文章信息
- 何苑皞, 周国英, 王圣洁, 李河
- HE Yuanhao, ZHOU Guoying, WANG Shenjie, LI He
- 杉木人工林土壤真菌遗传多样性
- Fungal diversity in Cunninghamia lanceolata plantation soil
- 生态学报, 2014, 34(10): 2725-2736
- Acta Ecologica Sinica, 2014, 34(10): 2725-2736
- http://dx.doi.org/10.5846/stxb201309072227
-
文章历史
- 收稿日期:2013-9-7
- 修订日期:2014-3-26
2. 中南林业科技大学林学院, 长沙 410004
2. College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
Soils represent a huge reservoir of biodiversity with several billion prokaryotic and eukaryotic microorganisms, corresponding to numerous different taxa, inhabiting a single gram of soil. Fungi are the dominant eukaryotic lineage in terms of biomass in soil, where they play key roles as decomposers, pathogens, and mycorrhizal mutualists. Due to their large number of species, specialization, and important ecological functions, fungi are also excellent bioindicators. Investigating the fungal diversity becomes crucial for the ecological characterization of any given site.
Traditionally, diversity was assessed using selective plating and direct viable counts. Limitations include uncultivable microorganisms not detected, bias towards fast growing individuals, and bias towards fungal species that produce large quantities of spores. High-throughput tag-encoded FLX amplicon pyrosequencing has been used to study fungal diversity and allows identification of fungal as well as the prediction of phylogenetic relationships. This method avoided the limitations of plate count.
This study aims to provide an overview of soil fungal diversity in soils of Chinese fir plantations and examine the relationship between soil fungal diversity and environmental factors. To achieve the objectives, we employed high-throughput tag-encoded FLX amplicon pyrosequencing to analyze fifteen soil samples from the Chinese fir plantation forests at the Huangfengqiao farm. Our analyses showed that there were significant differences in soil physical-chemical characteristics and undergrowth vegetation among the sites that differed in forest age. Specifically, the soil from the first generation Chinese fir plantation had higher organic matter, total N, and available K than those from the second generation and the third generation Chinese fir soils. Similarly, the 454 pyrosequencing results showed that the fungal Ace index, Chao index and fungal genetic diversity of the first generation young Chinese fir soil were all higher than those in the soils from the second generation and the third generation Chinese fir plantations. The dominant phylogentic group was Sordariomycetes. Interestingly, fungi in family Tuberaceae were found only in soils of the second and third generation Chinese fir plantations. The RDA analyses identified that moisture content, organic matter, available P, and available K in the Chinese fir plantation forest all contributed to differences in the distributions of dominant soil fungi. The diversity of soil fungi was positively correlated with undergrowth vegetation diversity and total N. Similarly, the Chao index was correlated with Shannon-Weaver index and total N. In conclusion, our analysis of fungal 18S rRNA-based datasets revealed differences in soil fungal community structure among the different plantations of the Chinese fir and that the differences were correlated with the soil physical-chemical characteristics as well as undergrowth vegetations. Further research is needed to understand the detailed mechanisms responsible for the observed differences.
真菌是土壤生态系统的重要组成部分,不但分解有机质,为植物提供养分[1,2],保障植物健康[3,4,5],改善土壤结构[6,7],改良土壤肥力[8,9]等,同时影响土壤细菌群落组成[10],是生态系统健康的指示物。真菌的遗传多样性是真菌结构和功能多样性的基础,决定了真菌在土壤中的作用。因此,研究土壤真菌遗传多样性时应选用准确、可靠的方法。基于焦磷酸测序(pyrosequencing)技术的大规模高通量测序系统的发布[11],为全面了解土壤真菌多样性和群落结构提供了技术支撑。
