and growth of P. koraiensis saplings under the canopy of secondary forests has been considered to be an important indicator demonstrating the success of these efforts. Many reports suggested that light was one of the most important environmental factors affecting the regeneration and growth of P. koraiensis. Generally, P. koraiensis is considered to be both a tolerant and intolerant species, having a dual response to light conditions in forest communities depending on its habitat and age classes. P. koraiensis seedlings are able to survive under closed canopy conditions; canopy openness ranging from 0.5 to 0.6 is optimal for the survival and growth of P. koraiensis seedlings. However, as the saplings grow, they need more and more light and finally become intolerant to shaded conditions. For example, compared with seedlings, slightly more mature trees will grow under a forest canopy with a canopy openness of 0.7 for the long-term, but they grow poorly and eventually die under those conditions over an extended period of time. Selective thinning is almost always carried out when P. koraiensis saplings reach an age of 8 to 10 years. However, the needles of P. koraiensis may turn yellow after the selective thinning indicating that the type and quantity of photosynthetic pigments in needles changes in response to the selective thinning. This study was conducted to analyze the response of the photosynthetic pigments in P. koraiensis needles to selective thinning in an effort to understand the relationships between the light environment and the regeneration of P. koraiensis. The experiments were conducted at Qingyuan Experimental Station of Forest Ecology, Chinese Academy of Sciences, located in Changsha, Qingyuan County, Fushun City, Liaoning Province, China. We compared the content of chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoids (Car), and total chlorophyll (Chl T) in P. koraiensis needles under three light environments: low-, mid- and high light levels in a secondary forest. The results showed that canopy openness decreased from a high-level light to low-level light environment from spring through summer to autumn. In spring, the chlorophyll content and the ratio of Chl a/b increased, but the ratio of Car/Chl T decreased as the light levels changed from a low-level to high-level light environment. However, the Car content did not change significantly during spring. In summer, no significant differences in pigment content were observed among the three light levels, but the pigment content was higher than that in spring for all pigments analyzed here. In autumn, the ratio of Chl a/b was higher in the high-level and mid-level light environments than that in the low-level light environment. The photosynthetic pigment content increased in all three light levels from spring to summer, but the ratio of Car/Chl T decreased significantly during the same time period. In summary, these results suggest that thinning management designed to increase light-transmittance should be conducted in spring and a mid-level thinning intensity is suitable for improving the photosynthetic capability and for accelerating growth of P. koraiensis under the canopy of secondary forests.
Key words: Pinus koraiensis    canopy openness    seasonal variation    strategy    

光合色素在光合作用过程中具有重要作用[1, 2]。一般认为,部分叶绿素a(反应中心色素) 是将光能转化为化学能的功能色素(在光合作用光反应中心将光能转化为活跃的化学能),其余叶绿素(天线色素)负责捕获和传递光能[3, 4];类胡萝卜素具有光能捕获和光破坏防御两大功能,光照不足时其主要功能是协助叶绿素捕获光能,光照充足时则主要用来进行热能耗散,减轻光氧化作用[4]。强光下生长的叶片一般有较低的叶绿素/氮(Chl/N)比,较高的Chl a/b比,使得叶片在光照充足的条件下能获取更多的碳[5]。随植物耐阴性的增加,叶黄素所占总类胡萝卜素比例增加,而叶黄素库则减小[6]。植物能够通过调整自身光合色素含量来应对其周围变动的光环境已经形成广泛的共识[7, 8]

