生态学报  2014, Vol. 34 Issue (13): 3568-3575

文章信息

李倩, 刘晓, 张晓飞, 张瑞昌, 柴永福, 岳明
LI Qian, LIU Xiao, ZHANG Xiaofei, ZHANG Ruichang, CHAI Yongfu, YUE Ming
UV-B辐射方向对白三叶克隆整合的影响
Effects of UV-B radiation direction on physiological integration in Trifolium repens
生态学报, 2014, 34(13): 3568-3575
Acta Ecologica Sinica, 2014, 34(13): 3568-3575
http://dx.doi.org/10.5846/stxb201210251481

文章历史

收稿日期:2012-10-25
修订日期:2014-2-25
UV-B辐射方向对白三叶克隆整合的影响
李倩1, 2, 刘晓1, 张晓飞1, 3, 张瑞昌1, 柴永福1, 岳明1     
1. 西部资源生物与现代生物技术省部共建教育部重点实验室, 西北大学, 西安 710069;
2. 陕西省西安植物园(陕西省植物研究所), 西安 710061;
3. 中煤科工集团西安研究院有限公司, 西安 710054
摘要:增强UV-B辐射会对植物生长和生理生化过程产生有害效应。克隆植物中,相连的克隆分株对经常共享资源和激素,然而鲜有关于异质性UV-B辐射下UV-B辐射方向对克隆整合的影响及克隆植物形态结构变化的报道。模拟同质(克隆分株片段均处于自然背景辐射)和异质(克隆分株一端处于自然背景辐射,另一端处于补加的UV-B辐射)UV-B辐射,以克隆植物白三叶为材料,进行连接和隔断处理,研究UV-B辐射方向对克隆整合强度变化、叶片形态结构特化及生理可塑性的影响。结果表明:异质性UV-B辐射下,15N同位素标记端保留的15N百分比高于同质UV-B辐射处理,转移到无标记相连端的15N含量则降低,紫外辐射处理和同位素标记是否处于同一分株端对结果无显著性影响,说明克隆植物白三叶生理整合存在但整合强度降低,辐射方向与克隆整合强度无关;隔断处理组气孔长度增加,栅栏组织增厚,但连接处理组却无此变化,表明生理整合在白三叶叶片形态结构特化中发挥作用。UV-B辐射下,最小荧光、电子传递速率及光化学淬灭系数降低但非光化学淬灭系数升高,而生理整合却使结果相反;叶绿素和紫外吸收物可在异质性UV-B辐射相连的两端运输分享。以上均表明异质UV-B辐射环境中,UV-B辐射胁迫端克隆分株通过生理整合从非胁迫端获益,并以此提高胁迫环境中克隆植物对资源的利用效率。
关键词克隆整合    环境异质性    UV-B辐射    白三叶    
Effects of UV-B radiation direction on physiological integration in Trifolium repens
LI Qian1, 2, LIU Xiao1, ZHANG Xiaofei1, 3, ZHANG Ruichang1, CHAI Yongfu1, YUE Ming1     
1. Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China;
2. Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an 710061, China;
3. Xi'an Research Institute of China Coal Technology and Engineering Group Corp, Xi'an 710054, China
Abstract:Clonal plants are widely distributed in all types of ecosystems, and dominate in many of them. Vascular connections (e.g. stolons or rhizomes) of clonal plants can transport resources such as carbohydrates, water and nutrient between interconnected ramets. This feature has been long considered to be adaptive in all types of ecosystems, particularly in environments where resources or stressful factors are patchily distributed in both time and space. Many studies have shown that the stressed ramets of clonal fragments can be supported by resource translocation from the connected unstressed ramets, for example, clonal integration can alleviate local stress caused by shading, drought, salinity, serpentine soils, mechanical stimulation and sand burial. Ultraviolet-B (UV-B) radiation (280-315 nm) can result in deleterious effects on many plant growth processes because it is strongly absorbed by many macromolecules and causes their conformational changes, especially proteins and nucleic acids. Environmental UV-B radiation is highly variable in spatial and temporal distributions. It is controlled by a great deal of factors, such as changes in the solar elevation with latitude, time of day, season and clouds. Little is still known about the response of physiological integration in clonal plants to heterogeneous ultraviolet-B radiation. In this study, pairs of connected and severed ramets of the stoloniferous herb Trifolium repens were grown under the homogeneity (both of ramets received only natural background radiation) and heterogeneity of UV-B radiation (one of the ramet received only natural background radiation and the other was exposed to supplemental UV-B radiation). Changes in intensity of nutrient integration were followed with 15N-isotope labeling of the xylem water transport. Stomata density, length, the thickness of wax, cuticle epidermal cell and palisade tissue were observed to study leaf anatomic characters. The effects of heterogeneous UV-B radiation on chlorophyll fluorescence of a clonal plant T. repens were evaluated. In order to assess the patterns of physiological integration contents of chlorophyll and UV-B absorbing compounds were determined. When ramets were connected and exposed to heterogeneous UV-B radiation, the percentage of 15N left in labeled ramets that suffered from enhanced UV-B radiation was higher and their transfer to unlabeled ramets lower. The intensity of physiological integration of T. repens for resources decreased under heterogeneous ultraviolet-B radiation in favor of the stressed ramets. Severing groups under UV-B radiation had more closed stomas (according to stomatal length) and the thickness of palisade tissue, results were reversed in connecting groups, indicating physiological integration plays a role in anatomic characters. Additive UV-B radiation resulted in a notable decrease of the minimal fluorescence of dark-adapted state (Fo), the electron transport rate (ETR) and photochemical quenching coefficient (qP) and an increase of non-photochemical quenching (NPQ) under heterogeneous UV-B radiation, while physiological connection reverse the results. Chlorophyll and UV-B absorbing compounds were shared between connected ramets under heterogeneous UV-B radiation. Ultraviolet-B stressed ramets benefited from unstressed ramets by physiological integration, improving resource efficiency on clonal plants in less favorable sites.
Key words: physiological integration    environmental heterogeneity    ultraviolet-B radiation    Trifolium repens    

