生态学报  2014, Vol. 34 Issue (1): 59-69

文章信息

覃雪波, 孙红文, 彭士涛, 戴明新
QIN Xuebo, SUN Hongwen, PENG Shitao, DAI Mingxin
生物扰动对沉积物中污染物环境行为的影响研究进展
Review of the impacts of bioturbation on the environmental behavior of contaminant in sediment
生态学报, 2014, 34(1): 59-69
Acta Ecologica Sinica, 2014, 34(1): 59-69
http://dx.doi.org/10.5846/stxb201305020905

文章历史

收稿日期:2013-5-2
修订日期:2013-9-22
生物扰动对沉积物中污染物环境行为的影响研究进展
覃雪波1, 2, 3, 孙红文2 , 彭士涛1, 戴明新1    
1. 交通运输部天津水运工程科学研究所, 天津 300456;
2. 南开大学环境科学与工程学院, 天津 300071;
3. 天津自然博物馆, 天津 300074
摘要:生物扰动由于显著改变沉积物结构和性质,进而影响沉积物中污染物的环境行为。综述生物扰动对沉积物中氮、磷、重金属和疏水性有机污染物环境行为的影响。生物扰动促进这些污染物从沉积物向水体释放。生物扰动还对不同的污染物产生其它不同的影响。对于氮,生物扰动还影响其硝化与反硝化作用;对于磷,生物扰动不仅改变其化学形态,还提高有机磷降解。对于重金属,生物扰动还能改变其在沉积物中的分布及化学形态。对于疏水性有机污染物,生物扰动主要增强生物富集和代谢,以及提高生物降解。
关键词生物扰动    沉积物    氮磷    重金属    疏水性有机污染物    环境行为    
Review of the impacts of bioturbation on the environmental behavior of contaminant in sediment
QIN Xuebo1, 2, 3, SUN Hongwen2 , PENG Shitao1, DAI Mingxin1    
1. Tianjin Research Institute for Water Transport Engineering, Tianjin 300456, China;
2. College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China;
3. Tianjin Natural History Museum, Tianjin 300074, China
Abstract:The feeding, burrowing, and reworking of benthic invertebrates, collectively termed bioturbation. Bioturbation is one of most important ecological processes, which can cause the redistribution of particles and interstitial water in sediments, and therefore have significant affects on the physical, chemical and biological properties of the sediment. In particular, bioturbation redistribute particles and porewater in sediment and thereby increase the surface area available for sediment-water interface exchange of nutrients and contaminants, resulting in significant changes on the sorption characteristics of the sediment. Hence, the environmental behavior of contaminant in sediment was significantly influenced by the bioturbation. For the nitrogen, bioturbation can impact it's biogeochemistry in two routes. One is that bioturbation can stimulate the solute exchanges (oxygen and metabolites) across the water-sediment interface and then enhance the microbial processes such as nitrification and denitrification. The other is that bioturbation can enhance the exposed area of sediment to water and air, thus accelerated the exchange of nitrogen at the sediment-water interface. For the phosphorus, the bioturbation have significantly effect on it's biogeochemical cycling, including the increase of the release of soluble reactive phosphorus (SRP) from sediment to water and alteration the chemical form of phosphorus. Furthermore, the degradation of organic phosphorus was enhanced by bioturbation. For heavy metals, bioturbation can alter the environmental behavior of metals in sediment in several ways. The first way is that the spatial heterogeneity of sedimentary metal levels was influenced by the bioturbation. The second way is that the bioturbation lead to a significant flux of metals to water. The third way is that the bioturbation can affect the chemical form of heavy metals. For the hydrophobic organic contaminants (HOCs), the release, bioaccumulation and biodegradation of them were significantly affected by the bioturbation. On one hand, bioturbation can lead to a significant increase flux of HOCs to water. On the other hands, bioturbation can enhance the benthos bioaccumulation the HOCs. Addition, due to bioturbation has been confirmed to increase the abundance of microorganisms and the oxygen in the sediment, thus the biodegradation of HOCs were enhanced.
Key words: bioturbation    sediment    nitrogen and phosphorus    heavy metal    hydrophobic organic contaminants (HOCs)    environmental behavior    

水-沉积物界面是联系底泥与上覆水的桥梁,控制有机质、营养盐和各种污染物的迁移转化过程[1]。这些过程不仅受到沉积物理化性质(如有机质含量、渗透性)的影响,同时也受到沉积物生物性质(主要指生活于其中的各种生物)的影响[2, 3]。底栖动物栖息于沉积物中,它们的各种活动,如摄食、避敌、排泄等行为,被称之为生物扰动[4]。生物扰动是构成河口、近岸和浅海水域关键生态过程的水层与底栖系统耦合过程的重要环节和枢纽[5]。由于生物扰动造成的沉积物变化不明显,过去经常受到忽视[6]。例如,传统的观点认为滨海沉积物结构的变化主要是由于海浪等物理作用[7]。直到近十年,生物扰动才得到重新认识,被认为是一个非常重要的生态过程[8]。一个小尺度(μm—m)的生物扰动同样是一个关键过程,可以改变大尺度(如50 m—100 km)的沉积结构[9]。与此同时,生物扰动还影响浅海物质交换及生态系统功能[10, 11]。生物扰动因此被称为“生态系统工程师”[12]

沉积物是水生生态系统的重要组成部分,蓄积各种污染物。由于生物扰动能改变沉积物的结构和性质,因而对其中的污染物产生重要影响[13]。近年来,生物扰动对沉积物中污染物的环境行为的影响受到广泛研究,本文综述了该领域若干研究进展,为进一步了解生物扰动对污染物的生物地球化学循环提供基础资料。

