生态学报  2014, Vol. 34 Issue (13): 3629-3534

文章信息

王秀梅, 陈鹏, 张锡珍, 阮长春
WANG Xiumei, CHEN Peng, ZHANG Xizhen, RUAN Changchun
使用生命表评价烯啶虫胺对异色瓢虫的影响
Evaluation of the effect of nitenpyram on Harmonia axyridis (Pallas) using life table technique
生态学报, 2014, 34(13): 3629-3534
Acta Ecologica Sinica, 2014, 34(13): 3629-3534
http://dx.doi.org/10.5846/stxb201306061368

文章历史

收稿日期:2013-6-6
修订日期:2014-4-21
使用生命表评价烯啶虫胺对异色瓢虫的影响
王秀梅1, 陈鹏1, 张锡珍2, 阮长春1     
1. 吉林农业大学生物防治研究所/天敌昆虫应用技术工程中心, 长春 130118;
2. 吉林省农业技术推广总站, 长春 130051
摘要:为正确评估广谱杀虫剂烯啶虫胺对天敌昆虫异色瓢虫Harmonia axyridis (Pallas)的影响,采取滤纸接触法测定了烯啶虫胺(防治蚜虫田间推荐用量)对异色瓢虫影响,并使用生命表研究了烯啶虫胺对异色瓢虫实验种群的影响,为协调害虫的化学防治与生物防治提供参考。结果表明:该剂量烯啶虫胺对异色瓢虫当代(F0)取食具有显著影响,药剂处理后7d内,成虫取食量显著降低;对F0代成虫寿命及雌虫繁殖能力未见负面影响;烯啶虫胺处理对异色瓢虫初产卵、F1代幼虫及蛹的历期没有显著影响;卵孵化率明显小于对照组,幼虫存活率及蛹羽化率没有显著影响。F0代种群净增值力、周限增长率、内禀增长率与对照相比差异不显著,分别为812.66粒(对照899.73粒)、1.084(对照1.093)、0.081(对照0.089),药剂处理种群加倍时间为8.557d,与对照7.888d相比没有显著延长。这些结果说明,大田中使用烯啶虫胺防治蚜虫时理论上对异色瓢虫种群繁殖及发育没有显著影响,但施药初期会影响异色瓢虫的取食量。
关键词异色瓢虫    烯啶虫胺    生命表    
Evaluation of the effect of nitenpyram on Harmonia axyridis (Pallas) using life table technique
WANG Xiumei1, CHEN Peng1, ZHANG Xizhen2, RUAN Changchun1     
1. Engineering Research Center of Natural Enemy Insects, Insititute of Biological Control of Jilin Agricultural University, Changchun 130118, China;
2. Jilin Provincial Agro-Tech Extension Center, Changchun 130051, China
Abstract:Nitenpyram is a class of neonicotinoid insecticide and also a so-called low risk insecticide which targets the pest.Nitenpyram has been registered for controlling a variety of insect pests, such as aphid, whitefly and thrip, in China. In order to investigate its non target effects, we estimated the effect of nitenpyram on Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) which is considered an important generalist predator that can be used as a biological control agent against Hemiptera Sternorrhyncha, Thysanoptera, and the eggs and larvae of Lepidoptera, Coleoptera and Diptera. The filter paper touch method normally used to estimate the killing effect of insecticide on insects was used in our report, and the field recommended dose (25 mg/L) and control (0 mg/L) were adopted. The effects of nitenpyram on Harmonia axyridis (Pallas) were investigated which included assessing fecundity, feeding amount and the longevity of the ladybird in F0. The results showed that when insecticides were applied at the adult stage, with 25 mg/L dosage or control, there were some negative effects on predation number of F0. When being treated by nitenpyram, predation of the adult Harmonia axyridis decreased greatly after 1-7 days; but had no negative impact on the longevity and fecundity of F0 adult Harmonia axyridis, however, the pre-ovipositing period was prolonged from 8.79 days to 9.79 days.At the same time, the survival rate and developmental time of H.axyridis in F1 were examined. Some characteristics were significantly reduced if treated with the field recommended dose of nitenpyram.The hatching and emergence rate of pupation were significantly decreased from 92.89% to 83.67% and from 77.74% to 59.99%, respectively; but the survival rate of larvae was not obviously influenced. At the same time, the laboratory population life table of ladybirds in F0 which were treated with 25 mg/L dosage or control was established by calculating the longevity, survival rate and adult reproduction. The net reproduction rate (R0), finite rate of increase (K), population doubling time (t) and intrinsic rates of increase (rm) of the F0 generation were no different from that of the control group. For example, the net reproduction rate (R0) of the treated population was 812.66 (899.23 for the control). The calculated population doubling time (t) were 7.788 d (control) and treated 8.557 d (treated); intrinsic rates of increase (rm) were 0.089 (control) and 0.081 (treated), respectively. All these results suggested that in an agricultural ecosystem, at the recommended field dose (25 mg/L), nitenpyram is a safe insecticide for the natural enemy. Nitenpyram has no obvious impact on the population fecundity and growth of Harmonia axyridis (Pallas) in prevention of aphids theoretically, but it has an influence on the predation of Harmonia axyridis (Pallas) in the early stage of pesticide delivery.
Key words: Harmonia axyridis (Pallas)    nitenpyram    life table    