克隆植物生理整合是指在源-汇关系的驱动下,糖类、营养物质和水分等物质和资源通过匍匐茎或根状茎在克隆分株间进行传输和分享的过程[1, 2, 3, 4, 5]。许多研究表明克隆整合可以使克隆植物跨越并占据尺度不同的生境资源斑块,在胁迫环境下尤为明显[6, 7, 8]。植物生长和繁殖的必需资源(如光照、水分和矿质元素等)以及其所处的环境条件(如温度、湿度、干扰、采食和病原体等)无论在时间上还是空间上都是异质性的,即使在很小的尺度上这种异质性也是存在的[3, 9]。环境异质性作为一种选择压力,使植物在进化过程中可能会形成某种适应对策。例如,有克隆分株相连的野生草莓(Fragaria vesca)母株(基株)的光合效率因分株受遮荫和干旱胁迫而增加,这种反应是与源-库假说相一致的反馈调节机制[10]。Wijesinghe和Hutchings发现生理整合在异质性环境中要比同质性环境更具优势[4]。近年来有关克隆整合的研究多数集中在生理整合对资源异质性的响应[5, 11],以及对一些胁迫环境异质性的响应,例如盐害、重金属污染、蛇纹岩土壤、病原体等[12, 13, 14, 15],这些研究表明胁迫端分株生长受损可由无胁迫端分株的生理整合得到补偿,以提高整体适合度,但有关克隆整合对异质性UV-B辐射响应的报道很少[16, 17]

太阳背景辐射中的UV-B虽然在光谱中比例不高,但却具有极大的生物学效应,影响植物的生长发育过程。植物细胞中的蛋白质和核酸等大分子吸收UV-B辐射,自身分子构象被改变,而且植物还可以通过增加角质层和叶片厚度,提高UV-B保护色素的含量来防御UV-B辐射的伤害[18, 19]。太阳辐射中的UV-B辐射强度无论在时间还是空间上都具有很大的异质性,受到诸如地理纬度、海拔高度、云量、太阳高度角等多种因素的控制[20]。林下光斑中甚至存在毫秒级的光照强度的变化。

白三叶(Trifolium repens)是豆科的多年生克隆植物,其克隆分株间通过匍匐茎相连。白三叶对外界生物和非生物因素表现出高度的可塑性,其变种对增强的UV-B辐射敏感[21]。先前的研究发现异质性UV-B辐射下,白三叶水分和N生理整合强度降低;生理指标和光合效率的变化显示UV-B辐射胁迫端通过生理整合获益,但这以UV-B辐射非胁迫端的损耗为代价[16, 17]。其结论对克隆植物生理整合的认识拓展到光化学和防御整合方面,然而有关异质性UV-B辐射下UV-B辐射方向及克隆植物形态结构变化鲜有研究。本研究模拟同质和异质UV-B辐射,进行两组试验,连接和隔断,来验证以下假设:1) 异质性UV-B辐射下,克隆植物白三叶生理整合增强的变化与UV-B辐射方向无关;2)异质性UV-B辐射下,克隆植物白三叶形态结构发生特化;3)异质性UV-B辐射下,克隆植物白三叶存在防御性生理整合。

