生态学报  2014, Vol. 34 Issue (13): 3519-3528

文章信息

孙德智, 杨恒山, 彭靖, 范富, 马玉露, 韩晓日
SUN Dezhi, YANG Hengshan, PENG Jing, FAN Fu, MA Yulu, HAN Xiaori
外源SA和NO对NaCl胁迫下番茄幼苗生长、光合及离子分布的影响
Effects of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ion distribution in tomato seedlings under NaCl stress
生态学报, 2014, 34(13): 3519-3528
Acta Ecologica Sinica, 2014, 34(13): 3519-3528
http://dx.doi.org/10.5846/stxb201309162290

文章历史

收稿日期:2013-9-16
修订日期:2014-4-21
外源SA和NO对NaCl胁迫下番茄幼苗生长、光合及离子分布的影响
孙德智1, 2 , 杨恒山1, 彭靖2, 范富1, 马玉露1, 韩晓日2    
1. 内蒙古民族大学农学院, 通辽 028000;
2. 沈阳农业大学土地与环境学院, 沈阳 110161
摘要:以番茄(Lycopersicon esculentum Mill.)品种‘秦丰保冠’为试材,采用营养液培养法,研究单独和复配施用外源水杨酸(SA)、一氧化氮(NO)供体硝普钠(SNP)对100mmol/L NaCl胁迫下番茄幼苗生长、光合及离子分布的影响。结果表明:(1)单独和复配外施SA、SNP均能有效抑制NaCl胁迫下番茄幼苗叶片光合色素(Chla、Chlb、Chla+b和Car)含量、Chla/b值、净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、瞬时水分利用效率(WUEt)、表观光能利用效率(LUEapp)和表观CO2利用效率(CUEapp)的下降及Car/Chla+b值和胞间CO2浓度(Ci)的升高,并以SA 和SNP复配处理效果最明显。(2)NaCl胁迫下,外源SA、SNP单独和复配处理的番茄幼苗各器官(叶、茎和根)中Cl-、Na+含量和Na+/K+、Na+/Ca2+、Na+/Mg2+值显著降低,而K+、Ca2+和Mg2+的含量却不同程度提高,其中以SA 和SNP复配处理效果最好。(3)单独和复配外施SA、SNP均能有效减轻NaCl胁迫对番茄幼苗生长的抑制作用,并促进各器官生物量的积累和壮苗的形成,且以SA 和SNP复配处理效果更佳。研究表明,复配外施SA和SNP在诱导番茄幼苗提高抗(耐)盐能力方面具有协同增效作用。
关键词水杨酸    一氧化氮    盐胁迫    光合作用    离子分布    协同增效作用    
Effects of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ion distribution in tomato seedlings under NaCl stress
SUN Dezhi1, 2 , YANG Hengshan1, PENG Jing2, FAN Fu1, MA Yulu1, HAN Xiaori2    
1. College of Agronomy, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China;
2. College of Land and Environmental Sciences, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
Abstract:Salicylic acid (SA) and nitric oxide (NO) are two biologically active signaling molecules in plants. Both of these molecules play important roles in various aspects of plant growth and development, including seed germination, root growth, leaf elongation, stomatal movement, and respiration. As signaling molecules, SA and NO also participate in signal transduction in the responses to biotic and abiotic stresses. Previous studies have shown that the signaling pathways of SA and NO do not exist in isolation, but "cross-talk" with each other, and they show synergistic interactions in many physiological and resistance reactions. Scientists inspired by the "cross-talk" and synergistic interactions have produced research on the synergistic induction of signaling pathways to improve plant resistance using exogenous SA and sodium nitroprusside (SNP), a NO donor. In the last decade, much research has been conducted on use of exogenous SA or SNP to improve the salt resistance of plants. However, most of these studies have focused on the ability of either SA or NO to induce resistance, and on the physiological and biochemical mechanisms by which these compounds induce resistance. Few studies have focused on synergistic induction of defense pathways using both SA and NO to improve plant resistance to salt stress. In our experiments, we evaluated the synergistic effects of SA and NO on the resistance of tomato (Lycopersicon esculentum Mill. cultivar "Qin Feng Bao Guan") seedlings to salt stress. We applied SA and SNP alone or in combination to tomato seedlings, and measured the growth, photosynthesis, and ion distribution in the tomato seedlings under salt stress (100 mmol/L NaCl) in a nutrient solution culture system. The main findings of our research are as follows: (1) Single or combined applications of SA and SNP reduced the decreases in the levels of photosynthetic pigments (chlorophyll a, chlorophyll b, chlorophyll a+b and Carotenoids), the ratio of chlorophyll a and chlorophyll b, net photosynthetic rate, transpiration rate, stomatal conductance, instantaneous water use efficiency, apparent light energy use efficiency, and apparent CO2 use efficiency in tomato seedlings under salt stress. These treatments also reduced the increase in the intercellular CO2 concentration and the value of Carotenoids/chlorophyll a+b in leaves of tomato seedlings under NaCl stress. The strongest effect was observed after applying a combination of SA and SNP. (2) Under NaCl stress, the Cl- and Na+ contents and the Na+/K+, Na+/Ca2+, Na+/Mg2+ ratios in leaf, stem, and root tissues of tomato seedlings were lower in plants treated with SA, SNP, or SA + SNP than in untreated salt-stressed tomato seedlings. The K+, Ca2+,and Mg2+ contents of plant tissues were improved to different extents by SA, SNP, or SA + SNP applications, but the latter treatment had the strongest effect. (3) Single or combined applications of exogenous SA and SNP effectively reduced the negative effects of NaCl stress on tomato seedling growth and development, and promoted the accumulation of leaf, stem, and root biomass. The combined application of SA and SNP had the strongest effect. The results of our research show that a combined application of exogenous SA and SNP has a synergistic effect on improving the salt tolerance of tomato seedlings.
Key words: salicylic acid    nitric oxide    salt stress    photosynthesis    ion distribution    synergistic interaction    