在害虫综合管理(IPM)过程中,尽管采用化学药剂与天敌昆虫的协调应用进行害虫防治从理论上相驳[1, 2, 3],但在昆虫种类丰富的农田生态系统中,对害虫进行防治过程中会出现农药与天敌昆虫自然种群对害虫协同作用的现象,因此,评价药剂对天敌昆虫的影响对害虫综合管理具有重要意义。长期以来,评价农药对天敌昆虫的影响常用致死中浓度(LC50)或致死中量(LD50)来表示,但LC50或LD50只能表现出测试昆虫在某一发育阶段对药剂的反应,不能反映杀虫剂对测试昆虫种群的影响,而生命表技术可以从种群水平上分析种群动态规律,能较好的阐明杀虫剂对昆虫的影响[4, 5, 6, 7]

异色瓢虫Harmonia axyridis(Pallas)是一种非常重要的捕食性天敌昆虫,在全世界农业生产中得到了广泛应用。我国特别是东北地区作为异色瓢虫种群自然分布地,资源十分丰富[8],该种群资源对农业害虫具有一定的控制作用。但农田生态系统中害虫种类繁多、发生复杂、世代重叠,瓢虫往往只能控制某种或几种害虫,因此在生产中往往需要同时采用化学农药进行防治[9, 10]。烯啶虫胺(nitenpyram)是一种新型烟酰亚胺类杀虫剂,具有卓越的内吸性和渗透作用,对有益生物安全,害虫不易产生抗药性等特点[11, 12]。近两年该药剂已广泛应用于农业,防治白粉虱、蚜虫、梨木虱、叶蝉、蓟马等。目前,有关烯啶虫胺对褐飞虱、蚜虫、烟粉虱等活性及田间应用效果已有报道[13, 14, 15],但对于同一生境中的天敌昆虫异色瓢虫的安全性尚未见报道。因此,本文研究了田间推荐用量烯啶虫胺对异色瓢虫的取食、寿命、繁殖力及子代发育等方面影响,使用生命表,探讨异色瓢虫经烯啶虫胺处理后的种群参数变化,旨在评价烯啶虫胺对异色瓢虫的全面影响,为合理使用该药协调蚜虫的化学防治和生物防治提供参考。

1 材料与方法 1.1 供试材料 1.1.1 试虫

豆蚜Aphis craccivora(Koch)饲养于吉林农业大学生物防治研究所养虫室内蚕豆苗上;异色瓢虫于2012年10月中旬采自吉林农业大学校园,带回室内提供20%蜂蜜水于11 ℃冷驯化4 d后,置于3—6 ℃的冰箱中低温存储备用。实验开始前将成虫取出,11 ℃恢复24 h,转移至实验条件下饲养,挑取个体大小一致的瓢虫作为供试虫体。

