生态学报  2014, Vol. 34 Issue (13): 3779-3787

文章信息

杨滨娟, 黄国勤, 徐宁, 钱海燕
YANG Binjuan, HUANG Guoqin, XU Ning, QIAN Haiyan
秸秆还田配施不同比例化肥对晚稻产量及土壤养分的影响
The effects of returning straw containing fertilizer with varying nutrient ratios on rice yield and soil fertility
生态学报, 2014, 34(13): 3779-3787
Acta Ecologica Sinica, 2014, 34(13): 3779-3787
http://dx.doi.org/10.5846/stxb201306071416

文章历史

收稿日期:2013-6-7
修订日期:2014-2-25
秸秆还田配施不同比例化肥对晚稻产量及土壤养分的影响
杨滨娟1, 黄国勤1 , 徐宁1, 钱海燕2, 3    
1. 江西农业大学生态科学研究中心, 南昌 330045;
2. 中国科学院南京土壤研究所, 南京 210008;
3. 江西省山江湖开发治理委员会办公室, 南昌 330046
摘要:在不同秸秆还田方式对早稻的效应研究确定的最佳还田方式和还田量(粉碎还田3000 kg/hm2)基础上,以单施秸秆为对照,研究了秸秆还田配施不同比例化肥对晚稻产量、干物质积累与分配及土壤养分的影响。结果表明:(1)与对照相比,秸秆3000 kg/hm2+N 150 kg/hm2+P2O5 75 kg/hm2+K2O 37.5 kg/hm2增产效果最为显著,在水稻的每穗粒数、千粒重、结实率、充实度和产量等方面增加幅度最大,分别为9.32%、4.28%、13.70%、2.74%和26.38%。(2)各处理的干物质茎鞘比例随着生育进程不断降低,从孕穗期的66.68%-77.00%降低至成熟期的25.97%-34.79%,除SNPK1外,叶片比例从孕穗期的23.00%-33.32%降低至成熟期的7.41%-21.03%;秸秆还田配施不同比例化肥处理的茎鞘比例在孕穗期、抽穗期和成熟期高于对照,而叶片比例与茎鞘比例呈相反趋势。(3)与对照相比,秸秆还田配施不同比例化肥处理提高了土壤pH值、有机碳、全氮、碱解氮、全磷、有效磷、全钾、速效钾,降低了土壤C/N比。研究结果说明,秸秆还田配施不同比例化肥可以提高植株干物质积累速率、群体生物量,合理改善土壤养分,保证较高的水稻增产潜力,其中秸秆3000 kg/hm2+N 150 kg/hm2+P2O5 75 kg/hm2+K2O 37.5 kg/hm2效果最为显著。
关键词秸秆还田    不同比例化肥    干物质生产    水稻产量    土壤养分    
The effects of returning straw containing fertilizer with varying nutrient ratios on rice yield and soil fertility
YANG Binjuan1, HUANG Guoqin1 , XU Ning1, QIAN Haiyan2, 3    
1. Research Center on Ecological Science, Jiangxi Agricultural University, Nanchang 330045, China;
2. Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
3. Jiangxi Mountain River Lake Committee Office, Nanchang 330045, China
Abstract:Straw is rich in organic carbon, nitrogen (N), phosphorus (P), potassium (K), silicon (Si) and other nutrients that can improve physical, chemical and biological properties, increase crop yield, and lower fertilizer costs. Straw is mainly composed of cellulose, hemicellulose and lignin, and the C/N ratio is generally about 60-80; straw is therefore not easily decomposed by microorganisms in soil. Straw also needs to absorb a certain amount of N, for which it competes with crops, affecting seedling growth. Returning straw that contains a certain proportion of fertilizer N and P can mediate the soil C/N ratio, accelerate straw decomposition, and relieve the competition for inorganic nitrogen from microorganisms during the decomposition process. To explore the decomposition patterns of straw, we designed an experiment in Jiangxi to examine changes in dry matter production, soil properties, and biological processes in response to returning straw. The amount of crushed straw used (3000 kg/hm2) was determined by an examination of the effects of different amounts of returning straw on early rice. We researched the effects of returning straw containing different ratios of fertilizer on rice yield, dry matter accumulation and distribution, and soil fertility. We used a single application of straw as a control. Other treatments were SN1 (3000 kg/hm2 of crushed straw + 150 kg/hm2N), SN2 (3000 kg/hm2 of crushed straw + 225 kg/hm2N), SP1 (3000 kg/hm2 of crushed straw + 75 kg/hm2P2O5), SP2 (3000 kg/hm2 of crushed straw + 112.5 kg/hm2 P2O5), SNP1 (3000 kg/hm2 of crushed straw + 150 kg/hm2 N + 75 kg/hm2 P2O5), SNP2 (3000 kg/hm2 of crushed straw + 225 kg/hm2 N + 112.5 kg/hm2 P2O5), SNPK1 (3000 kg/hm2 of crushed straw + 150 kg/hm2 N + 75 kg/hm2 P2O5 + 37.5 kg/hm2 K2O), SNPK2 (3000 kg/hm2 of crushed straw + 225 kg/hm2 N + 112.5 kg/hm2 P2O5 + 56.3 kg/hm2 K2O). The results demonstrate the following: (1) Compared with the control, the returning straw with low levels of N, P, and K significantly increase the grains per spike, 1000-grain weight, seed-setting rate, filled degree of grain and overall crop yield at rates of 9.32%, 4.28%, 13.70%, 2.74% and 26.38%, respectively. (2) The differences in dry matter accumulation between different growth periods are significant. Dry matter accumulation is greatest in the tilling to heading period and the filling to maturity period in all treatment groups.. The following proportion of total dry matter accumulation occurred in those two periods combined: 78.61%, 79.22%, 81.97%, 77.95%, 77.27%, 78.13%, 78.20%, 79.08%, and 78.47% in the control group, SN1, SN2, SP1, SP2, SNP1, SNP2, SNPK1 and SNPK2, respectively. The heading to filling period is a stage of rapid accumulation of material, but because of its short duration, dry matter accumulation and the ratio of accumulation to the total amount of dry matter was lower than in the other growth periods. With growth, the ratio of stem-sheath length to total plant length continuously decreased from a range of 66.68%-77.00% in the booting stage to a range of 25.97%-34.79% in the maturity period. In addition, in the SNPK1 treatment, the ratio of leaf length to the total plant length reduced from a range of 23.00%-33.32% in the booting stage to a range of 7.41%-21.03% in the maturity period. The dry weight ratio of the stem-sheath to the whole plant in the booting stage, heading stage, and at maturity was significantly higher in the treatment groups than in the control group, and was highest in the SNPK1 treatment. The dry weight ratio of the leaf to the whole plant is opposite; the ratio is highest in the control group. (3) Compared with the control group, in the treatment groups, the pH increased by 1.97%-4.33%, organic carbon content increased by 3.76%-25.05%, total nitrogen content increased by 14.75%-45.90%, alkaline hydrolysis nitrogen content increased by 3.49%-39.90%, total phosphorus content increased by 10.00%-55.00%, available phosphorus content increased by 10.45%-50.88%, total potassium content increased by 18.27%-100%, and available potassium content increased by 9.39%-79.72%; the C/N ratio decreased by 6.02%-23.59%. These results demonstrate that returning straw that contains fertilizer improves rice yield and dry matter accumulation rates; this translates to a higher potential yield of rice crops, and an increase in the level of soil nutrients. The combined effect of returning rice straw to fields with low levels of N, P, and K is significant. This study will provide a theoretical basis for the use of straw to increase soil fertility in southern regions of China, where rice farming is abundant.
Key words: straw return    different ratio of fertilizer    dry matter production    rice yield    soil fertility    