1 生物扰动的概念、作用类型及影响因素 1.1 生物扰动概念

生物扰动是一个古老概念,早在达尔文时代已被提出来,他注意到土壤被蚯蚓扰动后,土壤上层的物质被带到下层,下层的被带到上层,结果造成了土壤的均质化[14]。随后,在海洋中也发现类似的现象,如在海蚯蚓对海沙的扰动[15]、海参对沉积物的扰动[16]。随着研究的深入,生物扰动概念得到进一步拓展,即生物对土壤和沉积物的再建过程,不仅包括陆地上,也包括水体中(图1)[14]。由于目前生物扰动的研究多见于水环境中,因此,生物扰动一般是指底栖动物由于摄食、建管、筑穴、爬行、避敌、分泌、排泄和迁移等行为造成沉积物结构和性质的改变,进而影响到沉积物中颗粒态和溶解态物质迁移转化的过程。

图1 各种动物的生物扰动 Fig. 1 Bioturbation from a range of animal a. 鼹鼠踪迹 Mole track; b. 北囊鼠 Thomomys talpoides; c. 如艮 Dugong dugong; d. 取食点 Smaller feeding pits; e. 蓝点魟 Taeniura lymma; f. 蚯蚓 Lumbricus terrestris; g. 幽虾Neotrypaea californiensis
1.2 生物扰动作用类型

生物扰动作用类型可分为沉积物颗粒重建和洞穴通水两大类,大类下又分为6个亚类(图2)[17]。颗粒重建主要指底栖动物各种行为造成的沉积物颗粒移动,洞穴通水是指底栖动物为了呼吸和觅食而对洞穴中水和上覆水进行交换[18]。两种扰动类型对沉积物产生不同的作用(表1)[19, 20]

图2 生物扰动作用类型 Fig. 2 The categories of bioturbation
表1 生物扰动类型及其对沉积物的影响 Table 1 Bioturbation modes and their effect on the sediment matrix
生物扰动类型
Bioturbation mode
效应
Effect
搬运过程
Transport process
沉积物种类
Sediment type
搬运类型
Transport type
颗粒重建
Particle reworking
Biomixing
生物混合
筑穴
Burrowing
沙、泥
Sand,mud
扩散
Diffusion
沉食性取食
Deposit-feeding
沙、泥
Sand,mud
非本地
Non-local
洞穴通水
Burrow ventilation
生物淋洗Bioirrigation洞穴水交换
Burrow flushing
沙、泥
Sand,mud
非本地
Non-local
间隙水迁移
Pore water transport

Sand
平流输送/扩散
Advection/diffusion

Mud
扩散
Diffusion
1.3 生物扰动作用影响因素 1.3.1 底栖动物种类

不同底栖动物有不同的生活习性,由此产生不同的沉积物混合模式,导致不同的颗粒位移,从而对沉积物产生不同的扰动强度。首先是觅食和摄食习性。底栖动物的觅食和摄食的活动控制了沉积物颗粒的位移[21]。如摄食和排粪主要发生在沉积物表层附近,因此沉积物混合模式以水平方向为主[22, 23];其次是筑穴行为,主要取决于巢穴的深度,产生的扰动强度在垂直空间上存在差异。如甲壳、双壳类动物的巢穴主要分布沉积物浅层,而环节动物和其它类似蠕虫的类群则趋向于分布在深层沉积物,因而前者主要对沉积物浅层产生扰动,后者则对深层产生扰动[24]。此外,底栖动物的体积、生物量等也影响其对沉积物的扰动强度[6]。实际上,动物种类的影响可以归纳为功能群[6]。目前,可将作为生物扰动者的底栖动物分为5个功能群(图3),即散布者、向下输送者、向上输送者、交换者和廊道散布者[25, 26]。这些功能群对沉积物产生不同的扰动效果。

图3 生物扰动者功能群 Fig. 3 Functional groups of bioturbators
1.3.2 底栖动物密度

底栖动物的密度对生物扰动强度有显著影响,两者间呈正相关[27]。例如,高密度沙蚕(Hediste diversicolor)对沉积物的扰动强度明显高于低密度[28]

1.3.3 沉积物有机质含量

底栖动物的生物扰动强度受到食物供给的影响[29]。由于沉食底栖动物主要以沉积物为食,因此沉积物中的有机质含量直接影响了其生物扰动强度[30]。在有机质含量低的沉积物中,底栖动物为了生存不得不摄食大量的沉积物[24],由此对沉积物产生强烈的扰动作用。相反,在有机质含量高的沉积物中,底栖动物只需要取食少量的沉积物即可满足营养需求,降低了沉积物处理速度,生物扰动强度随之降低[24]

1.3.4 沉积速率、水深和粒径

通常,沉积速率高,为沉食的底栖动物带来的食物就多,从而能够供养更多的底栖动物,表现为较强的扰动强度[31]。水深对生物扰动的影响实质上与营养供给相关。水浅,营养物质高,生物扰动强度大;水深,营养物质少,生物扰动强度小。如在富营养的近岸海域,底栖动物对沉积物的扰动深度可以达到100cm以下[32];而在贫营养的深海,底栖动物的扰动深度最深只能到20cm左右[33]。沉积物粒径同样对生物扰动强度产生影响。由于沉食底栖动物对细颗粒沉积物有优先摄食和向下输送的习性,因此生物扰动强度表现明显的粒径相关[34],如在加拿的Fundy湾,生物扰动强度随沉积物粒径增大而减弱[35]

2 生物扰动对沉积物中污染物的环境行为影响

在生物扰动的作用下,沉积物的结构和性质发生了改变。由此影响蓄积于沉积物中的污染物的各种环境行为。其中一个非常重要的影响是促进沉积物中的污染物向水体释放(图4)[36];与此同时,沉积物中的污染物还会被生物扰动者所富集;此外,还引起沉积物中含氧量和微生物等变化,从而间接影响污染物的环境行为。因此,生物扰动使得蓄积于沉积物中的污染物的环境行为更加复杂。