实验条件为:(25±1) ℃,RH(60±5)%,L ∶ D=16 ∶ 8,以下所有实验均在此条件进行。

1.1.2 杀虫剂

50%烯啶虫胺可溶粒剂,南通江山农药化工股份有限公司生产,有效成分分子式:C11H15N4O2Cl。

1.2 实验方法 1.2.1 烯啶虫胺对异色瓢虫F0代的影响

以防治蚜虫田间推荐剂量(25 mg/L)烯啶虫胺处理异色瓢虫,施药方法采用滤纸接触法,具体参照Galvan等人的方法[16]:在培养皿(直径= 9 cm,高=2 cm) 的底部铺一层滤纸,然后吸取1 mL药剂均匀展布至滤纸上,风干1 h,分别接入待试的异色瓢虫雌、雄成虫,处理24 h后,配对饲养于培养皿中,每皿1对(♀ ∶ ♂=1 ∶ 1)。⑴ 对取食量的影响:将存活的一对个体分别移至放有一层滤纸的干净培养皿中,每皿300头蚜虫饲喂,每24 h更换1次蚜虫,连续饲喂10 d,统计每对异色瓢虫的日取食量;⑵ 对繁殖及寿命的影响:每皿挑取足量豆蚜饲喂异色瓢虫,每日观察3次(8: 00; 14: 00; 20: 00)),24 h后更换蚜虫,记录每头异色瓢虫雌虫产卵前期、产卵历期、产卵量及雌雄虫寿命,直至成虫死亡。上述处理各设20次重复,以清水处理的异色瓢虫为对照。

1.2.2 烯啶虫胺对异色瓢虫F1代的影响

挑取按上述药剂处理的F0代成虫初产卵120 粒(卵日龄小于12 h),转移至培养皿中发育,一旦发现有若虫孵化出来,立即单头接入放有蚕豆叶片的新培养皿中,同时放入豆蚜作为食物,每日添加蚜虫量分别为15、20、100、170、240、280、200、100头,直至化蛹,每个处理60头若虫, 每日观察4次(8:00,12:00,16:00, 20:00),记录卵期、幼虫龄期、蛹期及各龄期存活率(或孵化率、羽化率),对照组:以清水处理的F0代成虫初产卵120 粒(卵日龄小于12 h),其他方法同处理组。

1.3 生命表参数计算方法

生命表中参数的计算参照黄寿山的方法求得[17]。具体公式如下:净增殖率 R0=∑lxmx;平均世代周期T=∑lxmxX/R0;内禀增长率 rm=lnR0/T;周限增长率K=erm;种群加倍时间 t =ln2/rm,式中X为按年龄划分的单位时间间距,lx表示任一个体在X期间的存活率,mx表示在x期间平均每雌产雌数。

1.4 数据统计分析

所有数据的统计分析均采用 Microsoft Excel 2003 和DPS数据处理系统[18]进行,采用独立样本t检验进行差异显著性分析。

2 结果与分析 2.1 烯啶虫胺对异色瓢虫F0代取食能力的影响

烯啶虫胺处理对当代异色瓢虫成虫取食的影响见图 1曲线。药剂处理后10 d内处理组的取食量低于对照组,且调查期内两组处理异色瓢虫的取食量趋势相同,即取食量随饲喂天数逐渐增加至趋于稳定。其中1—7 d内,处理组的取食量显著低于对照组,8—10 d两者间无显著差异。最低取食量出现在实验开始后第1天,处理组每对异色瓢虫取食152头蚜虫,对照组为207头,之后取食量逐渐增加,到第7天时对照组和处理组取食量分别为241头和266头。8—10 d内两组处理异色瓢虫取食量趋于稳定。