1 材料和方法 1.1 试验材料与设计

供试材料为白三叶(T. repens cv. C615),取自西北大学校园内(海拔397 m,地理位置为34.3° N,108.9° E),试验于2009年12月—2010年5月在西北大学生物园温室内进行。白三叶分株在温室内培养3代(减少遗传差异)后,选取大小一致的36对克隆分株移至塑料方盆(60 cm长 × 40 cm宽 × 20 cm高)中,塑料盆中土壤基质为沙 ∶ 有机质 ∶ 泥炭=1 ∶ 1 ∶ 2,每周浇水两次。将这些克隆分株对按图 1分成6组,两组同质性UV-B辐射处理(A、B),4组异质性UV-B辐射处理(用PVC挡板隔开,C和D)。其中A和B组仅接受自然背景辐射,辐射剂量为0.6 kJ · m-2 · d-1,C和D组处理的一端用40W的紫外灯(北京光电源仪器公司)从9:00—17:00辐射1周,紫外灯周围覆醋酸纤维素膜以滤去UV-C,补加的辐射剂量为2.54 kJ · m-2 · d-1(紫外辐照计,北京师范大学光电仪器厂),另一端不进行补加处理。

图 1 试验设计 Fig. 1 Experimental design 白三叶(Trifolium repens)克隆分株对随机分为6组,3组连接处理和3组隔断处理; 连接处理指克隆分株间通过匍匐茎相连,隔断处理是指PVC挡板隔开白三叶克隆分株对; A和B组为同质性UV-B辐射,仅接受自然背景辐射,C和D组为异质性UV-B辐射,分株一端(Ⅱ和Ⅲ)补加UV-B辐射,另一端不进行补加处理(Ⅰ和Ⅳ),接受自然背景辐射
1.2 测定项目及方法 1.2.1 15N同位素标记及测定

2010年12月16日,将4 mL 40 g/L的尿素溶液(15N丰度为10%,购于上海化工研究院)按图 1所示用毛笔均匀涂抹在白三叶叶子上,1周后,将克隆分株对从匍匐茎中间剪断、收获,样品在70 ℃下烘干48 h,过<0.3 mm筛后进行同位素分析。用改进型ZHT-203质谱仪(北京仪器厂)测定样品茎叶中总N和15N含量,然后计算出15N的百分比[22],由于根量太少,将其和茎混合在一起测定。

1.2.2 形态结构特化指标测定

2010年4月12日,参照Hirose等的方法[23],取一部分样品用FAA固定液固定,经系列酒精脱水、透蜡、包埋,常规石蜡切片,切片厚度为6—10 μm,番红-固绿双重染色,中性树胶封片,Leica-DMLB显微镜观察并照相,并应用Motic Image Plus 2.0软件在镜下测定蜡质与角质厚度、表皮细胞与栅栏组织细胞大小和厚度。另一部分叶片样品用于叶表皮气孔密度与气孔大小的测定:将叶片近中段连同中脉(便于判断上、下表面)横剪取数段,用沸水浸泡数分钟后,迅即将材料投入冷水浸泡,倾去冷水,加入5%次氯酸钠(NaClO)溶液置恒温40 ℃下约18—24 h,待材料边缘变白,即可取出撕取上表皮(部位基本一致,约在中脉两侧各1 cm范围内),置载玻片上,酒精系列脱水,1%番红染色,加拿大树胶封片。光学显微镜下观察、测量、计数、照相。气孔密度为随机计数5个视野取平均值换算,气孔大小随机测量10个气孔长度取平均值及变幅。

1.2.3 生理指标测定

(1)叶绿素荧光参数测定

2010年5月20日,叶绿素荧光参数采用LI-6400(LI-COR Inc,美国)便携式光合仪叶绿素荧光测定系统测定。选取受光方向一致的叶片(叶片同光合),叶片暗适应20 min后,测定初始荧光(Fo)、最大荧光(Fm)和光系统Ⅱ最大光化学效率(Fv/Fm),测定光适应下光合R电子传递速率(ETR),光化学猝灭系数(qP)和非光化学猝灭参数(NPQ)。以上各项参数的数据测定均进行5次重复(试验分组参照图 1)。

(2)光合色素测定

2010年5月22日,称取0.1 g叶片,剪成数段放入50 mL提取液(1 ∶ 1的无水乙醇和丙酮)中,在25 ℃黑暗条件下提取24 h,测定提取液在663和645 nm处的吸光值,叶绿素含量按照李合生的公式计算[24]

(3)紫外吸收物含量测定

2010年5月22日,称取0.5 g叶片,放入100 mL酸性甲醇(甲醇 ∶ 盐酸 ∶ 水=79 ∶ 1 ∶ 20)溶液中浸提24 h,测定提取液在300 nm处的吸光值,紫外吸收物含量按照Day等的方法改进测定[25]