高通量测序技术(High-throughput sequencing),以能一次对几十万到几百万条DNA分子进行序列测定为标志。Genome Sequencer FLX (GS FLX)测序系统具有400bp的读长,测序的信息更为准确,广泛应用于土壤微生物遗传多样性及群落的研究,如比较土壤微生物的生物地理分布[12],不同经营措施下的农业土壤微生物群落[13],极端环境下土壤微生物多样性[14],土壤微生物多样性与环境因子的相关性[15]等。
杉木是我国南方重要的造林树种之一,其人工林面积占全国人工林总面积的21.35%。目前杉木人工林存在多代连栽,群落结构简单,树种单一以及不适地适树等因素,造成了杉木生产力下降、地力衰退等问题。地力衰退改变了土壤理化性质、各种土壤酶活性、林下植被变化,从而导致土壤微生物多样性发生变化。传统培养法仅能反映土壤中可培养真菌的状况,而这部分真菌仅占土壤真菌总量的1%,因此传统培养法无法准确反映土壤中真菌的真实情况。为了全面了解杉木人工林土壤真菌的遗传多样性及其与环境因子的关系,本研究应用GS FLX测序系统,研究了不同代数及发育阶段的杉木人工林土壤真菌群落结构和多样性及其与环境因子的关系,以期阐明杉木人工林地力衰退的土壤真菌群落结构特征,揭示土壤真菌与环境因子的关系。
1 研究区概况研究区位于湖南省攸县黄丰桥国有林场,地理坐标为E 113°09′—113°51′,N 26°46′—27°26′,海拔115—1270 m,年平均气温17.8 ℃,年降水量1410.8 mm,无霜期292 d左右,属亚热带季风湿润气候区。黄丰桥林场呈带状横跨于攸县东西部,以中低山貌为主,坡度在25°—35°之间。主要成土母岩为板页岩,石灰岩次之,土壤以板页岩发育而成的山地红壤为主。
2 材料与方法 2.1 样地设置选择立地条件、林分结构和抚育管理基本一致的1—3代杉木人工林以及不同林龄阶段的1代杉木人工林作为样地(表 1)。记录每个样地内林下植被的种类、株数、盖度、高度。
样地 Plot | 经纬度 Latitude and longitude | 海拔 Altitude | 坡向 Aspect | 坡度 Slope | 树龄 Age/ a | 林分密度 Stand Density/ (株/hm2) | 平均胸径 Diameter/ cm | 树高 Height/ m |
1代杉木幼林 (FYC1) | 27°21′41.88″N 113°22′15.69″E | 276 | 东南 | 6 | 3 | 2250 | 2.0 | 1.8 |
1代杉木幼林 (FYC2) | 27°20′40.76″N 113°22′20.37″E | 276 | 东南 | 6 | 5 | 2250 | 2.3 | 2.1 |
1代杉木幼林 (FYC3) | 27°21′35.24″N 113°21′17.58″E | 273 | 东南 | 6 | 4 | 2247 | 2.1 | 2.0 |
1代杉木中林 (FMC1) | 27°21′41.88″N 113°22′15.70″E | 347 | 东南 | 9 | 13 | 1920 | 6.0 | 13 |
1代杉木中林 (FMC2) | 27°21′37.88″N 113°21′54.23″E | 338 | 东南 | 8 | 15 | 1900 | 6.3 | 14 |
1代杉木中林 (FMC3) | 27°20′76.26″N 113°22′71.47″E | 326 | 东南 | 7 | 11 | 1897 | 5.5 | 10 |
1代杉木成林 (FRC1) | 27°21′41.88″N 113°22′15.71″E | 373 | 东南 | 8 | 26 | 1624 | 13 | 26 |
1代杉木成林 (FRC2) | 27°22′37.12″N 113°21′51.46″E | 284 | 东南 | 7 | 20 | 1627 | 12.1 | 22 |
1代杉木成林 (FRC3) | 27°22′37.08″N 113°21′51.12″E | 284 | 东南 | 7 | 25 | 1627 | 12.8 | 24 |
2代杉木幼林 (SYC1) | 27°13′38.45″N 113°49′31.43″E | 276 | 东南 | 6 | 4 | 2250 | 1.8 | 1.7 |
2代杉木幼林 (SYC2) | 27°14′61.34″N 113°47′29.17″E | 289 | 东南 | 7 | 4 | 2240 | 1.7 | 1.7 |
2代杉木幼林 (SYC3) | 27°13′37.86″N 113°49′31.05″E | 276 | 东南 | 6 | 5 | 2250 | 2.0 | 1.9 |
3代杉木幼林 (TYC1) | 27°15′6.74″N 113°49′22.96″E | 276 | 东南 | 6 | 5 | 2250 | 2.5 | 2.4 |
3代杉木幼林 (TYC2) | 27°17′39.43″N 112°50′54.82″E | 312 | 东南 | 7 | 3 | 2250 | 2.2 | 1.9 |
3代杉木幼林 (TYC3) | 27°17′37.85″N 112°50′53.27″E | 312 | 东南 | 7 | 4 | 2250 | 2.3 | 2.2 |
土壤样品于2013年4月采集。本研究采用五点采样法,除去腐殖质层在土层5 cm深度取土样,土样过筛去除根及石块(>4 mm)后混匀[16],保存于干冰中带回实验室,存储于-80 ℃冰箱中待用。其余土壤样品装袋后带回实验室自然风干,进行理化性质分析。
2.3 样品分析 2.3.1 土壤理化性质分析土壤有机质、全N、速效N、速效P及速效K分别采用重铬酸钾外加热法、KDY-9830全自动凯氏定N法、碱解扩散法、盐酸-氟化铵法及火焰光度法。土壤pH值测定采用pH计(型号:Mettler Toledo Delta320 pH计),土壤含水量用烘干法(105 ℃,8 h)。
2.3.2 土壤真菌DNA提取及分子鉴定采用454焦磷酸测序法对杉木人工林土壤真菌进行分子鉴定。18S rRNA作为真菌的通用测序类型广泛应用于焦磷酸测序[17,18,19,20]。对18S rRNA的V4变量区进行扩增及454测序。测序正向引物为3NDF(5′-GGCAAGTCTGGTGCCAG-3′),反向引物为V4_euk_R2(5′- ACGGTATCT(AG)ATC(AG)TCTTCG-3′)。
(1)基因组DNA抽提 使用DNA提取试剂盒(E.Z.N.A Soil DNA)提取土壤基因组DNA,提取的DNA溶液于-20 ℃冰箱保存。
(2)PCR扩增 采用TransGen AP221-02:TransStart Fastpfu DNA Polymerase,20 μL反应体系:5×FastPfu Buffer 4 μL,2.5 mmol/L dNTPs 2 μL,Forward Primer(5 μmol/L) 0.8 μL,Reverse Primer(5 μmol/L) 0.8 μL,FastPfu Polymerase 0.4 μL,Template DNA 10 ng,补ddH2O至 20 μL。
PCR反应参数 ① 1×(2 minutes at 95 ℃); ② 25/30×(30 seconds at 95 ℃; 30 seconds at 55 ℃; 30 seconds at 72 ℃); ③ 5 minutes at 72 ℃,10 ℃ until halted by user,PCR仪为ABI GeneAmp 9700型。每个样品3个重复,将同一样品的PCR产物混合后用2%琼脂糖凝胶电泳检测,使用AxyPrepDNA凝胶回收试剂盒(AXYGEN公司)切胶回收PCR产物,Tris-HCL洗脱;2%琼脂糖电泳检测。
(3)荧光定量 参照电泳初步定量结果,将PCR产物用QuantiFluorTM-ST蓝色荧光定量系统(Promega公司),PicoGreen dsDNA 定量试剂盒进行检测;之后按照每个样品的测序量要求,进行相应比例的混合。
(4)EmPCR EmPCR产物使用Roche emPCRAmp-Lib_L Kit制备。
(5)Roche Genome Sequencer FLX +上机测序 试剂使用GS FLX+_ Sequencing Method Manual_XL+ Kit