土地盐渍化是影响生态环境和农业生产的全球性问题。据统计,全球盐渍化土地面积大约有9.55×108 hm2,其中我国约有3.6×107 hm2,主要集中分布在西北、华北、东北和沿海地区[1, 2]。随着我国灌溉、设施农业的进一步发展,因不当农事措施产生的次生盐渍化土地面积还将持续扩大。因此通过化控手段调节作物抗(耐)盐生理,培育抗(耐)盐作物,开发利用盐渍土地必将成为未来农业科学研究的重大课题。

水杨酸(salicylic acid,SA)和一氧化氮(NO)是普遍存在于植物体内的两种生物活性信号分子,二者均能参与植物对生物和非生物胁迫应答的信号转导过程。研究证实,SA和NO的信号途径并非孤立存在,它们之间相互“cross-talk”,在很多生理和抗逆反应中都能表现出协同(交互)作用[3, 4, 5]。受此启发,利用外源SA和NO供体硝普钠(sodium nitropprusside,SNP)协同诱导植物提高抗性的研究正愈来愈受关注。Kazemi等[6]研究发现,单独和复配外施SA、SNP均能有效增强油菜幼苗抵抗镍胁迫的能力,并且SA和SNP复配处理的诱抗效果更具优势。Simaei等[7, 8]研究认为,与SA或SNP单独作用相比,SA和SNP复配处理在提高大豆幼苗的抗(耐)盐能力方面具有明显的协同效应。莫亿伟等[9]以SA、SNP单独和复配喷施受低温胁迫的柱花草,结果发现SA和SNP复配处理的抗寒效果更佳。迄今,有关SA和SNP协同诱抗效应的研究多集中在对植物的抗氧化系统和生长发育等方面。关于SA和SNP协同诱导植物抗(耐)盐的光合生理及离子分布规律研究尚未见报道。为此,本试验以番茄为材料,研究单独和复配外施SA、SNP对NaCl胁迫下番茄幼苗生长、叶片光合作用参数和体内各器官离子分布特点的影响,以期探讨SA、NO调控番茄抵抗NaCl胁迫的生理生化机理,为利用化学诱抗剂缓解盐分障碍提供理论和技术依据,为拓宽盐渍土地开发利用途径提供新思路。

1 材料与方法 1.1 材料培养与处理

将番茄品种‘秦丰保冠’的种子(西安市秦丰蔬菜研究所提供)浸种催芽并放在恒温培养箱中,出芽后分别播于直径10cm、高10cm的塑料营养钵中,以蛭石作基质。真叶展开后每2d浇1/8 Hoagland营养液1次,每株浇50mL,当幼苗具有4片真叶时,挑选生长一致的植株定植于水培槽中,定植前用清水洗净根部的育苗基质。水培槽大小为60cm×40cm×20cm,每个水培槽加1/4Hoagland营养液30L,定植6株,株行距均为15cm。定植后恢复生长5d,开始进行试验处理。每个水培槽24h进行充气泵充气,试材培养期间每2d更换1次营养液。

试验共设置5个处理(表 1),处理液均用1/4Hoagland营养液配制。即:(1)对照,1/4Hoagland营养液(T0);(2)盐胁迫处理,含100mmol/L NaCl的1/4Hoagland营养液(T1);(3)SA处理,在盐胁迫溶液中加入0.2mmol/L SA(T2);(4)SNP 处理,在盐胁迫溶液中加入0.1 mmol/L SNP(T3);(5)复配处理,在盐胁迫溶液中同时加入0.2mmol/L SA和0.1 mmol/L SNP(T4)。在进行T4处理的同时,T0—T3处理补充加入适量体积的蒸馏水,以保处理体积一致。处理期间每天更换处理营养液,每处理3次重复(3个水培槽),水培槽随机排列,第8天结束处理时进行各项指标测定。

表 1 试验处理和编号 Table 1 Experimental treatments and their codes
处理编号
Code of treatment
处理液浓度Treating solution concentration 诱抗剂浓度Inducer concentration
HoaglandNaCl/(mmol/L) SA/(mmol/L)SNP/(mmol/L)
T01/4000
T11/410000
T21/41000.20
T31/410000.1
T41/41000.20.1
1.2 测定指标与方法 1.2.1 光合气体交换参数