红松(Pinus koraiensis)是中国东北东部地区地带性顶级群落阔叶红松林的主要建群树种之一,然而由于自然干扰与人为干扰,导致阔叶红松混交林的面积逐渐减少。近年来,有关红松的研究很多,其中对红松阔叶混交林群落结构与动态[9]、生物多样性[10]、环境因子(土壤动物、水分、养分等)[11, 12, 13, 14]、人工更新[15, 16]等方面开展了深入研究,研究表明:红松幼树在阔叶林冠下的成活及生长是红松更新的关键,其中光环境是影响红松更新的最主要因子之一[17],目前关于红松光合作用对不同光环境的适应策略已有研究。红松幼苗和幼树在人工模拟光环境和实际林分光环境下,随树龄的增大,其需光特性增加[18]。红松幼年阶段适宜一定程度的庇荫,随着年龄的增长,耐荫能力逐渐减弱,如果长期生存于林冠下,幼树则趋于衰亡[19]。研究表明,0.5—0.6的林冠郁闭度为红松幼树更新的最佳条件[20];红松冠层不同部位与叶龄对其最大净光合速率、光饱和点、光补偿点、表观最大量子速率、蒸腾速率以及比叶面积具有显著影响,这是由于不同树冠部位的针叶对弱光和强光的利用能力不同[21]。可以看出,红松在不同光环境下具有不同的光合生理特性,最终可能导致红松生长差别很大,即不同光环境对红松生长可能产生促进作用也可能产生抑制作用。

植物光合色素含量变动可用来表征叶片吸收太阳辐射的变化[2],各种功能光合色素的含量变动同样可以用来表征树木为应对其变动的光环境而实施的不同光合策略。天然次生林冠下红松更新的主要障碍因子是光,目前多数研究主要侧重于红松在特定光环境下生理特性的揭示[18, 21, 22],相关研究表明,阔叶红松林演替过程中,当群落结构处于中等郁闭条件下,红松更新良好,郁闭度超过0.7时会严重影响其更新[17],而关于突然改变原有光环境后,冠下红松光合生理特性随季节变化的变动情况报道较少。为了探明红松幼苗对不同季节光环境的应对策略,本文拟通过改变红松原有生存光环境,研究不同透光环境下红松针叶光合色素含量(Chl a、Chl b、Car和Chl T)的变动情况,了解光环境经人为扰动后红松针叶在光合色素水平上的应对策略,从而为明确次生林冠下光对红松生长的影响规律,以及人为干扰对红松更新的影响规律[19]提供科学依据。

1 研究方法 1.1 研究地概况

研究样地设置于中国科学院清原森林生态实验站,该地区属于长白山脉龙岗支脉,气候属于温带大陆性季风气候,年平均气温3.9—5.4 ℃,极端最高气温为36.5 ℃,极端最低温度为零下37.6 ℃,无霜期120—125 d,≥10 ℃年活动积温2497.5—2943.0 ℃,最冷月出现在1月,最热月出现在7月,年均降水量为700—850 mm,多集中在6—8月份。该区域主要森林类型为次生林,乔木树种主要有蒙古栎 (Quercus mongolica)、水曲柳(Fraxinus mandschurica)、 黄檗(Phellodendron amurense)、胡桃楸(Juglans mandshurica)、 花曲柳(F. rhynchophylla)、怀槐(Maackia amurensis)、色木槭(Acer mono)、枫桦(Betula costata)和灯台树(Bothrocaryum controversum)等,灌木主要有毛榛(Corylus mandshurica)、接骨木(Sambucus williamsii)、东北山梅花(Philadelphaceae schrenkii)和忍冬属(Lonicera spp.)等,草本主要有掌叶铁线蕨(Adiantum pedatum)、乌拉草(Carex meyeriana)和裂叶蒿(Artemisia tanacetifolia)等。

1.2 样地概况

样地设置于中国科学院清原森林生态实验站内大东沟(N: 40 ° 50.342 ′,E: 121 ° 56.507 ′),海拔635 m,北坡中上部,坡度15 °。主要乔木组成树种为色木槭、蒙古栎、花曲柳、灯台树、千金榆(Carpinus cordata)等,林冠层郁闭,林下灌木稀少,林冠层平均高18.35 m,平均胸径20.36 cm,红松上方林冠层密度为570株/hm2。冠下红松为1985年择伐次生林后(择伐强度未知),当年林下栽植红松3年生幼苗,至2011年调查时红松为29年生,平均高3.78 m,平均胸径3.73 cm,密度1885株/hm2