1.3 数据分析

采用STATISTICA 6.0软件对数据进行单因素方差(ANOVA)处理和Duncan多重极差检验,利用ORIGIN7.5作图。

2 结果和分析 2.1 异质性UV-B辐射下,克隆植物白三叶生理整合程度变化

图 2可以看出,异质性UV-B辐射处理下,白三叶15N同位素标记端留下的15N百分比要高于同质性UV-B辐射处理,而转移到无标记相连端叶片的15N含量则降低,而且无论15N同位素标记处于哪个克隆分株端(UV-B辐射胁迫端或UV-B辐射非胁迫端)对结果均无显著性影响,结果说明异质性UV-B辐射下,克隆植物白三叶15N整合存在但整合强度降低。连接处理中,同质UV-B辐射处理下,15N标记端叶子中15N百分比低于异质UV-B辐射处理下15N标记端(紫外辐射处理和同位素标记处于同一端称为CⅡ处理组,紫外辐射处理和同位素标记处于不同端称为CⅣ处理组,A Ⅱ 2.33% vs CⅡ 4.8%和CⅣ 3.83%),差异达到显著水平(P<0.05),而且紫外辐射和同位素标记处于同一端的15N含量要低于紫外辐射和同位素处于不同端的处理(CⅡ3.76% < CⅣ6.57%);隔断处理中,同质UV-B辐射处理下15N标记端15N百分比为6.52%,显著低于异质UV-B辐射处理下的11.63%,同样因为是切断处理,A I端和CⅠ端15N含量为0,在图中不显示。

图 2 同质 (A,B) 和异质 (C,D) UV-B辐射下白三叶不同处理组克隆片段不同组分中15N同位素的分配率 Fig. 2 Partitioning of 15N among ramet components within clonal fragments in Trifolium repens on different treatment groups for the effects of homogeneous (A,B) and heterogeneous (C,D) UV-B radiation 图中相同字母代表P<0.05时不同处理间差异不显著;可参照图 1的试验设计
2.2 异质性UV-B辐射下,克隆植物白三叶形态结构特化

表 1可以看出,切断处理组中,与同质性UV-B辐射处理组相比,异质性UV-B辐射处理组克隆植物白三叶叶片气孔长度和栅栏组织厚度增加,但连接处理组结果却无此变化,二者的区别在于白三叶克隆分株间匍匐茎的相连,可能和克隆植物生理整合相关。同质UV-B辐射下,气孔密度,气孔长度和表皮细胞厚度均有显著性变化,推断可能是切断处理影响所致。

表 1 同质 (A,B) 和异质UV-B (C,D) 辐射下白三叶(Trifolium repens)不同处理组的解剖结构参数 Table 1 Anatomic characteristic parameters in Trifolium repens on different treatment groups for the effects of homogeneous (A,B) and heterogeneous (C,D) UV-B radiation
处理组
Treatment
groups
气孔密度
Stomatal Density/
(个/mm2)
气孔长度
Stomatal Length/
μm
表皮细胞厚度
the thickness of
epidermal cell/
μm
栅栏组织厚度
the thickness of
palisade tissue/
μm
表 中同列平均值后有相同字母表示不同处理间结果无显著性差异(P<0.05); 可参照图 1的试验设计
A345 a11.64 c2.77 b6.96 b
B306 b13.30 b2.32 c5.77 bc
CⅠ230 c11.65 c3.30 ab5.40 c
CⅡ361 a12.71 bc3.15 b5.46 c
DⅠ275 bc13.40 b3.30 ab5.41 c
DⅡ346 a15.96 a3.65 a10.18 a
2.3 异质性UV-B辐射下,克隆植物白三叶叶绿素荧光参数的变化

表 2所示,同质性UV-B辐射下,白三叶克隆分株叶绿素荧光参数初始荧光(Fo)、最大荧光(Fm)、光系统II的最大光量子产量(Fv/Fm)、光合R电子传递速率(ETR)和光化学淬灭系数(qP)无明显变化,但非光化学淬灭系数(NPQ)在切断处理组(B Ⅰ和B Ⅱ)要比连接处理组(A Ⅰ和A Ⅱ)中大。异质性UV-B辐射下,补加UV-B辐射处理组(CⅡ和D Ⅱ)中Fo、ETR和qP显著降低,NPQ明显升高。克隆分株间匍匐茎的连接使处于无UV-B辐射但分株和处于补加UV-B辐射白三叶克隆分株相连的分株片段(CⅠ)的ETR和qP增加,NPQ降低,这和D I (无UV-B辐射且分株和处于UV-B辐射克隆分株不相连)、A Ⅱ (无UV-B辐射但分株和处于UV-B辐射克隆分株相连)的结果不同,可能与克隆植物匍匐茎相连引起的生理整合有关。