图 1 烯啶虫胺处理后异色瓢虫连续10d日取食量变化比较 Fig. 1 Compared predation number of H.axyridis couple in 10d after nitenpyram treatment
2.2 烯啶虫胺对异色瓢虫F0代雌虫繁殖力的影响

烯啶虫胺处理异色瓢虫成虫后,对雌成虫繁殖力影响见表 1。从表中可以看出,经药剂处理后,当代成虫的产卵前期明显增长;而产卵历期、产卵总量及日均产卵量略低于对照组,但两组间没有显著差异。说明烯啶虫胺对当代成虫生殖力未见显著负面影响。

表 1 烯啶虫胺处理对F0代雌成虫繁殖能力的影响 Table 1 Effects of nitenpyram on fecundity of H.axyridis in F0
处理
Treatment
产卵前期/d
Pre-ovipositing period
产卵总量/粒
Number of eggs
/female
产卵历期/d
Ovipositing period
日均产卵量/粒
Average eggs oviposited
per female
0 mg/L8.79±0.261b911.36±2.87a37.77±5.29a33.87±3.76a
25mg/L9.79±0.45a824.21±2.13a31.15±5.09a30.49±2.84a
2.3 烯啶虫胺对异色瓢虫F0代寿命的影响

药剂处理对异色瓢虫雌雄虫寿命没有显著影响。药剂处理组雌虫平均寿命为49.31 d,略低于对照组的51.69 d,两者之间差异不显著(t=1.390,df=19,P=0.4569);雄虫平均寿命为46.54 d,略低于对照组平均寿命49.77 d,两者之间差异不显著(t=0.7711,df=19,P=0.2704)。这表明施用烯啶虫胺对异色瓢虫雌雄虫寿命未产生显著负面影响。

图 2 烯啶虫胺处理对F0代雌雄虫寿命的影响 Fig. 2 Effects of nitenpyram on longevity of H.axyridis in F0
2.4 烯啶虫胺处理对 F0代生命表参数的影响

根据所得实验数据,求出药剂处理后异色瓢虫F0代生命表参数(表 2)。从反映种群动态较为敏感的参数rm值来看,受药处理后,异色瓢虫种群内禀增长率低于对照;处理组净增值率低于对照组而种群加倍时间大于对照,但各组种群参数间差异均不显著。上述结果表明药剂处理后的异色瓢虫种群生殖力没有明显降低,药剂未对异色瓢虫种群增长速率产生明显抑制作用。

表 2 烯啶虫胺处理对异色瓢虫F0代生命表参数影响 Table 2 Effects of nitenpyram on life table parameters of H.axyridis in F0
处理
Treatment
净生殖力R0
Net reproduction
平均世代T/
Generation
average period/d
内禀增长率rm
Intrinsic rate
of increase
周限增长率K
Finite rate
of increase
种群加倍时间t/d
Population
doubling time
0 mg/L899.2376.420.0891.0937.788
25mg/L812.6682.720.0811.0848.557
2.5 烯啶虫胺处理对异色瓢虫子代发育的影响

实验结果表明(表 3),烯啶虫胺处理对异色瓢虫次代各虫态发育历期与对照相比,均未见明显差异,这表明药剂对异色瓢虫的发育速率没有抑制作用。

表 3 烯啶虫胺处理成虫对F1代各虫态发育历期的影响 Table 3 Effects of nitenpyram on developmental time of H.axyridis in F1
处理
Treatment
各虫态发育历期Development duration of different stages/d
卵期
Egg
1龄
1st instar
2龄
2nd instar
3龄
3rd instar
4龄
4th instar

pupae
0 mg/L2.36±0.13a2.04±1.76a1.81±0.29a1.68±0.10a3.52±0.11a4.34±0.06a
25mg/L2.63±0.05a2.08±0.11a1.85±0.43a1.63±0.13a3.50±0.08a4.30±0.07a
2.6 烯啶虫胺处理对异色瓢虫子代存活的影响