(6)测序结果分析 将测序接头、barcode和前引物序列去除,对处理后的有效序列进行数据及长度分布统计,对有效序列去杂得到的优质序列用于后续分析研究。
2.4 数据处理 2.4.1 OTU聚类OTU(Operational Taxonomic Units)是在系统发生学或群体遗传学研究中,为了便于进行分析,人为给某一个分类单元(品系,属,种、分组等)设置的同一标志[21]。利用 UCHIME对测序所得序列进行嵌合体检验并去除嵌合体序列,用mothur[22]对所得序列进行分析,以97%相似性为标准划分操作分类单元。
2.4.2 多样性指数分析利用mothur进行多样性指数分析。计算群落丰度的指数Chao[23]和Ace[24];计算群落多样性的指数Shannon[25]指数和Simpson[26]指数;群落均匀度指数Pielou[27]指数;测序深度指数Coverage[28]。
2.5 统计分析利用mothur做rarefaction分析及分类学分析,利用R语言工具制作曲线图。
实验数据ANOVA分析以及Spearman相关性分析使用SPSS软件,RDA(redundancy analysis)分析应用CANOCO 4.5软件完成。
3 结果与分析 3.1 土壤理化性质不同样地土壤理化性质见表 2。各样地土壤理化性质指标差异显著。样地土壤主要为酸性红壤,因此pH值较低,其中第2代杉木幼林的pH值最低,平均值为4.29。第1代杉木幼林的有机质含量、全N含量最高,平均值分别为88.02 g/kg、3.56 g/kg。第1代杉木成熟林速效N含量最高,均值为116.38 mg/kg。第1代杉木中龄林速效K含量最高,均值为96.62 mg/kg。第2代杉木幼林速效P含量最高,均值为1.85 mg/kg。
样地 Plot | pH | 有机质 Organic matter / (g/kg) | 全N Total N/ (g/kg) | 速效N Available N/(mg/kg) | 速效K Available K/(mg/kg) | 速效P Available P/(mg/kg) | 含水量 Moisture content/% | Shannon-植物 Shannon- Vegetation | Simpson-植物 Simpson- Vegetation | Pielou-植物 Pielou- Vegetation |
表中数据为均值±标准差(n=3); 同列数值后标注不同字母表示经ANOVA分析处理间有显著差异(P<0.05) | ||||||||||
FYC1 | 5.39±0.05fg | 87.95±9.34d | 3.93±0.35k | 20.16±3.13a | 82.14±3.61def | 1.7±0.10efgh | 25.78±2.36ab | 1.73±0.05g | 0.58±0.05ab | 0.88±0.06cd |
FYC2 | 5.35±0.02fg | 87.68±16.92d | 3.20±0.23h | 24.92±0.76a | 85.28±0.98ef | 2.03±0.43h | 26.89±0.98ab | 1.7±0.02fg | 0.54±0.03a | 0.87±0.08cd |
FYC3 | 5.72±0.01g | 88.43±8.88d | 3.55±0.32j | 23.49±1.86a | 87.45±1.79fg | 1.57±0.36defg | 26.18±0.61ab | 1.65±0.08ef | 0.57±0.04a | 0.91±0.02c |
FMC1 | 4.44±0.03abc | 28.5±10.48a | 1.85±0.10cd | 69.36±1.11b | 97.66±1.97hj | 1.09±0.27bc | 23.33±1.02a | 1.21±0.08a | 0.8±0.03fgh | 0.68±0.04ab |
FMC2 | 5.04±0.02ef | 38.96±1.89a | 2±0.17cde | 64.54±0.98b | 92.37±3.92gh | 1.04±0.20bc | 25.23±2.57ab | 1.32±0.02b | 0.77±0.05fg | 0.65±0.04a |
FMC3 | 4.47±0.46abcd | 38.83±0.27a | 1.77±0.17bc | 67.83±1.79b | 99.85±3.62j | 1.21±0.22cd | 25.73±2.06ab | 1.27±0.01ab | 0.77±0.02fg | 0.68±0.01ab |
FRC1 | 4.9±0.30cdef | 62.78±8.46c | 2.15±0.27de | 113.56±7.89fg | 57.46±2.31ab | 1.45±0.31cdef | 27.51±2.1ab | 1.5±0.04c | 0.85±0.03gh | 0.7±0.04ab |
FRC2 | 4.43±0.82abc | 62.5±5.88c | 2.52±0.24fg | 120.12±9.17g | 59.72±5.10ab | 0.72±0.20ab | 28.36±1.49b | 1.47±0.02c | 0.81±0.04gh | 0.7±0.04ab |
FRC3 | 4.34±0.28ab | 61.61±4.24c | 1.22±0.04a | 115.47±6.49fg | 55.43±2.74a | 1.28±0.34cde | 27.28±1.82ab | 1.53±0.03cd | 0.78±0.03fg | 0.7±0.04ab |
SYC1 | 4.26±0.04ab | 30.86±3.64a | 1.34±0.03a | 103.65±8.61de | 78.27±3.30de | 1.81±0.09fgh | 23.46±2.53a | 1.59±0.03de | 0.71±0.03de | 0.72±0.01ab |
SYC2 | 4.36±0.26a | 33.32±3.14a | 2.03±0.21cde | 107.34±3.44ef | 79.59±6.60de | 1.77±0.19fgh | 25.37±2.28ab | 1.5±0.03c | 0.67±0.01cd | 0.69±0.04ab |
SYC3 | 4.25±0.01a | 27.45±3.84a | 1.48±0.03ab | 110.26±8.22ef | 75.47±2.38d | 1.97±0.16gh | 26.28±2.73ab | 1.48±0.01c | 0.74±0.02ef | 0.73±0.04b |
TYC1 | 4.82±0.02bcde | 40.78±2.44ab | 2.63±0.08g | 95.96±2.37cd | 59.23±6.40ab | 0.46±0.11a | 29.41±4.56b | 1.64±0.04ef | 0.66±0.03cd | 0.83±0.02c |
TYC2 | 4.88±0.01cdef | 52.1±5.09bc | 2.01±0.12cde | 92.45±2.75c | 63.16±6.57bc | 0.56±0.12a | 28.63±0.67b | 1.59±0.03de | 0.63±0.02bc | 0.86±0.02cd |
TYC3 | 4.96±0.02def | 52.83±5.13bc | 2.27±0.11ef | 88.67±2.44c | 67.39±2.19c | 0.68±0.11ab | 27.16±2.9 | 1.62±0.02e | 0.69±0.03de | 0.83±0.04c |
15块样地内的林下植被群落多样性指数、均匀度指数见表 2。黄丰桥林场杉木人工林林下植被主要种类有杜茎山(Maesa japonica)、格药柃(Eurya muricata)、博落回(Macleaya cordata)、钩藤(Uncaria rhynchophylla)、湖南鳞毛蕨(Dryopteris subchampionii)、狗脊蕨(Woodwardia japonica)等。杉木幼林郁闭度小,林下植被种类较多,生物多样性也较高。由表 2可知,林下植被多样性指标在各处理之间差异显著,其中第1代杉木幼林Shannon多样性指数达到1.74。
3.3 土壤真菌多样性 3.3.1 统计学分析利用454测序方法,经优化后得到各样地土壤样品中微生物18S rRNA基因序列94,922条,总碱基数41381340 bp,平均长度为436 bp,其中片段长度大于400 bp的序列占序列总数的71.73%。优化后,各样品中序列测序量在5215—8353之间。