表 2 同质 (A,B) 和异质 (C,D) UV-B辐射下白三叶不同处理组的叶绿素荧光参数的变化 Table 2 Effects of heterogeneous UV-B on chlorophyⅡ flurescence parameters in connected and/or severed ramets under homogeneous (A and B) or heterogeneous UV-B radiation (C and D) in leaves of Trifolium repens
处理组
Treatment
初始荧光
Fo
最大荧光
Fm
最大量子
产量
Fv/Fm
电子传递速率
ETR/
(μmol m-2 s-1)
光化学
淬灭系数
qP
非光化学
淬灭系数
NPQ
表 中同列平均值后有相同字母代表P<0.05时不同处理间差异不显著; 可参照图 1的试验设计
AⅠ194.36±1.92a980.38±9.60ab0.80±0.01ab97.00±4.50a0.48±0.06a0.01±0.01c
AⅡ192.43±2.72a1063.91±35.43a0.82±0.01a90.76±12.28ab0.50±0.06a0.07±0.01c
BⅠ192.50±2.09a1032.35±27.13ab0.81±0.01ab74.30±21.25bc0.45±0.02ab0.50±0.01ab
BⅡ192.44±2.68a1074.51±38.15a0.82±0.01a73.20±17.20bc0.52±0.05a0.54±0.16ab
CⅠ172.87±2.40ab912.73±15.67b0.81±0.01ab66.85±14.21c0.41±0.06b0.55±0.03ab
CⅡ161.77±1.92b826.00±9.86b0.80±0.00b66.82±4.31c0.35±0.01bc0.58±0.33ab
DⅠ188.01±3.78a998.38±19.65ab0.81±0.01ab82.91±11.02b0.46±0.02a0.37±0.22b
DⅡ154.95±0.19b816.23±20.02b0.80±0.00b55.76±4.97c0.30±0.03c0.76±0.03a
2.4 异质性UV-B辐射下,克隆植物白三叶生理指标的变化

表 3显示同质性UV-B辐射下(A和B组),叶绿素a、叶绿素b、总叶绿素和紫外吸收物含量均无显著性差异。异质性UV-B辐射下,切断处理(D)组中,叶绿素a、叶绿素b和总叶绿素含量也无明显变化,但紫外吸收物含量在D Ⅱ中升高;连接处理(C组)中,UV-B辐射端(CⅡ)叶绿素a、叶绿素b和总叶绿素含量要高于CⅠ,且CⅡ中叶绿素a、叶绿素b和总叶绿素含量要比同质性处理(A组)高13.2%,13.0% 和9.0%,不同的是CⅠ,它无补加UV-B辐射处理,仅和辐射端相连,它的叶绿素a、叶绿素b和总叶绿素含量要低于同质性处理(A组)。UV-B辐射下,CⅡ和D Ⅱ紫外吸收物含量升高,但CⅠ,无补加UV-B辐射,仅和辐射端相连,紫外吸收物含量也是升高的,这可能由克隆分株间的生理整合造成。

表 3 同质 (A,B) 和异质 (C,D) UV-B辐射下白三叶不同处理组的叶绿素及紫外吸收物含量的变化 Table 3 The effects of physiological integration and heterogeneous UV-B on contents of chlorophyll and UV-B absorbing compounds in connected and/or severed ramets under homogeneous (A and B) or heterogeneous UV-B radiation (C and D) in leaves of Trifolium repens
参数
Parameters
处理组Group
ABCⅠCⅡD ⅠD Ⅱ
表 中同行相同字母代表P<0.05时不同处理间差异不显著; 可参照图 1的试验设计
叶绿素a Chl a/(mg/g干重)0.70±0.01b0.71±0.01b0.66±0.01c0.80±0.00a0.62±0.01d0.63±0.00d
叶绿素b Chl b/(mg/g干重)0.31±0.01bc0.31±0.01c0.29±0.01c0.35±0.00a0.30±0.01bc0.28±0.00c
总叶绿素Total chl/(mg/g干重)1.05±0.02b1.06±0.01b0.99±0.02c1.19±0.01a0.96±0.02d0.94±0.00d
紫外吸收物UV-B-absorbing compounds2.92±0.02b2.90±0.12b3.80±0.22a3.88±0.17a2.88±0.02b3.91±0.32a
3 讨论 3.1 异质性UV-B辐射下白三叶生理整合程度的变化与辐射方向无关

生理整合在克隆植物中广泛存在,例如羊草(Leymus chinensis)、沙生苔草(Carex praeclara)、白三叶和黑麦草(Lolium perenne)等一些种的相连克隆分株之间经常发生生理整合[21, 26, 27, 28]。Evans通过研究沙生苔草15N的流动,发现在野外和温室条件下都存在着生长在高养分条件下的老分株向生长在低养分条件下的幼小分株输出养分的现象[28]。本研究中,通过图 2可以看出标记的N通过相连的白三叶匍匐茎从标记端向相反的非标记端移动,表明白三叶养分生理整合无论在同质还是异质UV-B辐射下均存在。