1.3 样地设置

本研究于4月中旬(生长季前)设置3个不同透光梯度样地(每个样地重复3次),样地间距平均约20 m左右:强度透光样地(H-L)通过伐除红松上方所有乔木和周围灌木,形成直径约10 m的一个直射透光样地(简称:强度透光);中度透光样地(M-L)通过伐除红松上方未达到林冠层的部分亚乔木及周围灌木,形成直径约10 m的半透光样地(简称:中度透光);弱度透光样地(L-L)乔木树种未进行任何人为干扰(样地面积80 m2),尽量保持原有的遮光环境(以下简称:弱度透光,对照)。在每个样地中各随机选取5株红松,由于各样地被选取红松树高和胸径均无显著差异(表 1),可以认为所选红松生长情况无差别,且原有生长环境大体相同。

表1 不同透光条件下红松平均树高与平均胸径 Table.1 The mean Height and DBH of the P. koraiensis under each Light transmit level
透光程度 Light environment level平均高Mean height/m平均胸径Mean DBH/cm
不同小写字母表示差异显著(P<0.05)
强度透光 High-level light environment(H-L)2.83 a3.78 a
中度透光 Mid-level light environment(M-L)2.65 a3.88 a
弱度透光Low-level light environment(L-L) 2.80 a4.06 a

1.4 实验方法

于2011年春季(5月下旬)、夏季(7月下旬)和秋季(9月中旬)在被选取红松树冠层中上部向阳侧随机摘取鲜活针叶(2—3龄针叶),每株红松随机摘取12次,每次针叶取样量为30束以上,将摘取针叶密封并带回实验室低温保存(0—4 ℃)。于摘叶当天清晨(或傍晚)无太阳光直射情况下,在距离地面1 m处用带有鱼眼镜头的数码相机(数码相机型号为Nikon,Coolpix 995;鱼眼镜头变换器为180,型号为Nikon)在水平方向拍摄全天空照片。

在室温(25 ℃)条件下进行叶绿素提取实验。为恢复红松针叶叶绿素活性,实验前将针叶从低温下取出,室温条件下放置半小时。称取剪碎针叶约0.1 g左右(±0.0001 g),放置于10 mL比色管中,用10 mL比例为1 ∶ 1的无水乙醇(96%)和丙酮(99.5%)混合溶液浸泡,将比色管密封并置于阴暗通风处保存,每隔1—2 h将比色管取出,人工摇匀液体后放回原处继续浸泡。待针叶完全浸泡至白色,测定叶绿素含量。用紫外分光光度计于665、649 nm和470 nm波长处[23]测定光合色素含量:叶绿素a(Chl a,mg/g)、叶绿素b(Chl b,mg/g)、类胡萝卜素(Car,mg/g)和总叶绿素(Chl T,mg/g)。应用GLA 2.0软件[24]分析全天空照片并计算各样地不同季节林分透光孔隙度。

1.5 数据处理

对不同透光程度各样地透光孔隙度、不同季节红松针叶光合色素含量、Chl a/b以及Car/Chl T进行方差分析(ANOVA,检验方差齐性和正态性)和多重比较,分析不同透光环境下红松不同季节光合色素含量的差异,用双因素方差分析对差异来源进行分析。数据统计分析均用R统计分析软件(Vienna,Austria),多重比较采用LSD法,以P<0.05为差异显著,P<0.01为差异极显著。

2 结果与分析 2.1 各样地内林分透光孔隙度的变动

春季,林冠层阔叶树叶片尚未完全展开,各样地林分透光孔隙度均最大;夏季,林冠层阔叶树枝叶量增加、且叶片完全展开,除弱度透光中透光孔隙度减小程度不显著外,其它样地林分透光孔隙度均显著减小(P<0.05,图 1);秋季,红松周围阔叶树枝叶量达到最大,林分透光孔隙度均显著减小(P<0.05,图 1)。