采用LI-6400XT便携式光合测定系统(Li-Cor Inc.,Lincoln,NE,USA)于处理结束当天9:00—11:00活体测定净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci)、大气CO2浓度(Ca)和光合有效辐射(PAR)。仪器使用开放式气路、内置LED红/蓝光源(6400-02B),光强设置为800μmol · m-2 · s-1,叶室温度为(25±2)℃,测定时每处理重复5次。计算以下指标:气孔限制值(Ls)=1-Ci/Ca[10];潜在水分利用效率(WUEg)=Pn/Gs[11];瞬时水分利用效率(WUEt)=Pn/Tr[12];表观光能利用效率(LUEapp)=Pn/PAR[13];表观CO2利用效率(CUEapp)=Pn/Ci[14]

1.2.2 光合色素含量

以80%丙酮研磨提取色素后,用紫外-可见分光光度计(UV-1750,Shimadzu,Japan)在25℃下分别测定663、645、470nm波长下的光密度(OD值),然后按Lichtenthaler和Wellburn[15]方法分别计算叶绿素a(Chla)、叶绿素b(Chlb)、类胡萝卜素(Car)、叶绿素a+b(Chla+b)、叶绿素a/b(Chla/b)和类胡萝卜素/叶绿素a+b(Car/Chla+b)。

1.2.3 生长参数

用直尺测量株高(茎基部到生长点)、游标卡尺测量茎粗(子叶下部2/3处),然后将植株各器官(叶、茎、根)分开,分别洗净(自来水冲洗3次,蒸馏水冲洗2次,用吸水纸吸干)称鲜重后,于105℃杀青15min,75℃烘干至恒重。按‘(茎粗/株高)×全株干重×100’计算壮苗指数。

1.2.4 离子含量

将烘干的样品粉碎研磨后,过40目筛,精确称量0.5000g,用H2SO4 ∶ H2O2=3 mL ∶ 1 mL消煮,并定容至100mL,经适量稀释后,采用ICP-AES(Vista-MPX,Varian Corp.,USA)测定Na+、K+、Ca2+和Mg2+含量。Cl-含量测定采用AgNO3滴定法[16],略作改动,以含4.2% K2CrO4和0.7% K2Cr2O7的中性指示剂取代5%K2CrO4

1.3 数据统计分析

用IBM SPSS 19.0统计软件(IBM SPSS Inc.,Chicago,IL,USA)对数据进行单因素方差分析(one-way ANOVA),采用Duncan′s新复极差法进行多重比较(P<0.05)。用ORIGIN PRO 8.5 软件(OriginLab Corp.,Northampton,MA,USA)绘图。数据结果采用平均值±标准差(Mean±SD)的形式表示。

2 结果与分析 2.1 SA和SNP对NaCl胁迫下番茄幼苗生长的影响

表 2可知,与对照(T0)相比,100mmol/L NaCl胁迫处理(T1)显著降低了番茄幼苗的各生长参数(株高、茎粗、各器官生物量和壮苗指数),而SA、SNP单独(T2、T3)和复配(T4)处理均能不同程度促进NaCl胁迫下幼苗各生长参数的提高,其中以T4处理效果最好,其株高、茎粗、叶生物量、茎生物量、根生物量和壮苗指数分别比T1显著增加27.43%、34.92%、77.22%、48.33%、28.26%、和75.28%,且均与T0处理差异不显著。说明SA、SNP单独和复配处理均可以显著减轻NaCl胁迫对番茄幼苗生长的抑制,促进壮苗的形成,且SA和SNP复配处理效果更佳。

表 2 SA和SNP对NaCl胁迫下番茄幼苗生长的影响 Table 2 Effects of SA and SNP on the growth of tomato seedlings under NaCl stress
处理
Treatment
株高
Plant height/cm
茎粗
Stem diameter/cm
生物量 Biomass/(g/株) 壮苗指数
Sound seedling index
叶Leaf茎Stem根Root
同列不同字母表示处理间差异显著
T033.40±3.24a0.87±0.06a1.52±0.05a0.93±0.02a0.61±0.07a7.99±0.45a
T124.82±1.31b0.63±0.02b0.79±0.10b0.60±0.08b0.46±0.03b4.68±0.43b
T229.54±0.54ac0.75±0.03c1.10±0.12c0.77±0.10cd0.52±0.04abc6.03±0.65c
T329.16±1.46c0.77±0.06ac1.04±0.11c0.74±0.08d0.51±0.04bc6.02±0.79c
T431.63±2.34ac0.85±0.08ac1.40±0.20a0.89±0.12ac0.59±0.04ac7.77±1.11a
2.2 SA和SNP对NaCl胁迫下番茄幼苗光合色素含量及比例的影响

番茄幼苗叶片光合色素(Chla、Chlb、Chla+b和Car)含量在各处理条件下的变化趋势一致(图 1),即100mmol/L NaCl胁迫处理(T1)下的幼苗叶片各 光合色素含量均比对照(T0)显著降低,而SA、SNP

图 1 SA和SNP对NaCl胁迫下番茄幼苗光合色素含量及比例的影响 Fig. 1 Effects of SA and SNP on photosynthetic pigment content and ratio of tomato seedlings under NaCl stress 不同字母表示处理间差异显著