稀释性曲线 当遗传距离选择0.03时的物种稀释性曲线如图 1。土壤样品的稀释曲线虽仍处于上升期但文库的覆盖率均已超过0.85(表 3),因此本次测序能代表土壤中真菌的真实情况。
![]() |
图 1 18s稀释性曲线 Fig.1 Rarefaction curves of 18s |
样地 Plot | 序列数 Reads | 指数Index | |||||
OUT | Ace | Chao | Coverage | Shannon | Simpson | ||
FYC1 | 6285 | 1325 | 3497(3287,3729) | 2669(2420,2975) | 0.8821 | 5.17(5.11,5.24) | 0.0561(0.052,0.0602) |
FYC2 | 6433 | 1409 | 4119(3866,4397) | 2895(2633,3212) | 0.871133 | 5.43(5.38,5.49) | 0.0315(0.0291,0.034) |
FYC3 | 8121 | 1592 | 4809(4541,5100) | 3211(2939,3537) | 0.88696 | 5.43(5.38,5.48) | 0.0309(0.0289,0.0329) |
FMC1 | 7065 | 1153 | 4150(3881,4446) | 2508(2246,2833) | 0.901628 | 4.44(4.38,4.51) | 0.0962(0.0911,0.1014) |
FMC2 | 6360 | 1030 | 3044(2835,3276) | 2148(1917,2439) | 0.907075 | 4.4(4.33,4.46) | 0.1045(0.0985,0.1105) |
FMC3 | 6227 | 1020 | 3658(3401,3942) | 2460(2158,2841) | 0.899791 | 4.48(4.41,4.55) | 0.0842(0.0793,0.0891) |
FRC1 | 6943 | 1309 | 4413(4138,4715) | 2844(2562,3189) | 0.887369 | 4.87(4.81,4.94) | 0.0752(0.0705,0.0798) |
FRC2 | 5625 | 1099 | 3892(3624,4188) | 2533(2249,2887) | 0.879111 | 4.78(4.71,4.84) | 0.0617(0.0574,0.0659) |
FRC3 | 5715 | 738 | 2230(2054,2429) | 1547(1355,1799) | 0.924759 | 3.91(3.84,3.97) | 0.0859(0.0816,0.0901) |
SYC1 | 5916 | 1086 | 3226(3005,3472) | 2138(1930,2397) | 0.894185 | 4.84(4.78,4.91) | 0.0619(0.0575,0.0662) |
SYC2 | 5880 | 1124 | 3585(3348,3847) | 2221(2008,2485) | 0.888946 | 4.92(4.86,4.99) | 0.0521(0.0486,0.0556) |
SYC3 | 6148 | 1159 | 4001(3739,4290) | 2740(2425,3132) | 0.886792 | 4.89(4.82,4.95) | 0.0634(0.0592,0.0677) |
TYC1 | 5866 | 1146 | 3502(3271,3759) | 2240(2030,2500) | 0.887146 | 5.26(5.21,5.32) | 0.0293(0.0269,0.0316) |
TYC2 | 5067 | 1142 | 3679(3439,3945) | 2446(2191,2762) | 0.866588 | 5.42(5.36,5.48) | 0.0249(0.0227,0.0271) |
TYC3 | 4941 | 1049 | 3230(3005,3480) | 2202(1969,2493) | 0.874317 | 5.15(5.09,5.21) | 0.0339(0.0311,0.0366) |
杉木人工林土壤真菌群落多样性分析见表 3。由表 3可知,第1代杉木幼林OUT最多,为1592,第1代杉木成熟林OUT最少为738。第1代杉木幼林的真菌物种总数相对最多,Chao指数为2925,其后依次为FMC>SYC>FRC>TYC。5种样地的Shannon指数平均值由高到低依次为FYC>TYC>SYC>FRC>FMC,Simpson指数平均值由低到高依次为TYC<FYC<SYC<FRC<FMC。由此可见,杉木幼林土壤真菌多样性较为丰富。Coverage指数显示第1代杉木中龄林取样深度最佳。
样地土壤中真核生物OUT为8170个,分属于真核生物的33个门,其中真菌为2122,占所有真核生物OUT的26%。其中真菌界主要包括子囊菌门(Ascomycota)、球囊菌门(Glomeromycota)、壶菌门(Chytridiomycota)、担子菌门(Basidiomycota)、芽枝霉门(Blastocladiomycota),分别占真菌总OTU的45%、12%、7%、7%、1%(图 2)。
![]() |
图 2 真菌分布比例图 Fig.2 Pie chart of fungi taxonomical distribution |
杉木人工林中土壤真菌主要为球囊菌门(Glomeromycota)、粪壳菌纲(Sordariomycetes)、霉菌纲(Mucoromycotina)、锤舌菌纲(Leotiomycetes)、座囊菌纲(Dothideomycetes)、爪甲团囊菌目(Onygenales)、块菌科(Tuberaceae)(图 3)。粪壳菌纲真菌为杉木人工林土壤中的优势种群,其次为霉菌纲、锤舌菌纲、座囊菌纲。不同样地中这7类真菌的分布存在差异。第1代杉木幼林和中龄林中粪壳菌纲真菌相对含量最高分别为39%和42%;第1代杉木成熟林中霉菌纲相对含量最高为34%;第2代杉木幼林中锤舌菌纲真菌相对含量最高为24%;第3代杉木幼林中爪甲团囊菌目真菌相对含量达到48%;块菌科真菌只存在于第2代杉木幼林和第3代杉木幼林中。
不同发育阶段的杉木人工林的真菌群落分布差异不大,都以粪壳菌纲、霉菌纲和爪甲团囊菌目真菌为主。而不同栽培代数的杉木幼林真菌群落分布差异较大,第1代杉木幼林以粪壳菌纲、霉菌纲和爪甲团囊菌目真菌为主,第2代杉木幼林真菌分布较为平均,第3代杉木幼林土壤真菌以粪壳菌纲、锤舌菌纲和爪甲团囊菌目为主。
![]() |
图 3 土壤真核生物群落结构相对丰度 Fig.3 Relative abundances of eukaryote community in soil |
自然界中可以影响土壤真菌群落多样性的因素很多,如植被类型、土壤结构、化学组成、气候变化等[29,30],同时土壤真菌在土壤中的分布及活跃程度对营养物质转化、土壤物理结构形成和土壤肥力增加都具有一定影响[31]。
对杉木人工林土壤主要的7大真菌群落及环境因子进行RDA分析,第1轴可以解释所有信息的65.5%,第2轴可解释19.3%(图 4)。由RDA排序图可知,土壤的含水量、有机质、速效磷、速效钾对这7种真菌的分布作用较大。其中含水量作用最大,它与爪甲团囊菌目、锤舌菌纲、粪壳菌纲、霉菌纲真菌呈正相关,与座囊菌纲、块菌科、球囊菌门真菌负相关。
![]() |
图 4 土壤主要真菌群落与环境解释变量的RDA排序图 Fig.4 The ordination diagram of RDA with soil dominant fungi communities and explanatory variables |
由表 4可看出,土壤真菌群落多样性与土壤理化性质、林下植被的具有一定的相关性。土壤真菌群落shannon指数与林下植被shannon指数、pielou指数、pH值以及土壤全N显著正相关,与真菌群落simpson指数及林下植被simpson指数显著负相关。真菌群落simpson指数与林下植被simpson指数显著正相关,与土壤真菌shannon多样性指数、林下植被shannon指数、pielou指数、土壤全N以及含水量显著负相关。土壤真菌Chao指数与土壤真菌shannon指数、土壤全N含量显著正相关。