表 4可以看出,烯啶虫胺处理异色瓢虫所得的初产卵其孵化率明显小于对照组(t=3.3988,df=19,P=0.0246),幼虫各龄期存活率处理组与对照组间没有显著差异,蛹羽化率处理组显著低于对照组(t=4.199,df=59,P=0.0362)。

表 4 烯啶虫胺处理成虫对F1代各虫态存活的影响 Table 4 Effects of nitenpyram on survival rate of H.axyridis in F1
处理
Treatment
卵孵化率/%
Hatching rate
存活率Survival rate/% 羽化率/%
emergence rate
1龄
1st instar
2龄
2nd instar
3龄
3rd instar
4龄
4th instar
0 mg/L92.89±2.36a85.61±3.79a82.92±0.30a82.92±0.09a82.92±0.11a77.74±1.57a
25mg/L83.67±4.38b76.73±4.30a71.25±0.43a67.26±0.13a63.23±0.08a59.99±1.41b
2.7 烯啶虫胺处理对异色瓢虫F1代幼虫取食的影响

烯啶虫胺处理对异色瓢虫F1代幼虫取食影响见图 3。由图可知,处理组与对照组幼虫各龄期取食量间没有显著差异,幼虫取食量随龄期增加而增大,进入4龄第2天取食量达最大值,单头若虫日取食量为200头左右。

图 3 烯啶虫胺处理成虫对F1代各龄期幼虫取食的影响 Fig. 3 Effects of nitenpyram on predation number of larva in F1
3 结论与讨论

烯啶虫胺是近几年在我国登记上市的一种新型的高效广谱杀虫剂,研究发现它对多种农业害虫具有高效的防治效果,且对非靶标节肢动物具有良好的选择性,对哺乳动物、鱼类和鸟类的毒性极低。本实验结果表明,药剂处理后7 dF0代异色瓢虫取食量显著降低,而F0代寿命、雌虫繁殖能力及F1代发育及取食均无显著影响。可以看出,烯啶虫胺对天敌昆虫异色瓢虫具有一定生物活性,但不具杀虫活性,对异色瓢虫具有较高的安全性。大量研究表明,不同药剂对天敌的安全性差异较大,杨洪等研究发现,氯虫苯甲酰胺处理黑肩绿盲蝽3 龄若虫对其F1代发育历期、产卵期和产卵量均有一定的影响;王小艺等也发现亚致死剂量鱼藤酮和氰戊菊酯可使异色瓢虫总发育历期显著延长[19];胡聪等报道的艾美乐和扑虱蚜显著抑制多异瓢虫生殖力有一定的抑制作用[20];王允场报道的哒螨灵低剂量处理巴氏钝绥螨具有刺激其生殖作用[21]。产生上述不同结论的原因可能是由于不同杀虫剂对昆虫的作用机理及卵巢发育的作用机制不同。

生命表是研究昆虫种群数量变动机制的重要方法[22],增长率rm和净生殖力 R0 是表征昆虫种群动态的重要参数,其中内禀增长率综合考虑了种群的出生率和死亡率、种群的性比和繁殖力等诸多因素,因此能敏感地反映出各种因素对种群的综合影响[23, 24, 25, 26]。在本研究中,烯啶虫胺处理异色瓢虫后,种群内禀增长率和净生殖力没有发生显著变化,这说明该药剂未对异色瓢虫种群的增长速率产生负面影响。杨洪等人指出种群存活曲线既可以反映物种的特征,又可以反映环境的作用。在本研究中烯啶虫胺处理异色瓢虫F0代成虫,其F1代各虫态存活率与对照相比均未见显著降低,从该结果可知,烯啶虫胺田间推荐用量在种群水平上未延缓异色瓢虫种群发育速率。然而在田间用药过程中,多种因素会作用于天敌昆虫,本研究以防治蚜虫田间推荐用量为施药浓度,在室内稳定的环境条件下进行的,它排除了室外气候、种群密度、猎物是否接触药剂及不同的温湿度组合等条件,与自然种群的真实情况不可能完全一致,但该结论仍可以明确的反映出药剂对各个发育阶段的影响程度以及受药后种群动态的一些重要参数的变化,所得结果在综合治理中可作为参考。