单独(T2、T3)和复配处理(T4)均能显著提高NaCl胁迫下幼苗叶片的各光合色素含量,其中以T4处理效果最好,其Chla、Chlb、Chla+b和Car含量分别比T1显著提高61.95%、37.37%、53.57%和32.83%,且Chla、Chlb和Chla+b含量与T0处理差异不显著。同时,叶片中各光合色素含量的变化也引起了光合色素比例的相应改变(图 1)。T1处理的幼苗叶片Chla/b值比T0显著降低、Car/Chla+b值却比T0显著提高。与T1相比,T2—T4处理的幼苗叶片Chla/b值均有不同程度提高,而Car/Chla+b值却均显著降低,并以T4处理效果最明显,其Chla/b值比T1提高了17.61%,而Car/Chla+b值却比T1显著降低了13.78%,且均与T0处理差异不显著。以上结果说明SA、SNP单独和复配处理均能有效缓解NaCl胁迫对番茄幼苗叶片类囊体膜结构的破坏,使叶片光合色素含量提高、光合活性增强,并以SA和SNP复配处理效果更好。

2.3 SA和SNP对NaCl胁迫下番茄幼苗叶片光合气体交换参数的影响

图 2所示,与对照(T0)相比,100mmol/L NaCl胁迫处理(T1)使番茄幼苗叶片PnTrGsLs显著降低,Ci显著提高。与T1相比,SA、SNP单独(T2、T3)和复配(T4)处理均能不同程度提高NaCl胁迫下番茄幼苗叶片PnTrGsLs,并使Ci明显降低,其中以T4处理效果最明显,其PnTrGsLs分别比T1显著提高63.97%、184.09%、137.10%和73.55%,而Ci却比T1显著降低23.51%。以上结果说明SA、SNP单独和复配处理均能有效缓解NaCl胁迫对番茄幼苗叶肉细胞的生理伤害,使叶片气体交换状况得到改善、光合性能得以提高,并以SA和SNP复配处理效果更好。

图 2 SA和SNP对NaCl胁迫下番茄幼苗叶片光合气体交换和资源利用效率的影响 Fig. 2 Effects of SA and SNP on photosynthetic gas exchange and resource use efficiency of tomato seedlings under NaCl stress 不同字母表示处理间差异显著
2.4 SA和SNP对NaCl胁迫下番茄幼苗叶片资源利用效率的影响

番茄幼苗叶片WUEg在100mmol/L NaCl胁迫处理(T1)下比对照(T0)显著升高(图 2)。盐胁迫的同时,单独施用SA或SNP幼苗叶片WUEg的变化并不显著。SA和SNP复配处理下的WUEg比T1显著降低23.07%,但仍较T0显著提高27.11%。与WUEg在各处理条件下变化趋势不同的是T1处理下的叶片WUEt、CUEapp和LUEapp均显著降低,而SA、SNP单独(T2、T3)和复配(T4)处理均能显著促进NaCl胁迫下幼苗叶片WUEt、CUEapp和LUEapp的提高。其中,CUEapp和LUEapp均以T4处理效果最好,二者分别较T1显著提高215.29%和143.75%;WUEt则在T2、T3和T4处理下分别比T1显著提高14.95%、16.64%和13.09%,比T0显著提高9.85%、11.47%和8.07%,且T2、T3和T4处理间差异并不显著。综合分析以上结果可以看出,SA和SNP复配处理更利于提高NaCl胁迫下番茄幼苗叶片对H2O、CO2和光能资源的综合利用效率,从而进一步促进光合作用、提高抗性。

2.5 SA和SNP对NaCl胁迫下番茄幼苗体内Cl-、Na+、K+、Ca2+和Mg2+含量的影响

表 3可知,100mmol/L NaCl胁迫处理(T1)的番茄幼苗叶、茎和根内Cl-、Na+含量均比对照(T0)显著增加,且增幅大小与含量高低均为根>茎>叶,这反映了根系对Cl-、Na+的截留作用。与T1相比,SA、SNP单独(T2、T3)和复配处理(T4)均可显著降低番茄幼苗叶、茎和根中的Cl-、Na+含量,其中以T4处理效果最好,其叶、茎和根中的Cl-含量分别比T1显著下降了44.66%、41.42%和42.80%,同时Na+含量也分别比T1显著下降了58.91%、56.31%和40.30%。说明SA、SNP单独和复配处理均能通过减少根系对Cl-、Na+的吸收和向上运输来降低幼苗叶中Cl-、Na+的含量,以削弱离子毒害作用,且SA和SNP复配处理时效果更佳。