稻田是我国南方,特别是长江中下游水稻生产的重要场所,为解决我国粮食问题、维护国家和区域粮食安全作出了重要的历史性贡献。然而,近年来长江中下游双季稻区稻田土壤水蚀及矿质营养流失,作物秸秆、残留物等资源浪费等问题严重。秸秆含有丰富的有机碳和大量的氮、磷、钾、硅等矿质营养元素,能够改善土壤理化性状和生物学性状,提高农作物产量、品质和降低施肥成本等[1],但秸秆主要由纤维素、半纤维素和木质素三大部分组成,C/N比一般为60—80左右,使秸秆在土壤中难以被微生物分解[2, 3],需吸收一定量的氮素营养,从而与作物争氮,影响苗期生长。因此秸秆还田要配施一定比例的N、P调解土壤C/N比,加速秸秆分解、腐熟过程,缓解秸秆分解过程中微生物对无机氮素的竞争利用,以保证土壤全期的肥力[4]。现阶段研究的重点在于秸秆的快速腐解问题,目前多数研究集中在有机无机肥配合施用的培肥效果及作物的产量效应方面,许多学者从不同角度对秸秆还田条件下土壤养分、酶活性和土壤微生物数量进行了一系列的研究[5, 6],但对化肥配施比例的研究较少,而关于不同比例化肥施入土壤后养分动态及产量、干物质生产特性之间的相关性研究值得进一步探讨。本研究以不同秸秆还田方式对早稻的效应研究确定的最佳还田方式和还田量(粉碎还田3000 kg/hm2)[7]为研究基础,分析了秸秆还田配施不同比例化肥对晚稻产量、干物质生产特性及土壤养分指标的影响,揭示了水稻干物质群体变化特性及土壤性质变化的生物过程,以期为南方稻区合理的秸秆资源利用方式及培肥地力提供一定的理论依据和技术支撑。

1 材料与方法 1.1 试验地概况

试验于2010—2012年晚稻期间,在江西农业大学科技园水稻实验田(28°46′ N,115°55′ E)进行。试验地属于亚热带季风性湿润气候,年均太阳总辐射量为4.79×1013 J/hm2,年均日照时数为1852 h,年日均温≥0 ℃的积温达6450 ℃,年降水量1624 mm,年平均气温在17.1—17.8 ℃之间。供试土壤为发育于第四纪的红粘土,为亚热带典型红壤分布区。

1.2 试验设计

试验共设9个处理:(1)CK(单施秸秆3000 kg/hm2);(2)SN1(秸秆3000 kg/hm2+N 150 kg/hm2);(3)SN2(秸秆3000 kg/hm2+N 225 kg/hm2);(4)SP1(秸秆3000 kg/hm2+P2O5 75 kg/hm2);(5)SP2(秸秆3000 kg/hm2+P2O5 112.5 kg/hm2);(6)SNP1(秸秆3000 kg/hm2+N 150 kg/hm2+P2O5 75 kg/hm2);(7)SNP2(秸秆3000 kg/hm2+N 225 kg/hm2+P2O5 112.5 kg/hm2);(8)SNPK1(秸秆3000 kg/hm2+ N 150 kg/hm2+P2O5 75 kg/hm2+K2O 37.5 kg/hm2);(9)SNPK2(秸秆3000 kg/hm2+N 225 kg/hm2+P2O5 112.5 kg/hm2+K2O 56.3 kg/hm2),其中秸秆均为干重。每个处理重复3次,随机排列。小区面积33 m2(11 m × 3 m),小区间用高30 cm的水泥埂隔开。具体试验设计见表 1