图 1 不同透光条件下不同季节林分透光孔隙度 Fig. 1 The canopy openness of each plot in different season

春季,强度透光条件下林分透光孔隙度显著大于中度透光和弱度透光(P<0.05),中度透光的林分透光孔隙度显著大于弱度透光(P<0.05);夏季和秋季,强度透光条件下林分透光孔隙度显著大于中度透光和弱度透光(P<0.05),因样地未再继续进行人为干扰,中度透光林冠层及红松周围灌木枝叶量增长,导致中度透光和弱度透光之间的林分透光孔隙度差异不显著 (图 1)。

2.2 不同透光条件下红松针叶光合色素含量的变化

春季,强度透光条件下红松针叶Chl a、Chl b以及Chl T含量均显著大于中度透光和弱度透光 (P<0.05,图 2),各透光条件下红松针叶Car含量差异不显著 (图 2),中度透光与弱度透光之间红松针叶光合色素含量差异均不显著。

图 2 不同透光条件下红松针叶光合色素含量的季节变动 Fig. 2 Each photosynthetic pigment content of P. koraiensis in each light condition as season fluctuate

夏季,红松针叶光合色素含量与春季相比均显著增加(P<0.05),但不同透光样地间红松针叶光合色素含量差异均不显著。

秋季,除中度透光条件下红松针叶Chl a、Chl b和Chl T含量与夏季相比表现为降低趋势外(Chl b含量显著降低,P<0.05),其它透光条件下红松光合色素含量则表现为升高的趋势,强度透光条件下红松针叶Chl a含量及弱度透光红松针叶Chl b、Chl T含量均显著升高(P<0.05),除弱度透光条件下红松针叶Chl a含量与中度透光差异不显著外,强度透光和弱度透光条件下红松各光合色素含量均显著大于中度透光条件(P<0.05)。

2.3 不同透光条件下红松针叶Chl a/b的变化

春季,强度透光条件下红松针叶Chl a/b显著高于中度透光和弱度透光(P<0.05),中度透光与弱度透光之间红松针叶Chl a/b差异不显著。

夏季,不同透光条件下红松针叶Chl a/b均较春季显著减小(P<0.05),强度透光和中度透光条件下红松针叶Chl a/b显著大于弱度透光(P<0.05),强度透光与中度透光之间红松针叶Chl a/b差异不显著。

秋季,强度透光条件下红松针叶Chl a/b与夏季相比差异不显著,中度透光条件下红松针叶Chl a/b显著增加(P<0.05),弱度透光条件下红松针叶Chl a/b显著降低(P<0.05),其中强度透光和弱度透光红松针叶Chl a/b显著小于中度透光(P<0.05),强度透光红松针叶Chl a/b显著大于弱度透光 (P<0.05,表 2)。

表2 不同透光条件下红松针叶Chl a/b的季节变化 Table.2 Seasonal change of the ratio of Chl a/b of Pinus koraiensis
透光程度 Light environment level春季 Spring夏季 Summer秋季 Autumn
H-L2.429±0.111 bB2.197±0.144 bA2.167±0.065 bA
M-L2.340±0.105 aB2.246±0.094 bA2.303±0.070 cB
L-L2.363±0.094 aC2.073±0.102 aB1.993±0.110 aA

不同小写字母表示同一季节不同透光样地之间差异显著;不同大写字母表示同一透光样地不同季节之间差异显著; H-L:强度透光High-level light environment;M-L:中度透光Mid-level light environment;L-L:弱度透光Low-level light environment