表 3 SA和SNP对NaCl胁迫下番茄幼苗叶、茎和根中Cl-、Na+、K+、Ca2+和Mg2+含量的影响 Table 3 Effects of SA and SNP on Cl-,Na+,K+,Ca2+ and Mg2+ contentrations in leaves,roots and stems of tomato seedlings under NaCl stress
器官
Organ
处理
Treatment
离子含量 Contents of ion /(mmol/g干重)
Cl-Na+K+Ca2+Mg2+
叶LeafT00.279±0.023a0.294±0.017a1.194±0.039a0.612±0.046a0.161±0.015a
T10.674±0.040b1.302±0.038b0.476±0.017b0.315±0.023b0.119±0.011b
T20.504±0.063c0.738±0.023c0.728±0.045c0.441±0.047cd0.139±0.014ab
T30.553±0.047c0.825±0.036d0.723±0.058c0.426±0.013c0.141±0.013ab
T40.373±0.021d0.535±0.054e0.918±0.053d0.514±0.055d0.154±0.016a
茎StemT00.388±0.048a0.288±0.027a1.374±0.077a0.592±0.069a0.151±0.010a
T11.142±0.108b1.687±0.157b0.575±0.036b0.357±0.022b0.125±0.011b
T20.902±0.129c0.995±0.083c0.905±0.039c0.425±0.048bc0.132±0.011ab
T30.900±0.047c1.039±0.093c0.920±0.050c0.430±0.041bc0.135±0.009ab
T40.669±0.035d0.737±0.046d0.955±0.043c0.482±0.044c0.143±0.012ab
根RootT00.370±0.042a0.282±0.017a0.612±0.035a0.212±0.013a0.172±0.014a
T11.166±0.112b1.958±0.204b0.256±0.043b0.103±0.009b0.137±0.011b
T20.942±0.051c1.306±0.132c0.460±0.028cd0.121±0.006c0.152±0.015ab
T30.951±0.035c1.383±0.103c0.438±0.049c0.124±0.008c0.156±0.010ab
T40.667±0.100d1.169±0.103d0.481±0.060d0.165±0.010d0.168±0.010a

另外,同为幼苗各器官中的无机渗透调节物质K+、Ca2+和Mg2+的含量在T1处理下均比对照(T0)显著降低(表 3),其降幅大小K+和Mg2+均为叶>根>茎、Ca2+则为根>叶>茎;含量高低K+和Ca2+均为茎>叶>根、而Mg2+却为根>茎>叶。3种离子的这种分布方式可能与其在植物体内的移动性强弱密切相关。SA、SNP单独(T2、T3)和复配处理(T4)均能不同程度促进NaCl胁迫下番茄幼苗叶、茎和根中K+、Ca2+和Mg2+含量的提高,其中以T4处理效果最好,其叶、茎和根中的K+含量分别比T1显著提高了92.86%、66.09%和87.89%;Ca2+含量分别比T1显著提高了63.17%、35.01%和60.19%;Mg2+含量也分别比T1显著提高了29.41%、14.40%和22.63%。以上结果说明SA和SNP复配处理更利于改善番茄幼苗因NaCl胁迫产生的养分胁迫和渗透胁迫。

2.6 SA和SNP对NaCl胁迫下番茄幼苗体内Na+/K+、Na+/Ca2+和Na+/Mg2+值的影响

番茄幼苗叶、茎和根中Na+/K+、Na+/Ca2+和Na+/Mg2+值在100mmol/L NaCl胁迫处理(T1)下均比对照(T0)显著增加(表 4),且增幅大小与比值高低均为根>茎>叶,这反映了各器官的离子失衡程度。与T1相比,SA、SNP单独(T2、T3)和复配处理(T4)均能显著降低NaCl胁迫下番茄幼苗各器官中的Na+/K+、Na+/Ca2+和Na+/Mg2+值,其中以T4处理效果最明显,其叶、茎和根中的Na+/K+值分别比T1显著下降了78.61%、73.70%和68.27%;Na+/Ca2+值分别比T1显著下降了74.69%、67.55%和62.82%;Na+/Mg2+值也分别比T1显著下降了68.47%、61.95%和51.57%。说明SA、SNP单独和复配处理均能通过降低盐害离子的相对含量来改善番茄幼苗各器官、尤其是叶片中的离子相对平衡,且SA和SNP复配处理时效果更好。

表 4 SA和SNP对NaCl胁迫下番茄幼苗叶、茎和根中Na+/K+、Na+/Ca2+和Na+/Mg2+值的影响 Table 4 Effects of SA and SNP on the value of Na+/K+,Na+/Ca2+ andNa+/Mg2+ in leaves,roots and stems of tomato seedlings under NaCl stress
器官
Organ
处理
Treatment
Na+/K+Na+/Ca2+Na+/Mg2+
叶LeafT00.247±0.021a0.483±0.061a1.835±0.233a
T12.740±0.162b4.157±0.420b11.017±0.764b
T21.016±0.085c1.682±0.162c5.346±0.383c
T31.145±0.058c1.938±0.030c5.895±0.747c
T40.586±0.093d1.052±0.178d3.474±0.091d
茎StemT00.209±0.011a0.488±0.041a1.917±0.282a
T12.932±0.096b4.746±0.577b13.618±1.871b
T21.098±0.065c2.371±0.416c7.605±1.101c
T31.129±0.078c2.436±0.354c7.723±0.592c
T40.771±0.019d1.540±0.189d5.181±0.752d
根RootT00.461±0.017a1.333±0.129a1.648±0.204a
T17.697±0.520b19.150±2.996b14.407±2.040b
T22.842±0.234cd10.750±0.562c8.706±1.733c
T33.166±0.145c11.140±0.154c8.893±1.201c
T42.442±0.241d7.120±0.929d6.977±0.918d
3 讨论