图4 生物扰动导致沉积物向水体释放污染物 Fig. 4 Processes of chemical release from a sediment bed contaminant source
2.1 生物扰动对氮、磷影响 2.1.1 氮

在生物扰动作用下,沉积物一个重要的变化特征是含氧量增加[37, 38]。例如,在摇蚊(Chironomid larvae)扰动沉积物的实验中,对照组沉积物含氧量随深度而减少,在4mm处含氧量降低至0,而生物扰动处理的沉积物,在7mm处,含氧量仍可达到5mg/L[39]。沉积物含氧量的变化对其中氮的硝化与反硝化作用产生重要影响[40]。因此,生物扰动影响硝化与反硝化作用。通常,生物扰动显著提高硝化作用[41]。这种促进作用受到多种因子影响。Pelegri和Blackburn发现,在较低密度时(20000 个/m2),正颤蚓(Tubifex tubifex)的生物扰动提高氮的硝化,而在高密度时(70000 个/m2)却降低氮的硝化[42],表明底栖动物密度影响硝化作用。Nogaro和Mermillod-Blondin的研究表明,颤蚓的生物扰动对不同来源的沉积物中的氮的硝化作用影响完全不同,对于来自大学校园的沉积物,生物扰动显著提高了氮的硝化,而对来自工业区的沉积物,氮的硝化并没有受到生物扰动的影响[43],表明沉积物的性质也影响到氮的硝化。当沉积物中含有硫化物时,由于生物扰动促进硫化物释放,这些硫化物抑制微生物生长,从而降低了硝化作用[38]。可见,生物扰动对硝化用影响不同,受多种因素影响。生物扰动也能影响沉积物中氮的反硝化作用。摇蚊的生物扰动能将总反硝化速率从(0.76±0.34) mmol N m-2 d-1提高到(5.50±1.30) mmol N m-2 d-1,极大提高了反硝作用[39]。最近的研究表,生物扰动对不同深度的沉积物反硝化作用影响不同,在海姑虾(Neotrypaea californiensis)的扰动下,沉积物深度在13cm 以上的反硝化速度低于没有生物扰动处理,而在13 cm以下却是生物扰动处理高于无生物扰动处理[40]。这一方面表明生物扰动促进深层沉积物中的氮发生反硝化作用,另一方面也说明生物扰动影响反硝化作用也受到其它因素的影响。

生物扰动促进沉积物向水体释放氮营养盐。Fanjul等在河口湿地发现,在有无穴居蟹Neohelice granulate的沉积物间隙水中的氮营养盐含量存在明显差异,无论是硝酸盐还是氨氮,都呈现有蟹居住的洞穴>无蟹居住洞穴>无蟹分布区的分布特征[44]。表明穴居蟹的生物扰动促进沉积物向水体释放氮营养盐。Mermillod-Blondin的室内微宇宙研究证明了这一点,颤蚓的生物扰动提高氨氮从沉积物向水体的释放达到200%[45];其它底栖动物,如环节动物Marenzelleria sp.的生物扰动也显著提高沉积物中的氨氮向水体释放量[46]。生物扰动造成沉积物中氨氮释放主要通过生物淋洗(Bioirrigation)作用完成[40]。例如在浅海湾,76%的氨氮从沉积物向水体的释放归结于生物淋洗作用[47]。生物扰动促进沉积物中的氮向水体释放的主要原因是生物扰动造成了沉积物的搬运和混合,使沉积物吸附的营养盐得以释放,加快间隙水中物质的扩散速率和溶解速率,从而增加氮在沉积物-水界面上的交换通量[48]

2.1.2 磷

磷在沉积物中的环境行为也受到生物扰动的影响。一方面,生物扰动促进沉积物中溶解性磷(SRP)向水体释放。Mermillod-Blondin的研究表明,颤蚓的生物扰动提高了190%的SRP从沉积物向水体释放[45]。Swan等发现在溶解氧较低的水平下,Neanthes succinea的生物扰动提高SRP的释放速率达到60%—70%[49]。然而,有些底栖动物的生物扰动却抑制了SRP向水体释放[50]。如水丝蚓的生物扰动不但没有促进沉积物中SRP向水体释放,相反,还抑制了沉积物中SRP的释放[51]。造成这种现象的原因是沉积物中的一些矿物质在生物扰动的作用下增强对间隙水SRP吸附所导致[50]。间隙水SRP 浓度的降低会减小SRP向水体扩散的浓度梯度,从而减小SRP的释放通量,甚至产生沉积物对水体中SRP的吸附[52, 53]。由此可见,生物扰动对沉积物中SRP的促进/抑制释放作用不仅取决于生物扰动者,还与沉积物特点相关。

另一方面,生物扰动还能改变沉积物中磷的化学形态。河蚬的生物扰动增加了沉积物中铁结合态磷含量[54]。这是由于生物扰动提高沉积物中的氧含量,氧化了间隙水中Fe2+,氧化反应所生成的水合铁氧化物对SRP具有良好的吸附作用[50],从而形成铁结合态磷。

此外,生物扰动还促进有机磷降解。Hietanen等的研究表明,加入底栖动物12d后,沉积物中的有机磷发生了降解[46]。由于有机磷包括多种物质,生物扰动对有机磷不同组分影响不同。目前,磷脂和DNA在生物扰动下能发生快速分解或转化得到证实[55]。对于其它有机磷,生物扰动是否能促进其降解并不清楚。