2.4 不同透光条件下红松针叶Car/Chl T

春季,弱度透光条件下红松针叶Car/Chl T显著大于强度透光和中度透光(P<0.05),中度透光红松针叶Car/Chl T显著大于强度透光(P<0.05)。

夏季,不同透光条件下红松针叶Car/Chl T均比春季显著增大(P<0.05),强度透光和弱度透光红松针叶Car/Chl T显著大于中度透光(P<0.05),强度透光与弱度透光之间红松针叶Car/Chl T差异不显著。

秋季,中度透光条件下红松针叶Car/Chl T与夏季相比显著增大(P<0.05),强度透光和弱度透光红松针叶Car/Chl T变动差异不显著,强度透光和中度透光红松针叶Car/Chl T均显著大于弱度透光(P<0.05,表 3)。

表3 不同透光条件下红松针叶Car/Chl T的季节变化 Table.3 Seasonal change of the ratio of Car/Chl of Pinus koraiensis
透光程度 Light environment level春季 Spring夏季 Summer秋季 Autumn
H-L0.148±0.005 aA0.336±0.028 bB0.339±0.009 bB
M-L0.155±0.008 bA0.320±0.025 aB0.337±0.010 bC
L-L0.179±0.008 cA0.331±0.025 bB0.324±0.013 aB
3 讨论与建议 3.1 林分透光孔隙度

光是天然更新中一个最重要的因素,光照条件的改变能够影响林下幼苗的光合作用。在很多情况下,幼苗的更新与森林环境的异质性,特别是光强之间有紧密的联系。

各透光条件下从春季至秋季,红松上方林冠层透光孔隙度均表现为逐渐降低的规律,导致林内光环境的时空异质性[25],而红松针叶光合色素含量表现为逐渐增加的趋势,可以看出两者呈现此消彼长的关系。相反,在其他针叶树种的研究中,针叶的光合能力随透光的增加而增强[25, 26]。这是因为本研究中所测量的林分透光孔隙度是用来表征红松上方林冠层枝叶之间空隙的面积占林冠层总面积的比例[27],而不是表示实际进入林冠层的光量或光质,所以当林分透光孔隙度减小时(即夏季和秋季),光合色素含量并未随之减少。

3.2 红松针叶光合色素含量

阔叶红松林内不同的透光量对林内气候环境造成一定影响[28]。春季,强度透光样地伐除红松上方及周围所有树木后,进入林分的光量较多,红松周围气温及地表温度升高,红松进行光合作用的条件较好,为吸收更多光能,强度透光条件下红松Chl a、Chl b和Chl T含量比中度透光和弱度透光高(图 2)。虽然由于中度透光样地伐除红松周围灌木等临近植物,在一定程度上增加了林分透光孔隙度,但中度透光红松光合色素含量与弱度透光无明显差异。夏季,各透光样地林分透光度逐渐减小,至秋季达到最小,进入林分的光量夏季增加,秋季减少,林内气温、地表温度等均随林分透光程度的增加而增加[28]。夏季和秋季不同透光条件下红松光合色素含量无明显差异(图 2),说明在此期间林分间透光度变化的差异对红松光合色素含量影响不大,水分和温度等因素很可能成为此期间光合色素含量的限制因素,本研究对此尚未涉及。

3.3 红松光合色素变动策略

不同光合色素在光合作用的光能捕获过程中所执行的功能不同[3, 29]。植物可通过调整自身各光合色素含量来调控光合作用而适应光环境的变化[30, 31]

春季,相对于中度透光和弱度透光条件下Chl a/Chl b比值,红松在强度透光条件下Chl a含量比Chl b增加较多(表 2),说明随林分透光增大,红松能够通过增加相对于Chl b含量更多的Chl a来吸收光能。而林分透光程度改善不足时,如中度透光,红松对于光环境的变动虽有一定响应(表 3),但响应程度较弱,这与前述春季红松光合色素含量结论相一致。