4 讨论 4.1 土壤理化性质及林下植被土壤作为植物和微生物等生存的载体,其理化性质、林下植被等会直接或间接的影响植物和微生物的生长繁殖。
Shannon | Simpson | Chao | Shannon- 植物 Shannon- Vegetation | Simpson- 植物 Simpson- Vegetation | Pielou-植物 Pielou- Vegetation | pH | 有机质 Organic matter | 全N Total N | 速效N Available N | 速效K Available K | 速效P Available P | 含水量 Moisture content | |
**在置信度(双测)为 0.01 时,相关性是显著的; *在置信度(双测)为 0.05 时,相关性是显著的 | |||||||||||||
Shannon | 1.000 | ||||||||||||
Simpson | -0.882** | 1.000 | |||||||||||
Chao | 0.517* | -0.179 | 1.000 | ||||||||||
Shannon-V | 0.791** | -0.728** | 0.188 | 1.000 | |||||||||
Simpson-V | -0.856** | 0.736** | -0.236 | -0.819** | 1.000 | ||||||||
Pielou-V | 0.842** | -0.768** | 0.431 | 0.869** | -0.762** | 1.000 | |||||||
pH | 0.525* | -0.327 | 0.432 | 0.506 | -0.489 | 0.440 | 1.000 | ||||||
有机质 | 0.454 | -0.357 | 0.446 | 0.620* | -0.329 | 0.564* | 0.729** | 1.000 | |||||
全N | 0.661** | -0.519* | 0.585* | 0.588* | -0.496 | 0.609* | 0.826** | 0.739** | 1.000 | ||||
速效N | -0.406 | 0.154 | -0.289 | -0.379 | 0.625* | -0.336 | -0.764** | -0.282 | -0.533* | 1.000 | |||
速效K | -0.027 | 0.266 | 0.207 | -0.206 | -0.229 | -0.188 | 0.304 | -0.200 | 0.082 | -0.750** | 1.000 | ||
速效P | 0.130 | 0.182 | 0.346 | 0.198 | -0.236 | 0.109 | -0.125 | -0.004 | -0.136 | -0.100 | 0.257 | 1.000 | |
含水量 | 0.361 | -0.531* | 0.143 | 0.318 | -0.057 | 0.419 | 0.089 | 0.446 | 0.326 | 0.400 | -0.782** | -0.450 | 1.000 |
土壤含水量是对地表生态过程有着重要影响的生态因子。土壤含水量对陆地表面大气环流、陆地与大气间的热量平衡和土壤温度均产生显著的影响。本研究中所取土样为0—10 cm,属于土壤水分速变层,该层由于受林地林分郁闭度,光、温、风等气象,地被物分布等因子影响大,土壤与大气间的水分交换强度大,地表蒸发快,因此该层的含水量相对不稳定。第1代杉木不同林龄阶段中成熟林的含水量大于幼林大于中龄林,主要是由于成熟林的林分结构较为合理,郁闭度较高,林下植被发育较为完善,因此土壤的水分涵养功能较好。幼林的含水量大于中龄林的原因为杉木幼林还未郁闭,林下植被较为丰富,提高了土壤的涵水能力。
土壤有机质是最为重要的土壤质量构成因素,这是因为土壤有机质是森林生态系统中树木速效养分的来源,它对团聚体构成有作用,同时还可保持土壤水分。本研究中有机质有随栽培代数增加而减少的趋势,这与杨玉盛等[32,33]的研究结果相一致。在杉木发育过程中随着郁闭度、光照以及凋落物的变化等,土壤有机质也处于变化之中。值得注意的是本研究中第3代杉木幼林有机质含量高于第2代杉木幼林,这可能是由于本研究的样地在栽种第3代杉木幼林前种植过马尾松,但2008年南方冰冻灾害之后马尾松幼林成片死亡,撂荒1a后才开始种植杉木。因此,第3代杉木幼林土壤经过了一定的改良与修复,使其土壤环境得到改善,有机质含量提高。同理,样地的全N、速效N的变化趋势也是由于此原因。不同栽培代数的杉木幼林样地土壤速效P和速效K的变化趋势与其他因素不一致,可能的原因是土壤钾是影响了磷素有效性,或者是随着栽培代数的增加土壤中菌根含量减少,使得速效P的含量降低。
本研究中不同林龄阶段土壤中的有机物含量、全N、速效N、速效P的变化趋势呈现高-低-高的趋势,与胡慧蓉等[34]的研究不一致。主要是由于幼林林下植被丰富、林木未郁闭、阳光充足、土壤环境较好,因此以上各指标值处于高峰,而成熟林已郁闭,林下处于温凉潮湿状态,形成了较为稳定的森林生态系统,同时枯落物也较多,因此土壤环境得到了改善,各指标数值有所提高。
林下植被发育有利于林地土壤肥力维护与提高,杉木人工林由于受土壤肥力、林木郁闭度、自然整枝、间伐、化感作用等的影响,林下植被也存在差异。从植被组成看,幼林主要是喜阳的草本和灌木,中龄林主要是草本植物,但到了成熟林,主要以喜阴的植物为主,灌木植被也生长较好,形成了有乔灌草结构的林分。本研究土壤的理化性质随林龄的不同存在高-低-高的趋势,这与杉木人工林林下植被的变化相关,即幼林的林下植被丰富,中龄林林下植被较少,而成熟林的林下植被得到恢复,这与焦如珍等[35]的研究结果“杉木林下植被发育是杉木人工林从中龄林到成熟林土壤肥力得到恢复和提高的重要因素之一”相一致。
4.2 土壤真菌群落结构土壤中的真菌对生态系统的结构和功能具有重要影响。它具有十分重要的生态功能如分解者,植物共生生物以及病原菌。但是许多真菌的生活史未知以及不可培养性,使得土壤真菌的重要性被低估[36]。第2代测序技术克服了这些缺点,使得我们可以研究土壤真菌的多样性以及不同真菌群落的相互作用[37,38,39,40,41]。本研究利用第2代测序技术以及传统的分类学方法,更准确的探讨了土壤真菌的生态学特征。
本研究在分析不同栽培代数杉木人工林土壤真菌时发现,第1代和第3代杉木人工林生物多样性较高,第二代多样性最低。杨玉盛[42]等研究发现随着杉木连栽代数的增加(21代、3代),土壤微生物总数下降,土壤微生物各主要生理类群数量明显减少。这两种研究结果的差异与土壤理化性质的研究结果相一致,即经过栽种马尾松及撂荒,土壤状况得到了改善,因此,第3代杉木林的土壤真菌多样性反而升高。
不同栽培代数及不同林龄阶段的真菌群落多样性分析显示,在遗传距离为3%时,不同栽培代
数杉木幼林土壤微生物群落的ace指数、chao指数以及多样性指数均大于中龄林和成熟林。这主要是由于杉木幼林未郁闭,林间光线充足,林下植被较为丰富,土壤真菌的数量及多样性也随之增加。
本论文的数据显示杉木人工林土壤真菌中子囊菌门的真菌居多。子囊菌门真菌大多数为腐生菌,对降解土壤有机质具有重要作用。子囊菌在群落演替中主要处于演替的前期。首先细菌、接合菌和子囊菌等先驱微生物入侵枯枝落叶,接着草本对策的腐朽菌开始出现,然后竞争对策或忍耐对策的木腐菌取代腐朽菌,最后使枯枝落叶分解。因此一些研究认为子囊菌和担子菌是土壤中主要的真菌分解者[43],另一些研究则认为担子菌分解木质纤维素的能力更强[44]。
4.3 土壤真菌遗传多样性与林下植被及土壤理化性质关系理论上,土壤性质的改变将直接影响土壤微生物群落的变化。前人研究也证明了土壤真菌和细菌的群落结构的改变与土壤性质如土壤结构[45],pH值[16,46]以及土壤有效N含量[45]等的变化相关。真菌和细菌生理结构及生态学上的差异可能导致他们的生物地理学性质受不同土壤因素的影响[47]。一些真菌对植被类型的敏感性度高于细菌,如与植物共生的菌根真菌[48],降解植物残体木质素的担子菌[49]。此外,真菌和细菌的碳元素利用类型也不同,因此碳库的改变对真菌和细菌的影响也不相同[50,51]。因此,本研究选择真菌作为研究对象。
研究发现土壤真菌的遗传多样性与杉木的林下植被多样性显著相关。土壤中的真菌在控制生态系统的碳氮循环中起到了关键的作用,并且他们可能是联系植物多样性和生态系统功能之间的关键。林下植被凋落物被土壤中的腐生微生物分解,给土壤中提供更多的养分,这些养分又给真菌的生长繁殖提供营养,营养元素在真菌与林下植被之间形成循环。许多研究显示,在真菌分解实验中枯枝落叶具有增效作用[52,53],因此林下植被的多样性变化趋势与土壤真菌多样性的变化趋势相同,植被对土壤真菌遗传多样性有显著的作用[54]。