试验所用氮肥为尿素,磷肥为钙镁磷肥,钾肥为氯化钾。供试作物为晚稻,品种为“中优161”。2010年晚稻于7月2日浸种,洗净后保温催芽,7月5日播种,8月5日按行株距20 cm×17 cm移栽,11月6日收获。2011年晚稻于6月27日浸种,洗净后保温催芽,6月30日播种,7月31按行株距20 cm×17 cm移栽,10月31日收获。2012年晚稻于6月24日浸种,洗净后保温催芽,6月27日播种,7月27日按行株距20 cm×17 cm移栽,10月27日收获。试验前表层土壤(0—20 cm)化学性质见表 2

表 1 试验处理 表 7le 1 The experimental treatments
处理
Treatment
秸秆Straw/
(kg/hm2)
N/
(kg/hm2)
P2O5/
(kg/hm2)
K2O/
(kg/hm2)
对照ControlCK3000
秸秆还田配施低量N
Straw return with low level of N fertilizer
SN13000150
秸秆还田配施高量N
Straw return with high level of N fertilizer
SN23000225
秸秆还田配施低量P
Straw return with low level of P fertilizer
SP1300075
秸秆还田配施高量P
Straw return with high level of P fertilizer
SP23000112.5
秸秆还田配施低量NP
Straw return with low level of NP fertilizer
SNP1300015075
秸秆还田配施高量NP
Straw return with high level of NP fertilizer
SNP23000225112.5
秸秆还田配施低量NPK
Straw return with low level of NPK fertilizer
SNPK130001507537.5
秸秆还田配施高量NPK
Straw return with high level of NPK fertilizer
SNPK23000225112.556.3
表 2 表层土壤基本化学性质 表 7le 2 Basic chemical properties of soil
处理
Treatment
pH有机碳
OC/
(g/kg)
全氮
TN/
(g/kg)
碱解氮
AN/
(mg/kg)
全磷
TP/
(g/kg)
有效磷
AP/
(mg/kg)
全钾
TK/
(g/kg)
速效钾
AK/
(mg/kg)
C/N
CK4.9421.642.79125.670.5031.556.0043.207.75
SN15.0920.072.61130.330.3225.606.0443.207.69
SN25.1123.381.93158.670.4120.506.2935.8112.11
SP15.1620.132.85168.000.6031.955.5143.207.06
SP25.1920.362.25158.100.4330.706.0552.209.05
SNP15.1720.322.78156.000.4230.696.5049.817.31
SNP25.2121.092.75148.330.3929.866.2752.507.67
SNPK15.3420.362.81125.670.3921.454.4945.927.25
SNPK25.2318.912.54159.000.3531.906.3552.807.44
OC: organic carbonr; TN:total hydrolytic nitrogen; AN: alkaline hydrolytic nitrogen; TP: total phosphorus; AP: available phosphorus; TK: total potassium; AK: available potassium
1.3 测定项目与方法 1.3.1 水稻产量及其构成因素

于水稻成熟期,在各小区普查50蔸作为有效穗计算的依据,然后用平均数法在各小区中随机选取有代表性的水稻植株5蔸,作为考种材料,考查穗粒数、结实率、千粒重等产量构成因素及籽粒充实情况[8]。并于成熟期每个小区单打测产,用1/10天平测整个小区的实际产量(干重)。

籽粒充实度(%)= 受精粒平均千粒重/饱粒千粒重×100

籽粒充实率(%)=饱粒数/总粒数×100

1.3.2 干物质生产特性

每小区按平均茎蘖法随机取5穴(小区边行不取),分成叶片、茎鞘和穗(抽穗后)等部分装袋,于105 ℃条件下杀青30 min,再经80 ℃烘干至恒重,测定各处理植株干物质积累与分配情况。

1.3.3 土壤养分

每年晚稻收获后取样,测定土壤N、P、K变化动态。每处理3次重复,用“五点法”取耕层0—20 cm的土样,测定指标有:pH值、有机碳、全N、全P、全K、碱解N、有效P、速效K。测定方法[9, 10, 11]如下:土壤pH值采用pH计测定,土壤有机碳采用重铬酸钾外加热法测定,全N采用半微量开氏法,全P采用NaOH熔融-钼锑抗比色法,全K采用NaOH熔融-火焰光度法,碱解N采用碱解扩散法,有效P采用NaHCO3-钼锑抗比色法,速效K采用NH4OAc浸提火焰光度法。

1.4 统计分析

运用Microsoft Excel 处理数据。用DPS V7.05系统软件分析数据,用LSD(least significant difference test)进行样本平均数的差异显著性比较。