夏季,进入林分的光量增加,不同透光条件下红松Chl a/Chl b比值均减小(表 2),说明红松光能捕获(部分Chl a)和光能转换(Chl b和部分Chl a)两个光合过程均增强。在Chl T增加的情况下,为避免林内高光强(光斑)对光合单位的破坏以及转化部分未能吸收的光能,红松通过增加Car含量从而增强热能耗散[5](表 3)。

秋季,林分透光程度减弱,红松在透光得到改善的林分内光能捕获要强于光能转化,而林分透光条件未得到改善的红松光能捕获与光能转化无明显差异(表 2)。在秋季,3个透光条件下光照均不足,因此,在各透光条件下红松保持相对较高的Car/Chl T比值,本研究推测Car可能由原来强透光条件下热能耗散功能转变为弱透光条件下光能捕获功能,从而提高红松光能捕获能力,促进光合作用。

3.4 建议

综上所述,红松在更新过程中需要一定光照才能更好更新,并且生长季前透光对红松生长影响较大[29]。因此,为促进天然次生林下红松更新,在生长季前期应对红松所在林分进行适当抚育,间伐强度在30%以上,这样有助于提高红松春季光能捕获能力,建议在今后人工辅助红松更新过程中充分考虑林分透光度,以促进红松更好地更新[32]