许多研究表明,施用外源SA[17, 18, 19, 20, 21]或SNP[22, 23, 24]均能有效缓解盐胁迫对植物生长的抑制作用。本试验在证实上述研究结果的同时,发现外源SA和SNP复配处理在提高NaCl胁迫下番茄幼苗各器官(叶、茎和根)生物量积累和促进壮苗形成等方面具有显著的协同增效作用。这与Simaei等[7, 8]对大豆的研究结果相似。

光合同化速率降低是盐胁迫抑制植物生长的一个重要原因[25]。盐胁迫下,导致植物光合速率降低的因素既包括气孔限制,也包括非气孔限制。Farquhar和Sharkey[26]认为,只有当胞间CO2浓度(Ci)与光合速率(Pn)变化方向相同,且二者都减小时,才可以得出Pn的下降主要是由气孔导度(Gs)降低所引起的可靠结论;相反,如果叶片Pn下降的同时伴随Ci的升高,那么可以肯定Pn下降的主导因素是叶肉细胞光合活性的降低,而不是Gs的因素。据此,可以判断本试验中番茄幼苗叶片光合受限的主导因素为非气孔限制。外源SA、SNP单独和复配处理均可有效减轻制约幼苗光合作用的气孔和非气孔限制,并尤以SA和SNP复配处理效果最明显。此时,除叶片光合受限的主导因素已由非气孔限制转变为气孔限制外,制约幼苗Pn提升的气孔限制也得到进一步削弱,这表明SA和SNP复配处理更利于改善NaCl胁迫下番茄幼苗叶片的光合功能,从而使其对CO2、H2O和光能的综合利用效率进一步提高。至于WUEg在SA和SNP复配处理下显著降低的原因尚不明确,推测可能与幼苗响应渗透胁迫缓解的程度有关,随盐胁迫的深度缓解,幼苗水分利用障碍也必将得到改善,而这或许是引起叶片WUEg降低的主要原因,对此推测的正确与否仍需深入研究。以往曾有不少关于单独施用外源SA[17, 18, 19, 20, 21]或SNP[22, 23, 24]减轻盐胁迫抑制植物叶片光合作用的研究报道。本试验在证实这些研究结果的同时,进一步发现在改善NaCl胁迫下番茄幼苗叶片光合气体交换性能、提高叶片资源综合利用效率方面,SA和SNP复配处理显著优于SA或SNP单独处理,说明SA和SNP复配处理在提高NaCl胁迫下番茄幼苗的光合效率方面具有显著的协同增效作用。

由于植物进行光合作用的能量主要源自光合色素捕获的光能,所以光合色素含量的高低在很大程度上反映了植物叶片的光合能力。光合色素主要包括Chla、Chlb和Car等,其中绝大部分Chla和全部Chlb主要起捕捉和传递光能的作用,少数特殊状态的Chla具有将光能转换为电能的作用。Car是光吸收复合体的重要组成部分,其作为植物体内一类重要的抗氧化剂,可有效减轻光抑制及活性氧对光合机构的伤害[27]。在逆境条件下,一般Car的降解速率往往要慢于Chla+b,因此Car/Chla+b值升高,这是植物响应逆境胁迫的保护性应激反应[28, 29]。Chla/b值反映了叶绿体中类囊体的垛叠程度,即不同垛叠状态的类囊体膜比例。Chla/b值愈小,类囊体垛叠程度愈低,类囊体膜稳定性也愈差,致使光能在两个光系统之间的分配受到影响,从而降低光合作用[30]。施用外源SA[17, 19, 20]或SNP[22, 23]均能有效缓解盐胁迫对植物叶片光合色素的降解,这对改善植物叶片光合性能、提高植物抗(耐)盐能力具有极其重要的作用。最近,Simaei等[7, 8]以单独和复配施用外源SA、SNP的方法分别处理受盐胁迫的大豆幼苗,结果发现在缓解盐胁迫对幼苗叶片光合色素(Chla、Chlb、Chla+b和Car)的降解方面,SA和SNP复配处理明显存在协同增效作用。本试验在证实上述研究结果的基础上,进一步发现SA和SNP复配作用于NaCl胁迫下的番茄幼苗后,其叶片Chla/b值的上升和Car/Chla+b值的下降幅度均显著高于SA或SNP的单独处理,这说明外源SA和SNP复配处理在缓解番茄幼苗叶片叶绿体光合机构的盐害损伤方面也同样存在有显著的协同增效作用。

NaCl胁迫引起植物体内、特别是叶片中Cl-和Na+的过量积累是导致植物叶片光合效率降低的主要原因。一方面,高浓度的叶片Cl-和Na+含量将抑制PSⅡ、光合电子传递及Rubisco等光合酶的活性[31, 32],致使叶片的光合功能减弱。另一方面,高浓度的Cl-和Na+含量还将使叶片中的离子平衡被打破,造成与植物叶片渗透调节能力及光合作用密切相关的K+、Ca2+和Mg2+的含量迅速降低[33, 34, 35],这必将进一步加剧叶片光合能力的衰退,导致植物生长受抑、生物量积累停滞、抗(耐)盐性骤降。施用外源SA[18, 20, 21]或SNP[36]既能减少分布于植物体内、特别是叶中Cl-和Na+的含量,又能提高植物对K+、Ca2+和Mg2+的选择性吸收和积累,从而有效缓解因盐迫产生的渗透胁迫和离子胁迫(离子毒害、离子失衡)。本试验在证实上述研究结果的同时,发现外源SA和SNP复配处理在诱导番茄幼苗通过降低Cl-和Na+含量、提高K+、Ca2+和Mg2+含量,实现改善因NaCl胁迫产生的离子毒害和离子失衡方面具有显著的协同增效作用。这也与Simaei等[37]对大豆的研究结果部分相似。