2 结果与分析 2.1 秸秆还田配施不同比例化肥对水稻产量的影响

表 3可知,与对照相比(单施秸秆),产量构成要素中除有效穗数外,秸秆还田配施不同比例化肥处理均一定程度上提高了水稻的每穗粒数、结实率、千粒重、充实度、充实率及产量。有效穗数方面仅有处理SP2、 SN2、SNPK1高于对照,分别高出6.62%、5.57%、1.05%;除SP1外,各处理与对照均达到显著性差异(P<0.05),且区组间差异显著。秸秆还田配施不同比例化肥各处理与对照相比增加了每穗粒数,其中以SNPK1(秸秆还田配施低量NPK)效果最为显著,增加了9.32%;除SNP2外,各处理与对照均达到显著性差异(P<0.05)。秸秆还田配施不同比例化肥处理与对照相比均显著提高了结实率,增加范围为4.77%—13.70%,其中以SNPK1效果最为显著;除秸秆还田配施NP、NPK两区组间差异显著外,其余各区组间差异不显著,但各处理与对照相比均达到显著性差异(P<0.05)。与对照相比,秸秆还田配施不同比例化肥处理的千粒重略有增加,其中以SNPK1增加4.28%达到最大,但差异不显著。充实度方面,与对照相比,秸秆还田配施不同比例化肥处理略有增加,但仅有处理SNPK1、SN2和 SNP2与对照相比差异显著,且区组间均差异不显著。充实率方面,与对照相比,秸秆还田配施不同比例化肥各处理均有所提高,其中以SN2效果最为显著,其次是处理SNPK1,分别增加了6.24%、5.47%;但SN1与对照差异不显著,其余各处理均达到显著差异(P<0.05)。秸秆还田配施不同比例化肥各处理与对照相比均提高了水稻产量,增产幅度为10.18%—26.38%,其中处理SNPK1增产效果最为显著,各处理水稻产量大小顺序依次为:SNPK1>SP2>SNP1>SNP2>SNPK2>SP1>SN1>SN2>CK;且各处理与对照相比差异显著,除秸秆还田配施NP区组间差异不显著外,其余区组间均达到显著差异(P<0.05)。

表 3 秸秆还田配施不同比例化肥下水稻产量及充实程度 表 7le 3 Rice yield and its grain-filling level under straw returning with different ratio of fertilize
处理
Treatment
有效穗数
Effective
panicles/
(104/hm2)
每穗粒数
Grain number
per panicle
结实率
Seed-setting
rate/%
千粒重
1000-grain
weight/g
充实度
Filled degree
of grain/%
充实率
Filled grain
percentage/%
产量
Yield/
(kg/hm2)
CK421.89d124.29f80.28f25.72a94.77c79.66e6396.03e
SN1398.37g129.66bc89.86ab26.01a96.30abc79.84e7310.52c
SN2445.41b129.16cd89.33bc26.66a96.67ab84.63a7046.88d
SP1420.42de131.31b88.57bcd25.91a95.89abc82.58bcd7347.57c
SP2449.82a127.62de87.78cd26.79a95.42bc81.34de7868.68b
SNP1396.90g126.44e86.96d25.82a95.08bc83.84ab7812.67b
SNP2416.01f125.93ef89.32bc26.34a96.55ab82.03cd7721.69b
SNPK1426.30c135.88a91.28a26.82a97.37a84.02ab8083.49a
SNPK2419.33e128.36cd84.11e26.13a95.95abc83.61abc7699.52c
数据为3个重复的平均值;同列不同的字母分别表示差异达5%显著水平
2.2 秸秆还田配施不同比例化肥对水稻干物质积累的影响 2.2.1 各生育阶段干物质积累

表 4可以看出,各生育阶段水稻干物质积累量差异明显,除抽穗期至灌浆期以外,各生育阶段干物质积累均是秸秆还田配施不同比例化肥高于对照(单施秸秆)。同时可知,水稻分蘖盛期至抽穗期和 灌浆期至成熟期两个生育阶段干物质积累量最大, 各处理这2个生育阶段干物质积累量分别达到成熟期干物重的78.61%、79.22%、81.97%、77.95%、77.27%、78.13%、78.20%、79.08%、78.47%;抽穗期至灌浆期是物质快速积累的阶段,但由于其历期较短,干物质积累较少,在各生育阶段所占比例均最低。播种至分蘖盛期,秸秆还田配施不同比例化肥处理的干物质积累量和比例均高于对照,其中SP2增加幅度最大,为35.82%,且仅有该区组内差异显著;除了SNP1外,各处理与对照相比差异显著(P<0.05)。分蘖盛期至抽穗期,秸秆还田配施NPK(SNPK1、SNPK2)处理的干物质积累量和比例显著高于对照,分别增加了3.53%、3.35%,但区组间差异不显著。抽穗期至灌浆期,除了处理SP1外,秸秆还田配施不同比例化肥其他处理的干物质积累量和比例均低于对照,其中SN2最低,仅为0.68 t/hm2,占成熟期干物质重的5.39%;秸秆还田配施N、P两区组间差异显著,SN2、SP2、SNP1、SNPK1、SNPK2与对照相比差异显著(P<0.05)。灌浆期至成熟期,秸秆还田配施不同比例化肥各处理的干物质积累量和比例均高于对照,其中以SN1最高,各处理与对照相比增加幅度为1.22%—19.56%,但均未达到显著性差异。