2.2 生物扰动对重金属影响 2.2.1 改变重金属在沉积物中的分布

Benoit等发现美国波士顿港的沉积物中甲基汞的垂直分布受片脚类动物生物扰动的影响,随着生物扰动强度的增大,甲基汞含量最高值点向下迁移[56]。Klerks等对海姑虾的生物扰动对美国Tampa湾沉积物中锌与镉的分布研究表明,在有海姑虾活动区域的沉积物中锌与镉的含量是没有海姑虾活动区域的3倍,说明生物扰动显著改变了重金属在沉积物中的水平分布[57]。室内的实验研究表明,颤蚓的生物扰动能促进水体中的Pb向沉积物深层扩散[58]。可见,生物扰动不仅改变重金属在沉积物中的垂直分布,也改变其在沉积物中的水平分布。

2.2.2 促进重金属从沉积物向水体释放

Simpson等对悉尼港的5个河口沉积物锌释放研究表明,5周后,没有生物的对照组中锌的释放速率为27 mg m-2 d-1,而有生物的释放速率为71 mg m-2 d-1,说明生物扰动显著增强沉积物向水体释放重金属[59]。Ciutata等研究表明,颤蚓生物扰动促进沉积物中的镉向水体释放,但以颗粒态为主,与生物扰动导致沉积物的再悬浮相关[60]。同样的结果见路永正和阎的研究,他们发现颤蚓的生物扰动显著提高了上覆水中颗粒态镉的浓度[58]。生物扰动还通过改变沉积物的理化性质,从而促进沉积物向水体释放重金属。例如,生物扰动增加沉积物的氧含量,增强生物扰动强度,促进沉积物中甲基汞向水体迁移[61, 62]

2.2.3 改变重金属化学形态

在水环境中,硫酸盐还原菌是控制甲基汞生成的重要因子[63]。由于生物扰动能为间隙水提供氧化剂,降低二价硫离子的生成,从而减少了甲基汞形成[56]。然而,Nogaro等的研究却得到相反的结论,他们发现生物扰动增强沉积物中微生物的有氧吸吸,促进甲基汞形成[64]。两个截然不同的结论,表明生物扰动对沉积物中甲基汞的影响错综复杂。

镉是沉积物中常的污染物,在不同的条件下具有不同的化学形态。由于生物扰动改变沉积物的pH值、氧化还原电位等,因而对蓄积于沉积物中的镉的化学形态产生重要影响。颤蚓的生物扰动提高镉从沉积物内部微孔向溶液中扩散的速率,进而提高沉积物中镉的迁移能力,促进镉从铁锰氧化物结合态向可交换态转移[65]。由于生物扰动增大沉积物比表面积,不断更新沉积物颗粒上的吸附点位[60],有利于碳酸盐矿物颗粒对镉离子的再吸附,形成碳酸盐结合态镉;与此同时,呼吸作用产生的CO2能增加其中CO-32浓度,也有利于增加碳酸盐结合态镉[65]。可见,生物扰动增强沉积物碳酸盐矿物对镉的吸附能力,对于控制水-沉积物界面镉的交换具有重要作用。

2.3 生物扰动对疏水性有机污染物影响 2.3.1 促进向水体释放

生物扰动促进沉积物中的疏水性有机污染物(Hydrophobic organic contaminants,HOCs)向水体释放已成为共识[66]。Schaanning等发现,大型底栖动物的生物扰动可以使挪威奥斯陆港沉积物的PAHs、PCBs和DDT等污染物分别以每天243、19.6 pmol/m2和13.6 pmol/m2的速度向水体释放[67]。Menone等野外调查了穴居蟹Chasmagnathus granulate 的生物扰动对阿根廷的Bahía Blanca河口沉积物中的有机氯农药影响,结果表明,生物扰动显著提高沉积物向水体释放有机氯农药[68, 69]。Granberg等研究发现,生物扰动促进波罗的海沉积物中的PCBs向水体释放[70]。类似的结果在Josefsson等的研究中也得到,他们发现,在利用活性炭对受二苯并二恶英和二苯并呋喃(PCDD/Fs)污染的沉积物进行原位修复时,由于底栖动物的存在,它们的生物扰动促进沉积物中的PCDD/Fs向水体迁移,影响了修复效果[71],因此,在对沉积物进行修复时,应该考虑底栖动物生物扰动的影响[72, 73]。研究表明,底栖动物的排泄物中含有许多溶解性有机质(DOC)及小分子的物质,提高间隙水中的DOC含量,由于DOC对有机物具有很强的吸附能力,由此引发PAHs在沉积物-间隙水的重新分配,从而提高了水相中的PAHs含量[74]。即,生物扰动打破了有机污染物在沉积物-水界面的动力学平衡,使沉积物中的HOCs发生解吸[74, 75, 76]。其它一些HOCs,如多溴联苯醚(PBDEs)[77]、医药品和个人护理品(PPCPs)[75],生物扰动也能促进它们向水体释放。然而, HOCs的释放还受到其化学性质影响。通常,疏水性高的有机污染物,不易发生解吸。例如,底栖动物Chironomus dilutusHyalella azteca的生物扰动并不能显著提高乙炔基雌二醇(EE2)从沉积物向水体释放,与EE2具有较高的疏水性特点相关[75]。此外,沉积物的特点也影响生物扰动促进HOCs释放的效果。如沉积物中的黑炭由于具有较强的吸附能力,抑制生物扰动促进沉积物中HOCs解吸[78]