土壤pH值是影响微生物群落的最重要的因素之一。pH值影响着众多的非生物因素,如碳的利用率、氮的利用率以及金属可溶性等。同时,在森林和农田土壤中,pH值还控制真菌和细菌的生物数量。本研究中土壤pH值与土壤真菌群落shannon多样性指数呈现正相关性,这从一个方面反映了真菌对于酸性土壤的偏好[55]。
真菌在氮素循环中具有重要的作用,如蛋白质水解、磷的活化以及分解自由生活的腐生营养者及菌根。本研究中杉木土壤中的全N与真菌多样性以及chao指数呈正相关,反映了不同的N浓度下,真菌的群落具有一定的差异性并且全N与真菌物种总数具有一定的关联性。相关研究表明,氮素的添加(以铵态氮)影响了微生物氮循环过程,如硝化作用和固氮,导致云杉林土壤中真菌生物量的增加[56]以及松树林、干草草地中真菌群落组成的变化[57,58]。高氮浓度促进细菌分解作用,而低氮浓度促进真菌的分解作用。
5 结论(1)不同栽培代数及发育阶段的杉木人工林土壤理化性质及林下植被多样性均有显著差异。第1代杉木林的有机质、全N、速效N、速效K含量高于第2代和第3代杉木林,而速效P和含水量低于其他样地,总体而言第1代杉木林土壤理化性质优于第2代和第3代杉木林。杉木幼林林下植被多样性高于中龄林和成熟林。
(2)第1代杉木幼林土壤真菌多样性最为丰富,其ace指数、chao及群落遗传多样性指数均大于其余样地。通过不同样地真菌群落分析发现,粪壳菌纲真菌为杉木人工林土壤中的优势种群,其次为霉菌纲、锤舌菌纲、座囊菌纲。不同栽培代数杉木人工林的真菌群落存在差异,其中块菌科为第2代和第3代杉木林特有真菌,而不同发育阶段的杉木人工林的真菌群落差异不明显。
(3)杉木人工林土壤7种主要真菌群落受含水量、有机质、速效磷、速效钾影响较大,受林下植被的影响较小。土壤真菌群落遗传多样性指数与林下植被多样性、土壤全N显著相关,其Chao指数、shannon指数、simpson指数都受到全N的影响。
[1] | George E, Marschner H, Jakobsen I, George E, Marschner H, Jakobsen I. Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Critical Reviews in Biotechnology, 1995, 15(3/4): 257-270. |
[2] | Timonen S, Finlay R D, Olsson S, Söderström B. Dynamics of phosphorus translocation in intact ectomycorrhizal systems: non-destructive monitoring using a β-scanner. FEMS Microbiology Ecology, 1996, 19(3): 171-180. |
[3] | Mukerji K G. Concepts in Mycorrhizal Research. Netherlands: Kluwer Academic Publishing, 1996. |
[4] | Filion M, St-Arnaud M, Fortin J A. Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytologist, 1999, 141(3): 525-533. |
[5] | Smith K P, Goodman R M. Host variation for interactions with beneficial plant-associated microbes. Annual Review of Phytopathology, 1999, 37: 473-491. |
[6] | Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil, 1998, 198(1): 97-107. |
[7] | Dodd J, Boddington C L, Rodriguez A, Gonzalez-Chavez C, Mansur I. Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant and Soil, 2000, 226(2): 131-151. |
[8] | Yao H, He Z, Wilson M J, Campbell C D. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology, 2000, 40(3): 223-237. |
[9] | O′Donnell A, Seasman M, Macrae A, Waite I, Davies J T. Plants and fertilisers as drivers of change in microbial community structure and function in soils. Plant and Soil, 2001, 232(1/2): 135-145. |
[10] | Singh B K, Nunan N, Ridgway K P, McNicol J, Young J, Daniell T J, Prosser J I, Millard P. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots. Environmental Microbiology, 2008, 10(2): 534-541. |
[11] | Margulies M, Egholm M, Altman W E, Attiya S, Bader J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z T, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer M L, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan M T, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P G, Begley R F, Rothberg J M. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437(7057): 376-380. |
[12] | Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626-631. |
[13] | Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schöning I, Schrumpf M, Daniel R, Nacke H. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One, 2011, 6(2): e17000. |
[14] | Emily B H, Amanda S E, Amy J M H, Tony L P, Heather H W, Terry J G. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. The ISME Journal, 2010, 4(6): 829-838. |
[15] | Yu Y, Wang H, Liu J, Wang Q, Shen T L, Guo W H, Wang R Q. Shifts in microbial community function and structure along the successional gradient of coastal wetlands in Yellow River Estuary. European Journal of Soil Biology, 2012, 49: 12-21. |
[16] | Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626-631. |