表 4 秸秆还田配施不同比例化肥下水稻主要生育阶段干物质积累量和比例 表 7le 4 Dry matter accumulation and its ratio to total dry matter in main growth periods of rice under straw returning with different ratio of fertilizer
处理
Treatments
播种—分蘖盛期
Sowing-tillering
分蘖盛期—抽穗期
Tillering-heading
抽穗期—灌浆期
Heading-filling
灌浆期—成熟期
Filling-maturity
积累量
DMA/
(t/hm2)
比例
RTDM/
%
积累量
DMA/
(t/hm2)
比例
RTDM/
%
积累量
DMA/
(t/hm2)
比例
RTDM/
%
积累量
DMA/
(t/hm2)
比例
RTDM/
%
CK1.34e10.765.67b45.691.32ab10.634.09a32.93
SN11.53cd11.505.68b42.541.24abc9.284.89a36.68
SN21.60bcd12.655.75ab45.470.68d5.394.61a36.50
SP11.59bcd11.995.75ab43.431.33a10.054.57a34.52
SP21.82a14.035.68b43.881.13c8.704.32a33.39
SNP11.49de11.845.72ab45.301.27abc10.034.14a32.83
SNP21.64bcd12.885.71ab44.921.13c8.924.23a33.28
SNPK11.70abc12.715.87a43.901.10c8.214.70a35.18
SNPK21.72ab12.895.86a44.071.15bc8.644.58a34.40
数据为3个重复的平均值;同列不同的字母分别表示差异达5%显著水平;DMA: dry matter accumulation; RTDM: ratio to total dry matter
2.2.2 中、后期干物质分配

通过分析叶片、茎鞘和穗分配情况(表 5)可知,干物质茎鞘比例在孕穗期最大,并随着生育进程不断降低,在成熟期达到最低,各处理从66.68%—77.00%降低至25.97%—34.79%;除了处理SNPK1(秸秆还田配施低量NPK)外,叶片比例均以孕穗期最大,并从该期的23.00%—33.32%降低至成熟期的7.41%—21.03%。具体来看,秸秆还田配施不同比例化肥处理的茎鞘所占比例在孕穗期、抽穗期和成熟期均高于对照(CK),且均以处理SNPK1最高,孕穗期茎鞘比例大小顺序依次为SNPK1>SN2>SNP1>SNPK2>SP1>SNP2>SP2>SN1>CK,除了处理SN1、SP2外,其余处理与对照相比差异性显著(P<0.05);抽穗期大小顺序依次为为SNPK1>SP1>SNP2>SNP1>SN2>SN1>SP2>SNPK2>CK,各处理与对照相比差异显著,且除了秸秆还田配施NP区组外,其余区组间均达到显著性差异(P<0.05);成熟期大小顺序依次为SNPK1>SP1>SP2>SNP1>SNP2>SNPK2>SN2>SN1>CK,除了SN1外,各处理与对照相比差异显著(P<0.05)。叶片比例与茎鞘比例呈相反趋势,在孕穗期、抽穗期和成熟期均是对照(单施秸秆)高于秸秆还田配施不同比例化肥处理,孕穗期叶片比例大小顺序依次为CK>SN1>SP2>SNP2>SP1>SNPK2>SNPK1>SN2>SNP1,除处理SN1外,各处理与对照相比差异显著(P<0.05),且除了秸秆还田配施NP区组外,其余区组间差异显著;抽穗期大小顺序依次为CK>SN1>SNPK2>SP2>SNP1>SNPK1>SN2>SP1>SNP2,各处理与对照相比差异显著(P<0.05),且除了秸秆还田配施NPK区组外,其余区组间均达到显著性差异;成熟期为CK>SNP2>SNP1>SP2>SNPK2>SN2>SP1>SN1>SNPK1,各处理与对照相比差异显著, 且秸秆还田配施P、NPK两区组间差异显著。与对照相比,秸秆还田配施不同比例化肥各处理的穗所占比例在抽穗期均有所提高,以处理SNP2增加25.22%为最高,大小顺序依次为SNP2>SP2>SNPK2>SN2>SP1>SNP1>SN1>SNPK1>CK,除了SN1、SNP1、SNPK1外,其余处理与对照相比差异显著(P<0.05);成熟期,除了处理SNP1、SNP2外,其余处理均高于对照,以处理SN1最高,为SN1>SN2>SNPK1>SNPK2>SP1>SP2>CK>SNP1> SNP2,除了SP2外,其余处理与对照相比差异显著(P<0.05)。

表 5 秸秆还田配施不同比例化肥下水稻中、后期干物质在叶片、茎鞘和穗分配情况 表 7le 5 Dry weight ratio of leaf,stem-sheath,panicle to total plant at middle and late stages of rice under straw returning with different ratio of fertilizer
处理
Treatments
茎鞘比例Ratio of stem-sheath/% 叶片比例Ratio of leaf/% 穗比例Ratio of panicle/%
孕穗期
Booting
stage
抽穗期
Heading
stage
成熟期
Maturity
孕穗期
Booting
stage
抽穗期
Heading
stage
成熟期
Maturity
抽穗期
Heading
stage
成熟期
Maturity
CK66.68 d55.32 c25.97 f33.32 a31.16 a21.03 a13.52 d53.00 e
SN168.10 d56.89 b26.71 f31.90 ab28.96 b11.05 d14.14 cd62.24 a
SN273.38 b58.65 a28.66 e26.62 d25.61 def11.58 d15.73 abc59.76 b
SP171.11 c59.54 a33.89 ab28.89 c24.84 ef11.21 d15.62 abc54.91 d
SP268.30 d56.24 b32.60 bc31.70 b26.90 cd14.33 c16.86 ab53.07 e
SNP171.82 bc58.83 a31.78 cd28.18 cd26.02 cde18.90 b15.15 bcd49.32 f
SNP270.32 c58.85 a31.15 cd29.68 c24.22 f19.85 ab16.93 a49.00 f
SNPK177.00 a60.06 a34.79 a23.00 e25.89 cdef7.41 e14.04 cd57.80 c
SNPK271.60 c55.79 b30.68 d28.40 cd27.46 bc12.57 d16.76 ab56.76 c
数据为3个重复的平均值;同列不同的字母分别表示差异达5%显著水平
2.3 秸秆还田配施不同比例化肥对土壤养分的影响