传统的观点认为,生物扰动主要是增加水体中颗粒态污染物[70]。笔者的研究得到类似的结论,在天津厚蟹(Helice tientsinensis)的生物扰动下,水体中PAHs的颗粒态是其溶解态的4倍,表明生物扰动以促进颗粒态污染物释放为主[12, 60]。生物扰动主要促进颗粒态HOCs释放也得到Josefsson等的研究结果支持[77]。然而,近年的研究表明,生物扰动也增加水体中溶解态的污染物[70,79]。Granberg 等研究发现,Marenzelleria neglecta的生物扰动释放的溶解态PCBs 要高于其颗粒态一个数量级,表明生物扰动促进沉积物PCBs释放以溶解态为主[70]。这种差异可能与动物种类、密度、沉积物性质以及水化学条件相关[13]

生物扰动无论是促进溶解态还是颗粒态HOCs释放,都造成二次污染。特别是溶解态的HOCs,生物扰动提高了它们的生物有效性[76]。如夹杂带丝蚓(Lumbriculus variegatus)的生物扰动显著提高了美洲钩虾(Hyalella azteca)对PAHs的富集[80]。通常认为颗粒态HOCs不易被生物利用,但最近的研究表明,颗粒态的多溴联苯醚也能被鲤鱼(Cyprinus carpio)所富集[81]。由此可见,生物扰动促进沉积物的HOCs释放,这些HOCs能被水生生物所利用,最终通过食物链传递到人类,对人类健康造成潜在的风险。

2.3.2 加强富集和代谢

由于底栖动物几乎终生生活于沉积物中,因此通过体表吸收和摄食沉积物,使得HOCs 更容易富集于其体内。一项对日本Ariake海滨的生物体PCBs和PAHs的调查研究表明,PCBs在比目鱼体内的含量为3.6 ng/g(湿重)、蛤为68 ng/g、弹涂鱼为1700 ng/g脂肪;PAHs在沙躅属动物体内含量为24 ng/g(湿重)、牡蛎为6.3 ng/g、蛤为6.3 ng/g、蟹为4.2ng/g、弹涂鱼为2.9 ng/g[82]。在渤海湾的北塘河口附近的天津厚蟹,总PAHs含量达到(8816±2885) ng/g脂肪[74]。水丝蚓[81]、沙蚕[83]对多溴联苯醚也具有不同的富集能力。

某些底栖动物对HOCs还具有代谢能力。穴居蟹[68, 69]、蓝蟹[84]对有机机氯农药具有代谢能力。一些环节动物(如Clymenella torquata,Nereis virens,N. succinea,Nephtys incisa,Spio setosa,Cirriformia grandis) 、双壳类(如Macoma balthica,Mya arenaria,Mulinia lateralis)以及一些片脚类动物(如Ampelisca abdita,Leptocheirus plumulosus)可以代谢PAHs[85]。此外,一些虾类可以代谢PCBs[86]。沙蚕对多溴联苯醚也具有一定的代谢能力[83]

2.3.3 提高生物降解

底栖动物的生物扰动可以间歇性地向深层的无氧区输送氧、直接或者间接影响微生物菌群变化,使颗粒物纵向迁移[87, 88];同时,底栖动物的排泄物有助于HOCs从沉积物中解吸[74, 75, 76],促进HOCs与微生物接触;此外,底栖动物消化液中的助溶剂对生物降解有很好的促进作用[89];这些因素都有利于促进沉积物中HOCs发生生物降解。Granberg等对Amphiura filiformisN. diversicolor的生物扰动对微生物降解芘的研究发现,相对于深层的沉积物,在洞穴中的沉积物中的芘的含量明显减少,表明生物扰动促进微生物降解芘[90];Timmermann等通过室内研究发现,有生物扰动的装置中,芘的降解提高了180%—200%倍[91]。物扰动促进沉积物中HOCs生物降解是由于生物扰动增加沉积物中的含氧量,从而提高了微生物降解HOCs 的能力[89]。生物扰动促进HOCs 生物降解取决于生物扰动者和污染物在沉积物中的深度。通常,降解主要发生在沉积物浅层,与生物扰动者主要活动于该区域相关[89]

4 结语

生物扰动是沉积物中污染物动态变化的一个关键因子。目前,生物扰动对沉积物中的污染物的环境行为的影响开展了一系列的研究,了解一些影响机制。底栖动物通过生物泵、再悬浮、分泌物排泄等过程影响沉积物中的污染物并造成释放[92]。生物扰动影响沉积物中的污染物环境行为受控于多种环境因子,包括温度[93]、有机质[42]、水动力[10]、污染等[94]。特别是污染的影响,最近的研究表明,污染影响生物扰动者的行为,进而影响沉积物的地球化学循环[95]。可见,生物扰动和沉积物中的污染物相互关系错综复杂,两者之间的关系需要进一步研究。

数学模型是了解生物扰动和沉积物中污染物相互关系的重要研究手段。在生物扰动对沉积物结构的影响研究中,许多模型如箱式模型、平流模型、信号处理模型、扩散-反应模型和颗粒物输运扩散模型等已被广泛运用[96],取得良好效果。但在生物扰动对沉积物中污染物的影响研究中,鲜有运用数学模型,这方面研究急需加强。

总体而言,生物扰动对沉积物中在氮、磷和重金属的环境行为影响研究相对较多,而对于HOCs 研究较少,特别是生物扰动对HOCs的生物降解研究更少。因此,今后有必要开展这方面的研究,同时应该对生物扰动对促进沉积物中污染物的二次释放进行风险评估,正解认识其潜在的生态风险。