参考文献
[1] Li X P, Bjrkman O, Shih C, Grossman A R, Rosenquist M, Jansson S, Niyogi K K. A pigment-binding protein essential for regulation of photosynthetic light havesting. Nature, 2000, 403(6768): 391-395.
[2] Richardson A D, Duigan S P, Berlyn G P. An evaluation of noninvasive methods to estimate foliar Chlorophyll content. New Phytologist, 2002, 153(1): 185-194.
[3] Chen M, Schliep M, Willows R D, Cai Z L, Neilan B A, Scheer H. A red-shifted chlorophyll. Science, 2010, 329(5997): 1318-1319.
[4] Sun X L, Xu Y F, Ma L Y, Zhou H. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment. Chinese Journal of Plant Ecology, 2010, 34(8): 989-999.
[5] Niinemets V. Photosynthesis and resource distribution through plant canopies. Plant, Cell and Environment, 2007, 30(9): 1052-1071.
[6] Johnson G N, Scholes J D, Horton P, Young A J. Relationships between carotenoid composition and growth habit in British plant species. Plant, Cell & Environment, 1993, 16(6): 681-686.
[7] Kenzo T, Ichie T, Watanabe Y, Yoneda R, Ninomiya I, Koike T. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest. Tree Physiology, 2006, 26(7): 865-873.
[8] Stylinski C D, Gamon J A, Oechel W C. Seasonal patterns of reflectance indices, Carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia, 2002, 131(3): 366-374.
[9] Hu Y B, Hui G Y, Qi J Z, An H J, Hao G M. Analysis of the spatial structure of natural Korean Pine broad leaved forest. Forest Research, 2003, 16(5): 523-530.
[10] Duan W B, Wang L X, Chen L X, Du S, Wei Q S, Zhao J H. Effects of forest gap size and light intensity on herbaceous plants in Pinus koraiensis-dominated broadleaved mixed forest. Chinese Journal of Applied Ecology, 2013, 24(3): 614-620.
[11] Yin X Q, Li J X, Dong W H. Microelement contents of litter, soil fauna and soil in Pinus koraiensis and broad-leaved mixed forest. Chinese Journal of Applied Ecology, 2007, 18(2): 277-282.
[12] Li M, Duan W B, Chen L X, Wei L, Feng J, Wang S Q. Geostatistical analysis on spatiotemporal distribution pattern of soil water content of forest gap in Pinus koraiensis dominated broadleaved mixed forest. Acta Ecologica Sinica, 2012, 32(5): 1396-1402.
[13] Yin X Q, Jiang Y F, Tao Y, An J C, Xin W D. Ecogeographical distribution of soil fauna in Pinus koraiensis Mixed Broad-leaved forest of Changbai Mountains. Scientia Geographica Sinica, 2011, 31(8): 935-940.
[14] Liu S C, Duan W B. Spatial heterogeneity of soil nutrition in the mixed broad-leaved Korean Pine forest gap. Journal of Soil and Water Conservation, 2011, 25(3): 142-146.
[15] Du S, Duan W B, Wang L X, Chen L X, Wei Q S, Li M, Wang L D. Microsite characteristics of pit and mound and their effects on the vegetation regeneration in Pinus koraiensis-dominated broadleaved mixed forest. Chinese Journal of Applied Ecology, 2013, 24(3): 633-638.
[16] Zhang G C. Regeneration and Growth of Pinus koraiensis in Broadleaved Korean Pine Forest of Changbai Mountain [D]. Beijing: Beijing Forestry University, 2011: 23-54.
[17] Liu C Z, Li J Q, Jin K G. Correlativity of the growth of young Korean pine and the condition in the forest. Journal of Northeast Forestry University, 1991, 19(3): 103-108.
[18] Sun Y R, Zhu J J, Yu L Z, Yan Q L, Wang K. Photosynthetic characteristics of Pinus koraiensis seedlings under different light regimes. Chinese Journal of Ecology, 2009, 28(5): 850-857.
[19] Zhang Q, Fan S H, Sheng H L. Research and development on the growth environment of the young tree of Pinus koraiensis in Pinus koraiensis-broadleaved mixed forest. Forest Research, 2003, 16(2): 216-224.
[20] Fan Z H, Zheng Z Y, Cui L J, Fa Y L, Shi Q, Wang Q C. Optimal growth condition for young tree of Pinus koraiensis in secondary forest. East China Forest Management, 2002, 16(2): 15-18.