养分整合是克隆植物生理整合过程中非常重要的一部分,其受到遗传、形态结构、生理功能和环境因子等的影响[29, 30]。异质性环境下,处于资源丰富斑块中的克隆分株常作为“供体”提供资源,而处于资源贫乏斑块中的分株则作为“受体”接受资源。本研究中,异质性UV-B辐射下,标记端的N转移到非标记端的量减少,保留在标记端的N含量(CⅡ 4.8%和CIV 3.83%)高于同质性UV-B辐射下的N含量(A Ⅱ 2.33%),且紫外辐射和同位素标记处于不同端的N转移含量要低于紫外辐射和同位素处于同一端的处理(CⅡ3.76% vs CIV6.57%),可能与UV-B辐射信号传递的快慢相关,说明异质性UV-B辐射下养分生理整合强度降低,UV-B辐射对植物的生长和生理过程均有有害影响,植物为了更好地应对增强的UV-B辐射,可能会使紫外辐射端拥有更多的资源,而向相邻端转移的资源就会减少,靠优先保存自身来提高克隆植物整体适合度,从而增强整个克隆植株对UV-B辐射的防御能力。

3.2 异质性UV-B辐射下白三叶形态结构特化

叶片结构特征最能体现外界环境因子的影响或植物对环境的适应性,被认为是植物进化过程中对环境变化比较敏感而且可塑性较大的器官。UV-B辐射下,叶片气孔密度增加,而且气孔闭合数增加,气孔阻力增大,通过增强叶片对CO2的摄入来提高叶片与外界环境之间的气体交换能力,进而使光合作用速率升高,而且发达的栅栏组织是植物对强光生境的适应性表现形式[31]。本研究中,相比同质性UV-B辐射,异质性UV-B辐射下,切断处理组气孔长度增加(DⅡ15.96 vs B13.30),栅栏组织增厚(DⅡ10. 18 vs B5.77),和前人的研究结果一致,但连接处理组结果却不同,可能和克隆植物生理整合相关,白三叶克隆分株间匍匐茎的连接使叶片形态结构发生特化,利于劳动分工,使克隆植物可以更好地吸取资源,是一种觅食行为,也和风险分摊相关,通过这些特性,克隆植物在逆境下可以更好的生存和生长。

3.3 异质性UV-B辐射下白三叶叶绿素荧光参数的变化

叶绿素荧光是植物光化学反应的指示物,利用体内叶绿素作为天然探针,可以快速、灵敏且无损伤地探测植物光合生理状况及各种外界因子对植物光合作用的影响[32]。高等植物需要消耗掉超出光饱和能力的光能来保护光合器官[33]。本研究中,叶绿素荧光参数除了NPQ,其它参数在同质性UV-B辐射下均无显著变化,且NPQ在切断处理中升高,和前人的研究结果一致[32]

一些研究表明,胁迫环境造成Fm、Fv/Fm、ETR、qP的降低和Fo与NPQ的升高[34, 35]。Larsson 等在UV-B辐射下发现了叶绿素荧光参数具同样的变化[36]。本研究中,异质性UV-B辐射下,补加的UV-B辐射处理(CⅡ和D Ⅱ)造成Fo、ETR和qP的显著降低和NPQ的明显升高。Fo在逆境下升高,可能是因为从天线色素转移到反应中心的能量减少[37],然而有些情况下功能反应中心会失活,造成Fo的升高[38]。但是克隆分株间匍匐茎的连接使CⅠ(无补加UV-B辐射但和处于UV-B辐射克隆分株端相连)的ETRqP增加,NPQ降低,显示出生理整合减弱了UV-B辐射的影响,增加了白三叶的光合能力,使整个克隆分株受益。

3.4 异质性UV-B辐射下白三叶存在着防御性生理整合

同质性UV-B辐射下(A和B组),叶绿素a、叶绿素b、总叶绿素和紫外吸收物含量均无显著性差异,表明切断处理对叶绿素和紫外吸收物含量无影响,异质性UV-B辐射下两者的变化是由生理整合造成。叶绿素在UV-B辐射下会被分解,这是由编码叶绿素的基因调控[39]。紫外吸收物(主要是黄酮)已经成为植物对UV-B辐射响应的重要物质,它能减弱UV-B辐射对植物表皮的伤害,当补加13.3 kJ · m-2 · d-1 UV-B辐射时,9种白三叶黄酮含量升高100%[40]

先前有研究表明,异质性环境下,子株的生长是以减缓母株生长为代价,只是最后使克隆分株整体适合度提高[12]。本研究中,CI无补加UV-B辐射处理,仅和辐射端相连,它的叶绿素a、叶绿素b和总叶绿素含量要低于同质性处理(A组),叶绿素含量和光合能力紧密相连,其含量的降低会减弱植物的光合能力,但这并不意味着克隆植物生理整合不能从其他方面获益。紫外吸收物在CⅠ中的升高,紫外吸收物在植物防御中发挥着重要作用[25],其升高合理的解释可能是UV-B辐射端克隆分株受到补加UV-B辐射产生信号分子,信号分子通过克隆分株间相连的匍匐茎传递给UV-B非辐射端,诱导其升高紫外吸收物含量,抵抗UV-B对植株的伤害,克隆植物生理整合使植物资源利用最大化,它用防御整合代替资源整合,从而使植物整体适合度提高。