参考文献
[1] Devine G J, Furlong M J. Insecticide use: contexts and ecological consequences. Agriculture and Human Values, 2007, 24(3): 281-306.
[2] Holt R D, Hochberg M E. When is biological control evolutionarily stable (or is it)?. Ecology, 1997, 78(6): 1673-1683.
[3] Margaret C G, Gregory M. Glenn F K, Tandem use of selective insecticides and natural enemies for effective, reduced-risk pest management. Biological Control, 2010, 52(3): 208-215.
[4] Robertson J L, Worner S P. Population toxicology: suggestions for laboratory bioassays to predict pesticide efficacy. Journal of Economic Entomology, 1990, 83(1): 8-12.
[5] Day K, Kaushik N K. Assessment of the chronic toxicity of the synthetic pyrethroid, fenvalerate, to Daphnia galeata mendotae, using life tables. Environmental Pollution, 1987, 44(1): 13-26.
[6] Levin L, Caswell H, Bridges T, Dibacco C, Cabrera D, Plaia G. Demographic responses of estuarine polychaetes to pollutants: life table response experiments. Ecological Applications, 1996, 6(4): 1295-1313.
[7] Yang H, Wang Z, Jin D C. Effects of chlorantraniliprole on experimental populations of cyrtorhinus lividipennis (Reuter) (Hemiptera: Miridae). Acta Ecologica Sinica, 2012, 32(16): 5184-5190.
[8] Ruan C C, Du W M, Wang X M, Zhang J J, Zang L S. Effect of long-term cold storage on the fitness of pre-wintering Harmonia axyridis (Pallas). BioControl, 2012, 57(1): 95-102.
[9] Wang F W, Wang S, Zhang F, Pang H. Influence of imidacloprid on predatory capacity of Harmonia axyridis (Pallas) under different temperatures. Journal of Environmental Entomology, 2010, 32(4): 504-509.
[10] Koch R L. The multicolored Asian lady beetle, Harmonia axyrid is: A review of its biology, uses in biological control, and non-target impacts. Journal of Insect Science, 2003, 3: 1-16.
[11] Li X D. Evaluation of Effectiveness of Several Insecticides on Bemisia tabaci (Gennadius) and Application Study of Nitenpyra [D]. Yangzhou: Yangzhou University, 2009.
[12] Xu S, Dong Y Z, Chen B X, Lu H, Chen P H. Laboratory activities and field application of nitenpyram against Aphis citricola. Agrochemicals, 2011, 50(7): 526-528.
[13] Obana H, Okihashi M, Akutsu K, Hori S. Determination of acetamiprid, imidacloprid, and nitenpyram residues in vegetables and fruits by high-performance liquid chromatography with diode-array detection. Journal of Agricultural and Food Chemistry, 2002, 50(16): 4464-4467.
[14] Watanabe E, Baba K, Eun H. Simultaneous determination of neonicotinoid insecticides in agricultural samples by solid-phase extraction cleanup and liquid chromatography equipped with diode-array detection. Journal of Agricultural and Food Chemistry, 2007, 55(10): 3798-3804.