[17] | Fierer N, Hamady M, Lauber C L, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(46): 17994-17999. |
[18] | Lauber C L, Hamady M, Knight R, Fierer N. Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Applied & Environmental Microbiology, 2009, 75(15): 5111-5120. |
[19] | Hamady M, Walker J J, Harris J K, Gold N J, Knight R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods, 2008, 5(3): 235-237. |
[20] | Rousk J, Bååth E, Brookes P C, Lauber C L, Lozupone C, Caporaso J G, Knight R, Fierer N. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 2010, 4(10): 1340-1351. |
[21] | Caron D A, Countway P D, Savai P, Gast R J, Schnetzer A, Moorthi S D, Dennett M R, Moran D M, Jones A C. Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Applied and Environmental Microbiology, 2009, 75(18): 5797-5808. |
[22] | Schloss P D, Westcott S L, Ryabin T, Hall J R, Hartmann M, Hollister E B, Lesniewski R A, Oakley B B, Parks D H, Robinson C J, Sahl J W, Stres B, Thallinger G G, van Horn D J, Weber C F. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541. |
[23] | Chao A N. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 1984, 11(4), doi: 10.2307/4615964. |
[24] | Chao A N, Lee S M. Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 1992, 87(417): 210-217. |
[25] | Hill M O. Diversity and evenness: a unifying notation and its consequences. Ecology, 1973, 54(2): 427-432. |
[26] | Simpson E H. Measurement of diversity. Nature, 1949, 163(4148): 688-688. |
[27] | Liu Y M, Ma K P. Measurement of biotic community diversity Ⅰα diversity measures. Chinese Biodiversity, 1994, 2(4): 231-239. |
[28] | Esty W W. The efficiency of good′s nonparametric coverage estimator. The Annals of Statistics, 1986, 14(3): 1257-1260. |
[29] | Zhao Y J, Liu B, Zhang W G, Hu C W, An S Q. Effects of plant and influent C∶N∶P ratio on microbial diversity in pilot-scale constructed wetlands. Ecological Engineering, 2010, 36(4): 441-449. |
[30] | Truu M, Juhanson J, Truu J. Microbial biomass, activity and community composition in constructed wetlands. Science of the Total Environment, 2009, 407(13): 3958-3971. |
[31] | Shao Y Q, Zhao J. Study on soil microbial numbers and soil ecological factor in fixed dunes in the East Hobq sands of NeiMongol. Acta Scientiarum Naturalium Universitatis NeiMongol, 1997, 28(5): 134-138. |
[32] | Yang Y S, He Z M, Chen G S, Xie J S, Yu X T. PCA of soil fertility under different gaps of continuously planting Chinese fir. Soil and Environmental Sciences, 2001, 10(1): 33-38. |
[33] | Hu H R, Guo A, Deng G K. Effect of Cunninghamia lanceolata plantation on physical and chemical properties of soil. Yunnan Forestry Science and Technology, 2001, (3): 21-23. |
[34] | Jiao R Z, Yang C D, Tu X N, Sheng W T, Jiao R Z. The change of undergrowth, soil microorganism, enzyme activity and nutrient in different developing stage of the Chinese fir plantation. Forest Research, 1997, (4): 34-40. |
[35] | Martin F, Cullen D, Hibbett D, Pisabarro A, Spatafora J W, Baker S E, Grigoriev I V. Sequencing the fungal tree of life. New Phytologist, 2011, 190(4): 818-821. |
[36] | Tedersoo L, Nilsson R H, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kljalg U. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist, 2010, 188(1): 291-301. |
[37] | Xu L H, Ravnskov S, Larsen J, Nilsson R H, Nicolaisen M. Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biology and Biochemistry, 2012, 46: 26-32. |
[38] | Blaalid R, Carlsen T, Kumar S, Halvorsen R, Ugland K I, Fontana G, Kauserud H. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Molecular Ecology, 2012, 21(8): 1897-1908. |