4 结论

总之,异质性UV-B辐射下,克隆植物白三叶生理整合存在,但整合强度降低,且UV-B辐射与N同位素标记是否处于同一端对结果无影响,验证了前面提出的假设1。在生理整合过程中,白三叶克隆分株发生了形态结构特化,这和假设2一致,克隆植株内部出现了劳动分工,更加利于植物获取逆境中的资源,这可能与风险分摊相关。由于UV-B辐射对植物的生长过程有一定的伤害效应,植物产生紫外吸收物抵抗UV-B辐射的伤害,紫外吸收物在UV-B辐射胁迫端和UV-B辐射非胁迫端克隆分株间分享,使人们对克隆植物生理整合有了更进一步的认识,克隆植物生理整合不仅包括资源生理整合,也包括防御性生理整合(和假设3一致),形态结构功能也发生了特化。处于UV-B辐射胁迫端的克隆分株在UV-B辐射这一逆境胁迫下,倾向于“自保”,提高自身光合同化能力,产生更多的光合同化产物,使整个克隆植株获益。

参考文献
[1] Alpert P, Mooney H A. Resource sharing among ramets in the clonal herb, Fragaria chiloensis. Oecologia, 1986, 70(2): 227-233.
[2] Mashall C. Source-sink relations of interconnected ramets//van Groenendael J, de Kroon H. Clonal Growth in Plants: Regulation and Function. The Hague: SPB Academic Publishing, 1990: 23-42.
[3] Dong M. Clonal growth in plants in relation to resource heterogeneity: foraging behavior. Acta Botanica Sinica, 1996, 38(10): 828-835.
[4] Wijesinghe D K, Hutchings M J. Patchy habitats, division of labour and growth dividends in clonal plants. Trends in Ecology and Evolution, 1997, 12(10): 390-394.
[5] Saitoh T, Seiwai K, Nishiwaki A. Effects of resource heterogeneity on nitrogen translocation within clonal fragments of Sasa palmata: an isotopic (15N) assessment. Annals of Botany, 2006, 98(3): 657-663.
[6] Brewer J S, Bertness M D. Disturbance and intraspecific variation in the clonal morphology of salt marsh perennials. Oikos, 1996, 77(1): 107-116.
[7] Yu F H, Dong M, Zhang C Y. Intraclonal resource sharing and functional specialization of ramets in response to resource heterogeneity in three stoloniferous herbs. Acta Botanica Sinica, 2002, 44(4): 468-473.
[8] Chen J S, Lei N F, Dong M. Clonal integration improves the tolerance of Carex praeclara to sand burial by compensatory response. Acta Oecologica, 2010, 36(1): 23-28.
[9] Caldwell M M, Pearce R P. Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above-and Belowground. San Diego: Academic Press, 1994: 106-123.
[10] Roiloa S R, Retuerto R. Responses of the clonal Fragaria vesca to microtopographic heterogeneity under different water and light conditions. Environmental and Experimental Botany, 2007, 61: 1-9.
[11] Zhang L L, He W M. Consequences of ramets helping ramets: No damage and increased nutrient use efficiency in nurse ramets of Glechoma longituba. Flora, 2009, 204(3): 182-188.
[12] Salzman A G, Parker M A. Neighbors ameliorate local salinity stress for a rhizomatous plant in a heterogeneous environment. Oecologia, 1985, 65(2): 273-277.
[13] D'Hertefeldt T, van der Putten W H. Physiological integration of the clonal plant Carex arenaria and its response to soil-Borne pathogens. Oikos, 1998, 81(2): 229-237.
[14] Jiang X Y, Zhao K F. Mechanism of heavy metal injury and resistance of plants. Chinese Journal of Applied and Environmental Biology, 2001, 7(1): 92-99.
[15] Roiloa S R, Retuerto R. Physiological integration ameliorates effects of serpentine soils in the clonal herb Fragaria vesca. Physiologia Plantarum, 2006, 128(4): 662-676.
[16] Li Q, Liu X, Yue M, Tang W T, Meng Q C. Response of physiological integration in Trifolium repens to heterogeneity of UV-B radiation. Flora, 2011, 206(8): 712-719.
[17] Li Q, Liu X, Yue M, Zhang X F, Zhang R C. Effects of physiological integration on photosynthetic efficiency of Trifolium repens in response to heterogeneity of UV-B radiation. Photosynthetica, 2011, 49(4): 539-545.
[18] Bassman J H, Edwards G E, Robberecht R. Long-term exposure to enhanced UV-B radiation is not detrimental to growth and photosynthesis in Douglas-fir. New Phytologist, 2002, 154(1): 107-120.
[19] Caldwell M M, Bornman J F, Ballaré C L, Flint S D, Kulandaivelu G. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical and Photobiological Sciences, 2007, 6(3): 252-266.
[20] Madronich S, McKenzie R L, Bjrn L O, Caldwell M M. Changes in biologically active ultraviolet radiation reaching the Earth's surface. Journal of Photochemistry Photobiology B: Biology, 1998, 46(1/3): 5-19.