[21] Huo H, Wang C K. Effects of canopy position and leaf age on photosynthesis and transpiration of Pinus koraiensis. Chinese Journal of Applied Ecology, 2007, 18(6): 1181-1186.
[22] Wang Z, Fan X H. Effects of light intensity heterogeneity in gaps of broadleaved Korean pine forest in Changbai Mountains on Pinus koraiensis seedlings growth. Chinese Journal of Applied Ecology, 2009, 20(5): 1044-1050.
[23] Song G L, Hou W H, Wang Q H, Wang J L, Jin X C. Effect of low temperature on eutrophicated waterbody restoration by Spirodela polyrhiza. Bioresource Technology, 2006, 97(15): 1865-1869.
[24] Canham C D. GLI/C: Software for calculation of light transmission through forest canopies using color fisheye photography. Millbrook, NY: Institute of Ecosystem Studies, 1995.
[25] Valladares F, Niinemets V. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 2008, 39(1): 237-257.
[26] Lewandowska M, Jarvis P G. Changes in chlorophyll and carotenoid content, specific leaf area and dry weight fraction in Sitka spruce, in response to shading and season. New Phytologist, 1977, 79(2): 247-256.
[27] Zhu J J, Kang H Z, Hu L L. Estimation on optical porosity or canopy closure for a forest stand with hemispherical images. Chinese Journal of Ecology, 2005, 24(10): 1234-1240.
[28] Duan W B, Wang J, Li Y. Microclimatic characteristics of different size gaps in Pinus koraiensis-dominated broadleaved mixed forests. Chinese Journal of Applied Ecology, 2008, 19(12): 2561-2566.
[29] Li J Q, Chai Y X, Zhu C Q, Wang Y J. Seasonal pattern of photosynthesis and nutrient content of Korean pine seedlings under different light conditions. Chinese Journal of Ecology, 1991, 10(5): 1-5.
[30] Vogg G, Heim R, Hansen J, Schfer C, Beck E. Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function. Planta, 1998, 204(2): 193-200.
[31] Polívka T, Pascher T, Hiller R G. Energy transfer in the peridinin-chlorophyll protein complex reconstituted with mixed chlorophyll sites. Biophysical Journal, 2008, 94(8): 3198-3207.
[32] Miao J, Yu L Z, Sun Y R. Effects of secondary forest canopy openness on the growth of Pinus koraiensis saplings in eastern Liaoning Province of Northeast China. Chinese Journal of Ecology, 2012, 31(9): 2191-2196.
[4] 孙小玲, 许岳飞, 马鲁沂, 周禾. 植株叶片的光合色素构成对遮阴的响应. 植物生态学报, 2010, 34(8): 989-999.
[9] 胡艳波, 惠刚盈, 戚继忠, 安慧君, 郝广明. 吉林蛟河天然红松阔叶林的空间结构分析. 林业科学研究, 2003, 16(5): 523-530.
[10] 段文标, 王丽霞, 陈立新, 杜珊, 魏全帅, 赵健慧. 红松阔叶混交林林隙大小及光照对草本植物的影响. 应用生态学报, 2013, 24(3): 614-620.
[11] 殷秀琴, 李金霞, 董炜华. 红松阔叶混交林凋落叶、土壤动物、土壤的微量元素含量. 应用生态学报, 2007, 18(2): 277-282.
[12] 李猛, 段文标, 陈立新, 魏琳, 冯静, 王誓强. 红松阔叶混交林林隙土壤水分分布格局的地统计学分析. 生态学报, 2012, 32(5): 1396-1402.
[13] 殷秀琴, 蒋云峰, 陶岩, 安静超, 辛未冬. 长白山红松阔叶混交林土壤动物生态分布. 地理科学, 2011, 31(8): 935-940.
[14] 刘少冲, 段文标. 红松阔叶混交林林隙土壤养分的空间异质性. 水土保持学报, 2011, 25(3): 142-146.
[15] 杜珊, 段文标, 王丽霞, 陈立新, 魏全帅, 李猛, 王利冬. 红松阔叶混交林中坑和丘的微立地特征及其对植被更新的影响. 应用生态学报, 2013, 24(3): 633-638.
[16] 张国春. 长白山阔叶红松林红松更新与生长规律 [D]. 北京: 北京林业大学, 2011: 23-54.
[17] 刘传照, 李俊清, 金奎刚. 林下光照条件与红松幼树生长的相关性研究. 东北林业大学学报, 1991, 19(3): 103-108.
[18] 孙一荣, 朱教君, 于立忠, 闫巧玲, 王凯. 不同光环境对红松幼苗光合生理特征的影响. 生态学杂志, 2009, 28(5): 850-857.
[19] 张群, 范少辉, 沈海龙. 红松混交林中红松幼树生长环境的研究进展及展望. 林业科学研究, 2003, 16(2): 216-224.
[20] 范竹华, 郑泽玉, 崔乐玖, 法永乐, 石强, 王青春. 次生林下红松幼树的最佳生长条件. 华东森林经理, 2002, 16(2): 15-18.
[21] 霍宏, 王传宽. 冠层部位和叶龄对红松光合蒸腾特性的影响. 应用生态学报, 2007, 18(6): 1181-1186.
[22] 王卓, 范秀华. 阔叶红松林林冠空隙光强异质性对红松幼树生长的影响. 应用生态学报, 2009, 20(5): 1044-1050.
[27] 朱教君, 康宏樟, 胡里乐. 应用全天空照片估计林分透光孔隙度(郁闭度). 生态学杂志, 2005, 24(10): 1234-1240.
[28] 段文标, 王晶, 李岩. 红松阔叶混交林不同大小林隙小气候特征. 应用生态学报, 2008, 19(12): 2561-2566.
[29] 李俊清, 柴一新, 朱春全, 王业遽. 不同光强下红松幼树光合作用和营养物质含量的季节模式. 生态学杂志, 1991, 10(5): 1-5.
[32] 苗杰, 于立忠, 孙一荣. 辽东山区次生林冠下红松生长与顶端透光环境的关系. 生态学杂志, 2012, 31(9): 2191-2196.