[39] | Dumbrell A J, Ashton P D, Aziz N, Feng G, Nelson M, Dytham C, Fitter A H, Helgason T. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytologist, 2011, 190(3): 794-804. |
[40] | Jumpponen A, Jones K L, Mattox J D, Yaege C. Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Molecular Ecology, 2010, 19(S1): 41-53. |
[41] | Yang Y S, Qiu R H, Yu X T, Huang B L. Study on soil microbes and biochemical activity in the continuous plantations of Cunninghamia lanceolata. Chinese Biodiversity, 1999, 7(1): 1-7. |
[42] | Vandenkoornhuyse P, Baldauf S L, Leyval C, Straczek J, Young J P W. Extensive fungal diversity in plant roots. Science, 2002, 295(5562): 2051. |
[43] | Yelle D J, Ralph J, Lu F C, Hammel K E. Evidence for cleavage of lignin by a brown rot basidiomycete. Environmental Microbiology, 2008, 10(7): 1844-1849. |
[44] | Frey S D, Knorr M, Parrent J L, Simpson R T. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 2004, 196(1): 159-171. |
[45] | Blagodatskaya E V, Anderson T H. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biology and Biochemistry, 1998, 30(10/11): 1269-1274. |
[46] | van der Wal A, van Veen J A, Smant W, Boschker H T S, Bloem J, Kardol P, van der Putten W H, de Boer W. Fungal biomass development in a chronosequence of land abandonment. Soil Biology and Biochemistry, 2006, 38(1): 51-60. |
[47] | Heinemeyer A, Ridgway K P, Edwards E J, Benham D G, Young J P W, Fitter A H. Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community. Global Change Biology, 2004, 10(1): 52-64. |
[48] | Bardgett R D, McAlister E. The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biology and Fertility of Soils, 1999, 29(3): 282-290. |
[49] | Bossuyt H, Denef K, Six J, Frey S D, Merckx R, Paustian K. Influence of microbial populations and residue quality on aggregate stability. Applied Soil Ecology, 2001, 16(3): 195-208. |
[50] | Six J, Frey S D, Thiet R K, Batten K M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 2006, 70(2): 555-569. |
[51] | Hättenschwiler S, Tiunov A, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2005, 36: 191-218. |
[52] | Gartner T B, Cardon Z G. Decomposition dynamics in mixed-species leaf litter. Oikos, 2004, 104(2): 230-246. |
[53] | He X Y, Wang K L, Yu Y Z, Zhang W, Chen Z H. The responses of soil microbial taxonomic diversity on vegetation communities and seasons in karst area. Acta Ecologica Sinica, 2009, 29(4): 1763-1769. |
[54] | Rousk J, Brookes P C, Bååth E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 2009, 75(6): 1589-1596. |
[55] | Smolander A, Kurka A, Kitunen V, Mälkönen E. Microbial biomass C and N, and respiratory activity in soil of repeatedly limed and N-and P-fertilized Norway spruce stands. Soil Biology and Biochemistry, 1994, 26(8): 957-962. |
[56] | Arnebrant K, Bååth E, Söderström B. Changes in microfungal community structure after fertilization of scots pine forest soil with ammonium nitrate or urea. Soil Biology and Biochemistry, 1990, 22(3): 309-312. |
[57] | Donnison L M, Griffith G S, Bardgett R D. Determinants of fungal growth and activity in botanically diverse haymeadows: effects of litter type and fertilizer additions. Soil Biology and Biochemistry, 2000, 32(2): 289-294. |
[27] | 刘玉明, 马克平. 生物群落多样性的测度方法 Ⅰα多样性的测度方法(下). 生物多样性, 1994, 2(4): 231-239. |
[31] | 邵玉琴, 赵吉. 库布齐固定沙丘土壤微生物数量与土壤生态因子的研究. 内蒙古大学学报: 自然科学版, 1997, 28(5): 134-138. |
[32] | 杨玉盛, 何宗明, 陈光水, 谢锦升, 俞新妥. 杉木多代连栽后土壤肥力变化. 土壤与环境, 2001, 10(1): 33-38. |
[33] | 胡慧蓉, 郭安, 邓光葵. 杉木种植对土壤理化性质的影响. 云南林业科技, 2001, (3): 21-23. |
[34] | 焦如珍, 杨承栋, 屠星南, 盛炜彤, 焦如珍. 杉木人工林不同发育阶段林下植被、土壤微生物、酶活性及养分的变化. 林业科学研究, 1997, (4): 34-40. |
[41] | 杨玉盛, 邱仁辉, 俞新妥, 黄宝龙. 杉木连栽土壤微生物及生化特性的研究. 生物多样性, 1999, 7(1): 1-7. |
[53] | 何寻阳, 王克林, 于一尊, 张伟, 陈志辉. 岩溶区植被和季节对土壤微生物遗传多样性的影响. 生态学报, 2009, 29(4): 1763-1769. |