[21] Weijschedé J, Martínková J, de Kroon H, Huber H. Shade avoidance in Trifolium repens: costs and bene ts of plasticity in petiole length and leaf size. New Phytologist, 2006, 172(4): 655-666.
[22] Högberg P. Tansley Review No. 95: 15N natural abundance in soil-plant systems. New Phytologist, 1997, 137(2): 179-203.
[23] Hirose T, Izuta T, Miyake H, Totsuka T. A stomatal impression method using a fast-sticking adhesive. Japanese Journal of Crop Science, 1992, 61(1): 159-160.
[24] Li H S. The Theory and Technology of Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000: 130-132.
[25] Day T A, Martin G, Vogelmann T C. Penetration of UV-B radiation in foliage: evidence that the epidermis behaves as a non-uniform filter. Plant Cell and Environment, 1993, 16(6): 735-741.
[26] Colvill K E, Marshall C. Tiller dynamics and assimilate partitioning in Lolium perenne with particular reference to flowering. Annals of Applied Biology, 1984, 104(3): 543-557.
[27] Wang Y S, Hong R M, Huang D M, Teng X H, Li Y S, Masae S, Miki N. The translocation of photosynthate between clonal ramets of Leym us chinensis population. Acta Ecologica Sinica, 2004, 24(5): 900-907.
[28] Cullen B R, Chapman D F, Quigley P E. Carbon resource sharing and rhizome expansion of Phalaris aquatica plants in grazed plastures. Functional Plant Biology, 2005, 32(1): 79-85.
[29] Pan J J, Clay K. Epichlo glyceriae infection affects carbon translocation in the clonal grass Glyceria striata. New Phytologist, 1994, 164(3): 467-475.
[30] Price E A C, Hutchings M L. The causes and developmental effects of integration and independence between different parts of Glechoma hederacea clones. Oikos, 1992, 63(3): 376-386.
[31] He T, Wu X M, Jia J F. Research advances in morphology and anatomy of alpine plants growing in the Qinghai-Tibet Plateau and their adaptations to environments. Acta Ecologica Sinica, 2007, 27(6): 2574-2583.
[32] Wang N, Yu F H, Li P X, He W M, Liu F H, Liu J M, Dong M. Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanthera philoxeroides under severe stress. Annals of Botany, 2008, 101(5): 671-678.
[33] Gilmore A M. Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiologia Plantarum, 1997, 99(1): 197-209.
[34] Groom Q J, Baker N R. Analysis of light-induced depressions of photosynthesis in leaves of a wheat crop during the winter. Plant Physiology, 1992, 100(3): 1217-1223.
[35] Epron D, Dreyer E, Bréda N. Photosynthesis of oak trees during drought under field conditions: diurnal course of net CO2 assimilation and photochemical efficiency of photosystem Ⅱ. Plant, Cell and Environment, 1992, 15(7): 809-820.
[36] Larsson E H, Bornman J F, Asp H. Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. Journal of Experimental Botany, 1998, 49(323): 1031-1039.
[37] Briantais J M, Vernotte C, Krause G H, Weis E. Chlorophyll a fluorescence of higher plants: chloroplasts and leaves//Govindjee A J, Fork D C. Light Emission by Plants and Bacteria. New York: Academic Press, 1986: 573-577.
[38] Kalbin G, Ohlsson A B, Berglund T, Rydström J, Strid A. Ultraviolet-B-radiation-induced changes in nicotinamide and glutathione metabolism and gene expression in plants. European Journal of Biochemistry, 1997, 249(2): 465-472.
[39] Strid A, Chow W S, Anderson J M. UV-B damage and protection at the molecular level in plants. Photosynthesis Research, 1994, 39(3): 475-489.
[40] Hofmann R W, Swinny E E, Bloor S J, Markham K R, Ryan K G, Campbell B D, Jordan B R, Fountain D W. Responses of nine Trifolium repens L. populations to Ultraviolet-B radiation: differential flavonol glycoside accumulation and biomass production. Annals of Botany, 2000, 86(3): 527-537.
[3] 董鸣. 资源异质性环境中的植物克隆生长: 觅食行为. 植物学报, 1996, 38(10): 828-835.
[14] 江行玉, 赵可夫. 植物重金属伤害及其抗性机理. 应用与环境生物学报, 2001, 7(1): 92-99.
[24] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 130-132.
[27] 王昱生, 洪锐民, 黄大明, 滕小华, 李月树, 盐见正卫, 中村未树. 羊草种群克隆分株之间光合产物的转移. 生态学报, 2004, 24(5): 900-907.
[31] 何涛, 吴学明, 贾敬芬. 青藏高原高山植物的形态和解剖结构及其对环境的适应性研究进展. 生态学报, 2007, 27(6): 2574-2583.