[15] Fu Y, Lin T, Chen M L, Gui W J, Zhu G N. Residue decline study of nitenpyram in orange and soil. Chinese Journal of Pesticide Science, 2012, 14(4): 423-428.
[16] Galvan T L, Koch R L. Hutchison W D. Effects of spinosad and indoxacarb on survival, development, and reproduction of the multicolored Asian lady beetle (Coleoptera: Coccinellidae). Biological Control, 2005, 34(1): 108-114.
[17] Huang S S, Dai Z Y, Wu D Z. The establishment and application of the experimental population life tables of Trichogramma spp. on different hosts. Acta Phytophylacica Sinica, 1996, 23(3): 209-212.
[18] Tang Q Y. DPS°Data Processing System Experimental Design, Statistical Analysis and Data Mining. 2nd ed. Beijing: Science Press, 2010: 84-87.
[19] Wang X Y, Shen Z R, Xu W B, Lu J. Sublethal effects of insecticides on fecundity of multicolored Asian ladybird Harmonia axyridis. Chinese Journal of Applied Ecology, 2003, 14(8): 1354-1358.
[20] Hu C, Li B B, He D H, Zhao L, Ma S Y. Effect of low-dose treatments of imidacloprid on predatory response and reproduction in Hippodamia variegate (Goeze). Journal of Agricultural Sciences, 2008, 29(3): 23-25.
[21] Wang Y C. Studies on Toxicity of Insecticides (Acaricides) to Amblyseius barkeri and Sublethal Effects [D]. Chongqing: Southwest University. 2009.
[22] Zhang X X. Insect Ecology and Prediction. 3rd ed. Beijing: China Agriculture Press, 2002: 79-80.
[23] Ricbard O W. The theoretical and practical study of natural insect populations. Annual Review of Entomology, 1961, 6(1): 147-162.
[24] Morris R F, Fulton N C. Models for the development and survival of Hyphantrla cunea in relation to temperature and humidity. Entomological Society of Canada, 1970, 70: 1-60.
[25] Varley G C, Gradwell G R. Recent advances in insect population dynamics. Annual Review of Entomology, 1970, 15(1): 1-24.
[26] Tsai J H, Wang J J. Effects of host plants on biology and life table parameters of Aphis spiraecola (Homoptera: Aphididae). Environmental Entomology, 2001, 30(1): 44-50.
[7] 杨洪, 王召, 金道超. 氯虫苯甲酰胺对黑肩绿盲蝽实验种群的影响. 生态学报, 2012, 32(16): 5184-5190.
[9] 王峰巍, 王甦, 张帆, 庞虹. 不同温度对经吡虫啉处理的异色瓢虫捕食能力的影响. 环境昆虫学报, 2010, 32(4): 504-509.
[11] 李兴东. 几种防治烟粉虱的药剂评价及烯啶虫胺应用研究 [D]. 扬州: 扬州大学, 2009.
[12] 徐淑, 董易之, 陈炳旭, 陆恒, 陈培华. 烯啶虫胺对柑橘绣线菊蚜的室内杀虫活性及田间应用效果. 农药, 2011, 50(7): 526-528.
[15] 付岩, 林婷, 陈梦丽, 桂文君, 朱国念. 烯啶虫胺在柑橘和土壤中的残留及消解动态. 农药学学报, 2012, 14(4): 423-428.
[17] 黄寿山, 戴志一, 吴达璋. 赤眼蜂实验种群生命表的编制与应用. 植物保护学报, 1996, 23(3): 209-212.
[18] 唐启义. DPS°数据处理系统——实验设计、统计分析及数据挖掘 (第二版). 北京: 科学出版社, 2010: 84-87.
[19] 王小艺, 沈佐锐, 徐文兵, 卢健. 亚致死剂量杀虫剂对异色瓢虫繁殖力的影响. 应用生态学报, 2003, 14(8): 1354-1358.
[20] 胡聪, 李蓓蓓, 贺达汉, 赵丽, 马世谕. 低剂量吡虫啉对多异瓢虫捕食蚜虫及繁殖的影响. 农业科学研究, 2008, 29(3): 23-25.
[21] 王允场. 几种杀虫(螨)剂对巴氏钝绥螨的毒力及亚致死效应研究 [D]. 重庆: 西南大学, 2009.
[22] 张孝羲. 昆虫生态及预测预报 (第三版). 北京: 中国农业出版社, 2002: 79-80.