表 6可知,与对照相比,秸秆还田配施不同比例化肥处理均提高了土壤pH值、有机碳、全氮、碱解氮、全磷、有效磷、全钾、速效钾,降低了土壤C/N比。其中,土壤pH值增加1.97%—4.33%,以秸秆还田配施低量NPK处理(SNPK1)改良效果最为显著,秸秆还田配施高量N(SN2)效果较差,区组间差异不显著,但各处理与对照相比差异性显著(P<0.05)。土壤有机碳含量增加3.76%—25.05%,其中以SNPK1效果最为明显,区组间差异不显著,但各处理与对照相比差异性显著(P<0.05)。土壤全氮含量提高了14.75%—45.90%,同样以秸秆还田配施低量NPK(SNPK1)增加效果最为显著,但各处理间均未达到显著性差异。土壤碱解氮含量提高了3.49%—39.90%,以SN1处理增加效果最为显著,其次是处理SNPK1,但各处理间均未达到显著性差异。土壤全磷含量提高了10.00%—55.00%,以秸秆还田配施高量N、P(SNP2)效果最为明显,但各处理间均未达到显著性差异。土壤有效磷含量增加范围在10.45%—50.88%,其中以SNP2最为明显,区组间差异不显著,但各处理与对照相比差异性显著(P<0.05)。土壤全钾含量提高范围为18.27%—100%,其中以秸秆还田配施高量NPK(SNPK2)效果最为明显,其次是SNPK1,除了秸秆还田配施NP、NPK两区组间差异显著外,其余各区组间差异不显著,但各处理与对照相比均达到显著性差异(P<0.05)。土壤速效钾含量增加范围为9.39%—79.72%,秸秆还田配施低量NPK(SNPK1)效果最为明显,区组间无显著性差异,且仅有SNP1、SNP2、 SNPK1和 SNPK2处理与对照相比差异性显著(P<0.05),说明单纯施磷不利于土壤速效钾含量增加。土壤C/N比降低范围为6.02%—23.59%,但处理间均未达到显著性差异。

表 6 晚稻收获后不同处理土壤化学性状 表 7le 6 Correlation coefficients of rice yield and dry matter with soil fertility
处理
Treatments
pH有机碳
OC/
(g/kg)
全氮
TN/
(g/kg)
碱解氮
AN/
(mg/kg)
全磷
TP/
(g/kg)
有效磷
AP/
(mg/kg)
全钾
TK/
(g/kg)
速效钾
AK/
(mg/kg)
C/N
CK5.08b18.88c1.83a133.67a0.40a25.65c21.89g41.32d10.47a
SN15.20ab19.59c2.34a187.00a0.49a31.69abc25.89f46.82d8.60a
SN25.18ab20.56bc2.18a153.67a0.44a28.33bc26.40ef48.85cd9.84a
SP15.20ab20.44bc2.52a164.67a0.52a30.87abc27.88de45.72d8.38a
SP25.21ab19.98bc2.10a138.33a0.54a33.24abc29.13cd45.20d9.79a
SNP15.24a20.73bc2.46a159.67a0.57a36.27ab33.05b57.22bc8.93a
SNP25.29a20.22bc2.61a157.33a0.62a38.70a30.77c57.93b8.00a
SNPK15.30a23.61a2.67a171.33a0.57a30.84abc33.74b74.26a9.23a
SNPK25.25a22.05ab2.61a162.67a0.55a34.10abc43.78a73.73a8.73a
数据为3个重复的平均值;同列不同的字母分别表示差异达5%显著水平; OC: organic carbonr; TN:total hydrolytic nitrogen; AN: alkaline hydrolytic nitrogen; TP: total phosphorus; AP: available phosphorus; TK: total potassium; AK: available potassium
2.4 水稻产量、干物质生产与土壤养分的相关分析

通过水稻产量、干物质生产与土壤养分的相关分析(表 7)可以看出,水稻产量与土壤pH值、碱解氮显著相关。单茎生物量与土壤全氮、碱解氮呈显著相关。群体生物量与土壤碱解氮呈显著相关,与全钾显著负相关。由此可以看出,在矿质元素中,土壤氮素对地上部茎叶生长有促进作用,而土壤钾素可能对水稻的地下器官生长较有利。因此适量配施氮肥能有效提高干物质积累和运转效率,在各生育阶段均能保持较高的干物质积累量,使其具有较高的增产潜力。

表 7 水稻产量、干物质与土壤养分的相关系数 表 7le 7 Correlation coefficients of rice yield,dry matter with soil fertility
指标Index产量Yield单茎生物量BPS群体生物量BP
pH值pH vaule0.95*0.790.40
有机碳Organic carbonr0.920.840.48
全氮Total nitrogen-0.680.97*0.71
碱解氮Alkaline hydrolytic nitrogen0.96*0.95*0.97*
全磷Total phosphorus0.46-0.01-0.49
有效磷Available phosphorus0.51-0.07-0.54
全钾Total potassium0.95-0.70-0.96*
速效钾Available potassium-0.550.120.58
C/N比C/N ratio0.74-0.37-0.77
*为显著相关(P<0.05); BPS: biomass per stem; BP: biomass of population
3 讨论 3.1 对水稻干物质生产特性影响