参考文献
[1] Adámek Z, Maršálek B. Bioturbation of sediments by benthic macroinvertebrates and fish and its implication for pond ecosystems: a review. Aquaculture International, 2013, 21(1):1-17.
[2] Godbold J A, Bulling M T, Solan M. Habitat structure mediates biodiversity effects on ecosystem properties. Proceedings of the Royal Society B: Biological Sciences, 2011, 278(1717):2510-2518.
[3] Mermillod-Blondin F. The functional significance of bioturbation and biodeposition on biogeochemical processes at the water-sediment interface in freshwater and marine ecosystems. Journal of the North American Benthological Society, 2011, 30(3):770-778.
[4] Gérino M, Frignani M, Mugnai C, Bellucci LG, Prevedelli D, Valentini A, Castelli A, Delmotte S, Sauvage S. Bioturbation in the Venice Lagoon: Rates and relationship to organisms. Acta Oecologica, 2007, 32(1):14-25.
[5] Zhang Z N. Some progress of the study on the ecosystem dynamics for benthic-pelagic coupling. Journal of Ocean University of Qingdao, 2000, 30 (1):115-122.
[6] Qin X B, Sun H W, Wu J Z, Wang R N, Sun T H. Bioturbation of estuarine sediment by macrofauna activity. Chinese Journal of Applied Ecology, 2010, 21(2):458-463.
[7] Paarlberg A J, Knaapen M A F, de Vries M B, Hulscher S J M H, Wang Z B. Biological influences on morphology and bed composition of an intertidal flat. Estuarine Coastal and Shelf Science, 2005, 64(4):577-590.
[8] Dietrich W E, Perron J T. The search for a topographic signature of life. Nature, 2006, 439(7075): 411-418.
[9] Murray J M H, Meadows A, Meadows P S. Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review. Geomorphology, 2002, 47(1):15-30.
[10] Pacheco A S, González M T, Bremner J, Oliva M, Heilmayer O, Laudien J, Riascos J M. Functional diversity of marine macrobenthic communities from sublittoral soft-sediment habitats off northern Chile. Helgoland Marine Research, 2011, 65(3):413-424.
[11] Navel S, Mermillod-Blondin F, Montuelle B, Chauvet E, Marmonier P. Sedimentary context controls the influence of ecosystem engineering by bioturbators on microbial processes in river sediments. Oikos, 2012, 121(7):1134-1144.
[12] Shirakawa H, Yanai S, Goto A. Lamprey larvae as ecosystem engineers: physical and geochemical impact on the streambed by their burrowing behavior. Hydrobiologia, 2013, 701(1):313-322.
[13] Qin X B. Impacts of bioturbation on the environmental behavior of polycyclic aromatic hydrocarbons in estuarine sediment. Tianjin: Nankai University, 2010.
[14] Meysman F J R, Middelburg J J, Heip C H R. Bioturbation: a fresh look at Darwin's last idea. Trends in Ecology & Evolution, 2006, 21(12):688-695.
[15] Davison C. On the amount of sand brought up by lobworms to the surface. Geology Magazine, 1891, 8(11): 489-493.
[16] Grozier W J. The amount of bottom material ingested by holothurians (Stichopus). Journal of Experimental Zoology, 1918, 26(2):379-389.
[17] Kristensen E, Penha-Lopes G, Delefosse M, Valdemarsen T, Quintana C O, Banta G T. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series, 2012, 446:285-302.
[18] Karlson A M L, Nascimento F J A, Suikkanen S, Elmgren R. Benthic fauna affects recruitment from sediments of the harmful cyanobacterium Nodularia spumigena. Harmful Algae, 2012, 20:126-131.
[19] Kristensen E, Holmer M. Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO3- and SO42-), with emphasis on substrate origin, degradation kinetics and the role of bioturbation. Geochimica et Cosmochimica Acta, 2001, 65(3):419-434.
[20] Shull D H, Benoit J M, Wojcik C, Senning J R. Infaunal burrow ventilation and pore-water transport in muddy sediments. Estuarine, Coastal and Shelf Science, 2009, 83(3):277-286.
[21] Wheatcroft R A, Jumars P A, Smith C R, Nowell A R M. A mechanistic view of the particulate biodiffusion coefficient: Step lengths, rest periods and transport directions. Journal of Marine Research, 1990, 48(1):177-207.
[22] Smith C R, Berelson W, Demaster D J, Dobbs F C, Hammond D, Hoover D J, Pope R H, Stephens M. Latitudinal variations in benthic processes in the abyssal equatorial Pacific: Control by biogenic particle flux. Deep-Sea Research Ⅱ: Topical Studies in Oceanography, 1997, 44(9):2295-2317.
[23] Wheatcroft R A, Smith C R, Jumars P A. Dynamics of surfacial trace assemblages in the deep sea. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(1):71-91.
[24] Gage J D, Tyler P A. Deep-sea biology-A natural history of organisms at the deep-sea floor. Cambridge: Cambridge University Press, 1991, 337-356.
[25] François F, Poggiale J C, Durbec J P, Stora G. A new approach for the modelling of sediment reworking induced by a macrobenthic community. Acta Biotheoritica, 1997, 45(3/4):295-319.
[26] Gérino M, Stora G, François-Carcaillet F, Gilbert F, Poggiale J C, Mermillod-Blondin F, Desrosiers G, Vervier P. Macro-invertebrates functional groups in freshwater and marine sediments: a common mechanistic classification. Vie et Milieu, 2003, 53(4):221-231.
[27] Turnewetsch R, Witte U, Graf G. Bioturbation in the abyssal Arabian Sea: influence of fauna and food supply. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(14):2877-2911.
[28] Duport E, Stora G, Gilbert F. Effects of population density on the sediment mixing induced by the gallery-diffusor Hediste (Nereis) diversicolor O.F. Müller, 1776. Journal of Experimental Marine Biology and Ecology, 2006, 336(1):33-41.