本试验从降低离子胁迫、提高光合效率和促进壮苗形成3个方面论证了复配施用外源SA和SNP在提高番茄幼苗抗(耐)盐性上具有协同增效作用。这为提高植物抗(耐)盐性技术的研究与开发提供了新的线索。需要指出的是外源SA[17, 19, 20, 21]或SNP[22, 24]在诱使植物提高抗(耐)盐性上具有剂量效应,本试验采取的SA、SNP处理剂量是在预试验和参考前人研究结果的基础上确定的。至于外源SA、SNP复配处理在提高植物抗(耐)盐性上是否存在剂量效应,以及如何确定最适剂量配比才能达到最佳的施用效果,还有待进一步研究。另外,目前外源SA或SNP单独诱导植物的抗(耐)盐机制尚不十分明确,外源SA和SNP协同诱导植物抗(耐)盐效应的动态变化规律及生理生化机制更需深入探索。

参考文献
[1] Metternicht G I, Zinck J A. Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment, 2003, 85(1): 1-20.
[2] Wang J L, Huang X J, Zhong T Y, Chen Z G. Review on sustainable utilization of salt-affected land. Acta Geographica Sinica, 2011, 66(5): 673-684.
[3] Gémes K, Poór P, Horváth E, Kolbert Z, Szopkó D, Szepesi , Tari I. Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiologia Plantarum, 2011, 142(2): 179-192.
[4] Durner J, Klessig D F. Nitric oxide as a signal in plants. Current Opinion in Plant Biology, 1999, 2(5): 369-374.
[5] Zottini M, Costa A, Michele R De, Ruzzene M, Carimi F, Schiavo F L. Salicylic acid activates nitric oxide synthesis in Arabidopsis. Journal of Experimental Botany, 2007, 58(6): 1397-1405.
[6] Kazemi N, Khavari-Nejad R A, Fahimi H, Saadatmand S, Nejad-Sattari T. Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Scientia Horticulturae, 2010, 126(3): 402-407.
[7] Simaei M, Khavari-Nejad R A, Saadatmand S, Bernard F, Fahimi H. Interactive effects of salicylic acid and nitric oxide on soybean plants under NaCl salinity. Russian Journal of Plant Physiology, 2011, 58(5): 783-790.
[8] Simaei M, Khavari-Nejad R A, Saadatmand S, Bernard F, Fahimi H. Effects of salicylic acid and nitric oxide on antioxidant capacity and proline accumulation in Glycine max L. treated with NaCl salinity. African Journal of Agricultural Research, 2011, 6(16): 3775-3782.
[9] Mo Y W, Qian S Q, Chen T L. Improved chilling resistance of Stylosanthes guianensis by combining salicylic acid with sodium nitroprusside treatments. Pratacultural Science, 2010, 11(27): 77-81.
[10] Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 1980, 31: 491-543.
[11] Ashraf M. Relationships between leaf gas exchange characteristics and growth of differently adapted populations of blue panicgrass (Panicum antidotale Retz.) under salinity or waterlogging. Plant Science, 2003, 165(1): 69-75.
[12] Nijs I, Ferris R, Blum H, Hendrey G, Impens I. Stomatal regulation in a changing climate: A field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE). Plant, Cell and Environment, 1997, 20(8): 1041-1050.
[13] Long S P, Baker N R, Raines C A. Analysing the responses of photosynthetic CO2 assimilation to long-term elevation of atmospheric CO2 concentration. Vegetatio, 1993, 104-105(1): 33-45.
[14] He W M, Ma F Y. Effects of water gradient on fluorescence characteristics and gas exchange in Sabina vulgaris seedlings. Acta Phytoecologica Sinica, 2000, 24(5): 630-634.
[15] Lichtenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extract in different solvents. Biochemical Society Transactions, 1983, 11: 591-592.
[16] Lao J C. Manual of Soil Agro-Chemical Analysis. Beijing: China Agriculture Press, 1988: 656-657.
[17] Arfan M, Athar H R, Ashraf M. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress?. Journal of Plant Physiology, 2007, 164(6): 685-694.
[18] Guo C X, Wang W L, Zheng C S, Shi L H, Shu H R. Effects of exogenous salicylic acid on ions contents and net photosynthetic rate in chrysanthemum under salt stress. Scientia Agricultura Sinica, 2011, 44(15): 3185-3192.
[19] Purcǎrea C, Cachiţǎ-Cosma D. Salicylic acid involvement in salt stress alleviation in wheat (Triticum aestivum cv Crisana) seedlings. Studia Universitatis "Vasile Goldiş: Seria Ştiinţele Vieţii, 2011, 21(3): 607-614.
[20] Noreen S, Ashraf M, Akram N A. Does exogenous application of salicylic acid improve growth and some key physiological attributes in sunflower plants subjected to salt stress?. Journal of Applied Botany and Food Quality, 2011, 84(2): 169-177.