水稻干物质的生产特性是光合产物在植株不同器官中积累与分配的结果,而水稻产量是植株干物质积累、分配、运输与转化的结果[12]。秸秆还田通常通过改善耕作层土壤水分条件,提高小麦的干物质积累能力[13]。郑成岩等[13]、黄明等[14]研究表明,秸秆覆盖有利于提高小麦抽穗后干物质积累和光合产物向籽粒和穗部的比例,是其获得高产的理论基础。但亦有研究表明,免耕秸秆覆盖主要是增加植株中总干物质的积累量,对干物质在不同器官中的分配比例无显著影响[15]。邓飞等[12]研究表明,水稻拔节期至孕穗期和抽穗期至成熟期两个阶段干物质积累量最大。另外,同一作物品种在不同肥力条件下种植,干物质在各器官的分配比例存在一定差异[16]。本试验研究表明,水稻分蘖盛期至抽穗期和灌浆期至成熟期两个生育阶段干物质积累量最大。除了抽穗期—灌浆期外,秸秆还田配施不同比例化肥处理在播种—分蘖盛期、分蘖盛期—抽穗期、灌浆期—成熟期3个生育阶段的干物质积累均高于单施秸秆处理。秸秆还田配施不同比例化肥处理的茎鞘比例在孕穗期、抽穗期和成熟期高于单施秸秆,而叶片比例与茎鞘比例呈相反趋势。

3.2 对土壤养分的影响

武际等[17]通过尼龙袋法研究表明,节水栽培模式下秸秆还田后土壤有机碳和养分含量的提高效应显著高于常规栽培。杨敏芳等[18]研究表明,无论是翻耕还是旋耕,秸秆还田条件下的土壤养分含量均不同程度地高于秸秆不还田。罗宜宾[19]研究表明,秸秆配施化肥的土壤有机质含量比单施化肥提高了14.0%—28.7%,土壤全氮提高了5.5%—40.1%,碱解氮含量增加了13.2%—30.8%,速效钾含量增加了4.8%—21.0%。本试验中,与对照相比,秸秆还田配施不同比例化肥处理均提高了土壤pH值、有机碳、全氮、碱解氮、全磷、有效磷、全钾、速效钾,降低了土壤C/N比,这与前人研究较一致,且秸秆3000 kg/hm2+ N 150 kg/hm2+P2O5 75 kg/hm2+K2O 37.5 kg/hm2处理在土壤pH值、有机碳、全氮、速效钾方面效果最为显著。

因此,根据水稻生长所需的土壤气候条件,选择合适比例的化肥与秸秆还田配施对水稻产量和稻田土壤培肥综合效果最好,更能发挥其生态效益与经济效益。

4 结论

与单施秸秆比较,秸秆还田配施不同比例化肥对于提高植株干物质积累速率和群体生物量、保证较高的水稻增产潜力以及合理改善土壤养分方面有较好的促进作用。总之,秸秆配施一定量的化肥,促进了作物对养分的吸收。