[29] Maire O, Duchêne J C, Grémare A, Malyuga V S, Meysman F J R. A comparison of sediment reworking rates by the surface deposit-feeding bivalve Abra ovata during summertime and wintertime, with a comparison between two models of sediment reworking. Journal of Experimental Marine Biology and Ecology, 2007, 343(1):21-36.
[30] Smith C R, Rabouille C. What controls the mixed-layer depth in deep-sea sediments? The important of POS flux. Limnology and Oceanography, 2002, 47(2):418-426.
[31] Tromp T K, Cappellen P V, Key R M. A globe model for the early diagenesis of organic carbon and phosphorus in marine sediments. Geoch et Cosmochim Acta, 1995, 59(7):1259-1284.
[32] Walbran P D. 210Pb and 14C as indicators of callianassid bioturbation in coral reef sediment. Journal of Sedimentary Research, 1996, 66(1):259-264.
[33] Buffoni G, Delfanti R, Papucci C. Accumulation rate and mixing processes in near-surface North Atlantic sediments: Evidence from C-14 and Pu-239, 240 downcore profiles. Marine Geology, 1992, 109(1):159-170.
[34] Wheatcroft R A. Experimental tests for partical size-dependent bioturbation in the deep oceans. Limnology and Oceanography, 1992, 37(1):90-104.
[35] Dashtgard S E, Gingras M K, Pemberton S G. Grain-size controls on the occurrence of bioturbation. Palaeogeog Palaeocl Palaeoecol, 2008, 257(1):224-243.
[36] Thibodeaux L J, Bierman V J. The bioturbation driven chemical release process. Environmetal Science & Technology, 2003, 37(13):252A-258A.
[37] Bertics V J, Ziebis W. Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments. Environmental Microbiology, 2010, 12(11):3022-3034.
[38] Bonaglia S, Bartoli M, Gunnarsson J S, Rahm L, Raymond C, Svensson O, Yekta S S, Brüchert V. Effect of reoxygenation and Marenzelleria spp. bioturbation on Baltic Sea sediment metabolism. Marine Ecology Progress Series, 2013, 482:43-55.
[39] Shang J, Zhang L, Shi C, Fan C. Influence of Chironomid Larvae on oxygen and nitrogen fluxes across the sediment-water interface (Lake Taihu, China). Journal of Environmental Sciences, 2013, 25(5):978-985.
[40] Bertics V J, Sohm J A, Magnabosco C, Ziebis W. Denitrification and nitrogen fixation dynamics in the area surrounding an individual ghost shrimp (Neotrypaea californiensis) burrow system. Applied and Environmental Microbiology, 2012, 78(11):3864-3872.
[41] Banks J L, Ross D J, Keough M J, Macleod C K, Keane J, Eyre B D. Influence of a burrowing, metal-tolerant polychaete on benthic metabolism, denitrification and nitrogen regeneration in contaminated estuarine sediments. Marine Pollution Bulletin, 2013, 68(1-2):30-37.
[42] Pelegri S P, Blackburn T H. Effects of Tubifex tubifex (Oligochaeta: tubificidae) on N-mineralization in freshwater sediments, measured with 15N isotopes. Aquatic Microbial Ecology, 1995, 9:289-294.
[43] Nogaro G, Mermillod-Blondin F. Stormwater sediment and bioturbation influences on hydraulic functioning, biogeochemical processes, and pollutant dynamics in laboratory infiltration systems. Environmetal Science & Technology, 2009, 43(10):3632-3638.
[44] Fanjul E, Grela M A, Canepuccia A, Iribarne O. The Southwest Atlantic intertidal burrowing crab Neohelice granulate modifies nutrient loads of phreatic waters entering coastal area. Estuarine Coastal and Shelf Science, 2008, 79(2):300-306.
[45] Mermillod-Blondin F, Nogaro G, Vallier F, Gibert J. Laboratory study highlights the key influences of stormwater sediment thickness and bioturbation by tubificid worms on dynamics of nutrients and pollutants in stormwater retention systems. Chemosphere, 2008, 72(2):213-223.
[46] Hietanen S, Laine A, Lukkari K. The complex effects of the invasive polychaetes Marenzelleria spp. on benthic nutrient dynamics. Journal of Experimental Marine Biology and Ecology, 2007, 352(1): 89-102.
[47] Dale A W, Sommer S, Bohlen L, Treude T, Bertics V J, Bange H W, Pfannkuche O, Schorp T, Mattsdotter M, Wallmann K. Rates and regulation of nitrogen cycling in seasonally hypoxic sediments during winter (Boknis Eck, SW Baltic Sea): Sensitivity to environmental variables. Estuarine, Coastal and Shelf Science, 2011, 95(1):14-28.
[48] Dong H, Zheng X L, Zhang J. Experimental study on exchange flux of nutrients in sediment-water interface in polluted estuary area. Marine Environmental Science, 2012, 31(3):423-428.
[49] Swan B K, Watts J M, Reifel K M, Hurlbert S H. Role of the polychaete Neanthes succinea in phosphorus regeneration from sediments in the Salton Sea, California. Hydrobiologia, 2007, 576(1):111-125.
[50] Lewandowski J, Hupfer M. Effect of macrozoobenthos on two-dimensional small-scale heterogeneity of pore water phosphorus concentrations in lake sediments: a laboratory study. Limnology and Oceanography, 2005, 50(4):1106-1118.
[51] Zhang L, Gu X Z, Wang Z D, Shen Q S, Fan C X, Zhong H B, Yin J C. The influence of tubificid worms bioturbation on the exchange of phosphorus across sediment-water interface in lakes. Journal of Lake Sciences, 2010, 22(5):666-674.
[52] Mortimer R J G, Davey J T, Krom M D, Watson P G, Frickers P E, Clifton R J. The effect of macrofauna on porewater profiles and nutrient fluxes in the intertidal zone of the Humber Estuary. Estuarine, Coastal and Shelf Science, 1999, 48(6):683-699.