[21] Tufail A, Arfan M, Gurmani AR, Khan A, Bano A. Salicylic acid induced salinity tolerance in maize (Zea mays). Pakistan Journal of Botany, 2013, 45(1): 75-82.
[22] Fan H F, Guo S R, Jiao Y S, Zhang R H, Li J. The effects of exogenous nitric oxide on growth, active oxygen metabolism and photosynthetic characteristics in cucumber seedlings under NaCl stress. Acta Ecologica Sinica, 2007, 27(2): 546-553.
[23] Wu X X, Ding H D, Chen J L, Zhang H J, Zhu W M. Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings. African Journal of Biotechnology, 2010, 9(46): 7837-7846.
[24] Hu F B, Long X H, Liu L, Liu Z P. Effects of SNP on photosynthesis and alkaloid content of Catharanthus roseus seedlings under NaCl stress. Acta Pedologica Sinica, 2011, 48(5): 1044-1050.
[25] Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349.
[26] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33: 317-345.
[27] Huang Z A, Jiang D A, Yang Y, Sun J W, Jin S H. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica, 2004, 42(3): 357-364.
[28] Jiménez C, Niell F X. Influence of high salinity and nitrogen limitation on package effect and C/N ratio in Dunaliella viridis. Hydrobiologia, 2003, 492(1/3): 201-206.
[29] Varone L, Gratani L. Physiological response of eight mediterranean maquis species to low air temperatures during winter. Photosynthetica, 2007, 45(3): 385-391.
[30] Maslenkova L T, Zanev Y, Popova L P. Adaptation to salinity as monitored by PSII oxygen evolving reactions in barley thylakoids. Journal of Plant Physiology, 1993, 142(5): 629-634.
[31] Ball M C, Anderson J M. Sensitivity of photosystems Ⅱ to NaCl in relation to salinity tolerance. comparative studies with thylakoids of the Salt tolerant mangrove, Avicennia marina, and the salt-sensitive Pea, Pisum sativum. Australian Journal of Plant Physiology, 1986, 13(5): 689-698.
[32] Chen X Q, Yu B J. Ionic Effects of Na+ and Cl- on photosynthesis in Glycine max seedlings under isoosmotic salt stress. Journal of Plant Physiology and Molecular Biology, 2007, 33(4): 294-300.
[33] Zhao D, Oosterhuis D M, Bednarz C W. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica, 2001, 39(1): 103-109.
[34] Zhu X J, Yang J S, Liang Y C, Lou Y S, Yang X Y. Effects of exogenous calcium on photosynthesis and its related physiological characteristics of rice seedlings under salt stress. Scientia Agricultura Sinica, 2004, 37(10): 1497-1503.
[35] Hermans C, Johnson G N, Strasser R J, Verbruggen N. Physiological characterisation of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta, 2004, 220(2): 344-355.
[36] Wan Y H, Chen H Y, Chen B C, Wu X X, Zhu W M. Effects of exogenous nitric oxide on ion absorption and distribution of tomato seedlings under NaCl stress. Chinese Journal of Soil Science, 2009, 40(3): 610-614.
[37] Simaei M, Khavari-Nejad RA, Bernard F. Exogenous application of salicylic acid and nitric oxide on the ionic contents and enzymatic activities in NaCl-stressed soybean plants. American Journal of Plant Sciences, 2012, 3: 1495-1503.
[2] 王佳丽, 黄贤金, 钟太洋, 陈志刚. 盐碱地可持续利用研究综述. 地理学报, 2011, 66(5): 673-684.
[9] 莫亿伟, 钱善勤, 陈泰林. 水杨酸和硝普钠处理增强柱花草抗寒性. 草业科学, 2010, 11(27): 77-81.
[14] 何维明, 马风云. 水分梯度对沙地柏幼苗荧光特征和气体交换的影响. 植物生态学报, 2000, 24(5): 630-634.
[16] 劳家柽. 土壤农化分析手册. 北京: 农业出版社, 1988: 656-657.
[18] 郭春晓, 王文莉, 郑成淑, 时连辉, 束怀瑞. 盐胁迫下外源SA对菊花体内离子含量和净光合速率的影响. 中国农业科学, 2011, 44(15): 3185-3192.
[22] 樊怀福, 郭世荣, 焦彦生, 张润花, 李娟. 外源一氧化氮对NaCl 胁迫下黄瓜幼苗生长, 活性氧代谢和光合特性的影响. 生态学报, 2007, 27(2): 546-553.
[24] 胡凡波, 隆小华, 刘玲, 刘兆普. 硝普钠对NaCl 胁迫下长春花幼苗光合及生物碱的影响. 土壤学报, 2011, 48(5): 1044-1050.
[34] 朱晓军, 杨劲松, 梁永超, 娄运生, 杨晓英. 盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响. 中国农业科学, 2004, 37(10): 1497-1503.
[36] 万延慧, 陈火英, 陈宝初, 吴雪霞, 朱为民. 外源NO对NaCl胁迫下番茄幼苗离子吸收及分布的影响. 土壤通报, 2009, 40(3): 610-614.