参考文献
[1] Zeng Y H, Wu J F, Pan X H, Shi Q H, Zhu D F. Study on yield and quality of double cropping rice in different straw return approaches. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 534-542.
[2] Xi B D, Liu H L, Meng W, Li H D, Wang Q S. Composting process of municipal solid waste with high effective complex microbial community. Environmental Science, 2001, 22(5): 122-125.
[3] Chen D L. Studies on Effect of Soil Tillage and Straw Returning to Field in Multi-Cropping Paddy Field [D]. Changsha: Hu'nan Agricultural University, 2009: 22-22.
[4] Ni G R, Tu G Q, Wei S J, Wu J F, Shi Q H, Pan X H. Effects of straw-returning using agent on microbe and enzyme activity in rhizosphere soils and yield of late rice. Journal of Agro-Environment Science, 2012, 31(1): 149-154.
[5] Abbott L K, Murphy D V. Soil Biological Fertility. Netherlands: Kluwer Academic Publisher, 2003: 109-109.
[6] Yang W P, Wang C H, Ru Z G. Effect of returning straw to fields on rhizosphere microorganisms and soil enzyme activity of winter wheat cultivar Bai-nong Ai-kang58. Journal of Northeast Agricultural University, 2011, 42(7): 20-24.
[7] Yang B J, Huang G Q, Qian H Y, Fan Z W, Fang Y. The preliminary research about the influence of rice-straw returning on the rice ecosystem environment quality. Chinese Agricultural Science Bulletin, 2012, 28(2): 200-208.
[8] Zhu Q S, Wang Z Q, Zhang Z J, Hui D F. Study on indicators of grain-filling of rice. Journal of Jiangsu Agricultural College, 1995, 16(2): 1-4.
[9] Professional Committee of Chinese Soil Science Society of Agricultural Chemistry. Conventional Methods for Soil and Agricultural Chemistry Analysis. Beijing: Science Press, 1983.
[10] Professional Committee of Chinese Soil Science Society of Agricultural Chemistry. Soil Physical and Chemical Analysis. Shanghai: Shanghai Science and Technology Press, 1981.
[11] Bao S D. Soil Agrochemical Analysis. Beijing: China Agriculture Press, 2000.
[12] Deng F, Wang L, Liu L, Liu D Y, Ren W J, Yang W Y. Effect of cultivation methods on dry matter production and yield of rice under different ecological conditions. Acta Agronomica Sinica, 2012, 38(10): 1930-1942.
[13] Zheng C Y, Cui S M, Wang D, Yu Z W, Zhang Y L, Shi Y. Effects of soil tillage practice on dry matter production and water use efficiency in wheat. Acta Agronomica Sinica, 2011, 37(8): 1432-1440.
[14] Huang M, Wu J Z, Li Y J, Yao Y Q, Zhang C J, Cai D X, Jin K. Effects of tillage pattern on the flag leaf senescence and grain yield of winter wheat under dry farming. Chinese Journal of Applied Ecology, 2009, 20(6): 1355-1361.
[15] Chen L M, Ma L, Liu J X, Shi S B, Guo F, Ku Z L, Lin S Q. The effect of no-tillage with stubble on the dynamic change of dry matter accumulation and yield of spring wheat during grain filling. Agricultural Research in the Arid Areas, 2006, 24(6): 21-24.
[16] Dong Z, Shen X Y. Crop Cultivation. Beijing: China Agriculture Press, 2007.
[17] Wu J, Guo X S, Lu J W, Wan S X, Wang Y Q, Xu Z Y, Zhang X L. Decomposition characteristics of wheat straw and effects on soil biological properties and nutrient status under different rice cultivation. Acta Ecologica Sinica, 2013, 33(2): 565-575.
[18] Yang M F, Zhu L Q, Han X Z, Gu K J, Hu N J, Zhang Z W, Bian X M. Effects of tillage and crop residues incorporation on soil nutrient, microbial biomass and enzyme activity under rice-wheat rotation. Journal of Soil and Water Conservation, 2013, 27(2): 272-275, 281-281.
[19] Luo Y B. Effects of straw returning on crop yield and soil nutrient. Xiandai Horticulture, 2013(2): 9-9.
[1] 曾研华, 吴建富, 潘晓华, 石庆华, 朱德峰. 稻草不同还田方式对双季水稻产量及稻米品质的影响. 植物营养与肥料学报, 2013, 19(3): 534-542.
[2] 席北斗, 刘鸿亮, 盂伟, 李捍东, 王庆生. 高效复合微生物菌群在垃圾堆肥中的应用. 环境科学, 2001, 22(5): 122-125.
[3] 陈冬林. 多熟复种稻田土壤耕作和秸秆还田的效应研究 [D]. 长沙: 湖南农业大学, 2009: 22-22.
[4] 倪国荣, 涂国全, 魏赛金, 吴建富, 石庆华, 潘晓华. 稻草还田配施催腐菌剂对晚稻根际土壤微生物与酶活性及产量的影响. 农业环境科学学报, 2012, 31(1): 149-154.
[6] 杨文平, 王春虎, 茹振钢. 秸秆还田对冬小麦品种百农矮抗58根际土壤微生物及土壤酶活性的影响. 东北农业大学学报, 2011, 42(7): 20-24.
[7] 杨滨娟, 黄国勤, 钱海燕, 樊哲文, 方豫. 秸秆还田对稻田生态系统环境质量影响的初步研究. 中国农学通报, 2012, 28(2): 200-208.
[8] 朱庆森, 王志琴, 张祖建, 惠大丰. 水稻籽粒充实程度的指标研究. 江苏农学院学报, 1995, 16(2): 1-4.
[9] 中国土壤学会农业化学专业委员会. 土壤农业化学常规分析方法. 北京: 科学出版社, 1983.
[10] 中国土壤学会农业化学专业委员会. 土壤理化分析. 上海: 上海科学技术出版社, 1981.
[11] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[12] 邓飞, 王丽, 刘利, 刘代银, 任万军, 杨文钰. 不同生态条件下栽培方式对水稻干物质生产和产量的影响. 作物学报, 2012, 38(10): 1930-1942.
[13] 郑成岩, 崔世明, 王东, 于振文, 张永丽, 石玉. 土壤耕作方式对小麦干物质生产和水分利用效率的影响. 作物学报, 2011, 37(8): 1432-1440.
[14] 黄明, 吴金芝, 李友军, 姚宇卿, 张灿军, 蔡典雄, 金轲. 不同耕作方式对旱作冬小麦旗叶衰老和籽粒产量的影响. 应用生态学报, 2009, 20(6): 1355-1361.
[15] 陈乐梅, 马林, 刘建喜, 石书兵, 郭飞, 库再拉, 蔺胜权. 免耕覆盖对春小麦灌浆期干物质积累特性及最终产量的影响. 干旱地区农业研究, 2006, 24(6): 21-24.
[16] 董钻, 沈秀瑛. 作物栽培学总论. 北京: 中国农业出版社, 2007.
[17] 武际, 郭熙盛, 鲁剑巍, 万水霞, 王允青, 许征宇, 张晓玲. 不同水稻栽培模式下小麦秸秆腐解特征及对土壤生物学特性和养分状况的影响. 生态学报, 2013, 33(2): 565-575.
[18] 杨敏芳, 朱利群, 韩新忠, 顾克军, 胡乃娟, 张振文, 卞新民. 耕作措施与秸秆还田对稻麦两熟制农田土壤养分、微生物生物量及酶活性的影响. 水土保持学报, 2013, 27(2): 272-275, 281-281.
[19] 罗宜宾. 秸秆还田对作物产量及土壤养分的影响. 现代园艺, 2013(2): 9-9.