[53] Norkko J, Reed D C, Timmermann K, Norkko A, Gustafsson B G, Bonsdorff E, Slomp C P, Carstensen J, Conley D J. A welcome can of worms? Hypoxia mitigation by an invasive species. Global Change Biology, 2012, 18(2):422-434.
[54] Zhang L, Gu X Z, Shao S G, Hu H Y, Zhong J C, Fan C X. Impacts of Asian clams (Corbicula fluminea) on lake sediment properties and phosphorus movement. Environmental Science, 2011, 32(1):88-95.
[55] Bai X L, Zhou Y K, Zhang L. The influence of tubificid worms bioturbation on organic phosphorus components and their vertical distribution in sediment of Lake Taihu. Acta Ecologica Sinica, 2012, 32(17):5581-5588.
[56] Benoit J M, Shull D H, Robinson P, Ucran L R. Infaunal burrow densities and sediment monomethyl mercury distributions in Boston Harbor, Massachusetts. Marime Chemistry, 2006, 102(1):124-133.
[57] Klerks P L, Felder D L, Strasser K, Swarzenski P W. Effects of ghost shrimp on zinc and cadmium in sediments from Tampa Bay, FL. Marime Chemistry, 2007, 104(1):17-26
[58] Lu Y Z, Yan B X. Effect of bioturbation by worms on the transport of Pb and Cd between sediments and waters. China Environmental Science, 2010, 30(2):251-255.
[59] Simpson S L, Pryor I, Mewburn B R, Batley G E, Jolley D. Considerations for capping metal-contaminated sediments in dynamic estuarine environments. Environmental Science & Technology, 2002, 36(17):3772-3778.
[60] Ciutata A, Gerinob M, Boudou A. Remobilization and bioavailability of cadmium from historically contaminated sediments: Influence of bioturbation by tubificids. Ecotoxicology and Environmental Safety, 2007, 68(1):108-117.
[61] Hammerschmidt C R, Fitzgerald W F. Sediment-water exchange of methylmercury determined from shipboard benthic flux chambers. Marine Chemistry, 2008, 109(1): 86-97.
[62] Benoit J, Shull D, Harvey R, Beal S. Effect of bioirrigation on sediment-water exchange of methylmercury in Boston Harbor, Massachusetts. Environmental Science & Technology, 2009, 43(10):3669-3674.
[63] King J F, Saunders F M, Lee R F, Jahnke R A. Coupling mercury methylation rates to sulfate reduction rates in marine sediments. Environmental Toxicology and Chemistry, 1999, 18(7):1362-1369.
[64] Nogaro G, Hammerschmidt C R. Influence of benthic macrofauna on microbial production of methylmercury in sediments on the New England continental shelf. Hydrobiologia, 2013, 701(1):289-299.
[65] Lü J T, Hua X Y, Dong D M, Qiao Q Q, Liang D P. Effects of tubificid bioturbation on speciation of cadmium in contaminated sediment by laboratorial microcosm experiment. Journal of Jilin University (Science Edition), 2009, 47(5):1097-1103.
[66] Roberts D A. Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments. Environment International, 2012, 40: 230-243.
[67] Schaanning M, Breyholtz B, Skei J. Experimental results on effects of capping on fluxes of persistent organic pollutants (POPs) from historically contaminated sediments. Marine Chemistry, 2006, 102(1):46-59.
[68] Menone M L, Miglioranza K S B, Iribarne O, de Moreno J E A, Moreno V J. The role of burrowing bed and burrows of the SW Atlantic intertidal crab Chasmagnathus granulate in trapping organochlorine pesticides. Marine Pollution Bulletin, 2004, 48(3):240-247.
[69] Menone M L, Miglioranza K S B, Botto F, Iribarne O, de Moreno J E A, Moreno V J. Field accumulative behavior of organochlorine pesticides. The role of crabs and sediment characteristics in coastal environments. Marine Pollution Bulletin, 2006, 52:1717-1724.
[70] Granberg M E, Gunnarsson J S, Hedman J E, Rosenberg R, Jonsson P. Bioturbation-driven release of organic contaminants from Baltic Sea sediments mediated by the invading polychaete Marenzelleria neglecta. Environmental Science & Technology, 2008, 42(4):1058-1065.
[71] Josefsson S, Schaanning M, Samuelsson G S, Gunnarsson J S, Olofsson I, Eek E, Wiberg K. Capping efficiency of various carbonaceous and mineral materials for in situ remediation of polychlorinated dibenzo-p-dioxin and dibenzofuran contaminated marine sediments: Sediment-to-water fluxes and bioaccumulation in Boxcosm Tests. Environmental Science & Technology, 2012, 46(6):3343-3351.
[72] Kupryianchyk D, Noori A, Rakowska M I, Grotenhuis T J, Koelmans A A. Bioturbation and dissolved organic matter enhance contaminant fluxes from sediment treated with powdered and granular activated carbon. Environmental Science & Technology, 2013, 47(10):5092-5100.
[73] Cornelissen G, Amstaetter K, Hauge A, Schaanning M, Beylich B, Gunnarsson JS, Breedveld G D, Oen A M P, Eek E. Large-scale field study on thin-layer capping of marine PCDD/Fs contaminated sediments in Grenlandfjords, Norway: physicochemical effects. Environmental Science & Technology, 2012, 46(21): 12030-12037.
[74] Qin X B, Sun H W, Wang C P, Yu Y, Sun T H. Impacts of crab bioturbation on the fate of polycyclic aromatic hydrocarbons in sediment from the Beitang estuary of Tianjin, China. Environmental Toxicology and Chemistry, 2010, 29(6):1248-255.
[75] Gilroy È A, Balakrishnan V K, Solomon K R, Sverko E, Sibley P K. Behaviour of pharmaceuticals in spiked lake sediments-Effects and interactions with benthic invertebrates. Chemosphere, 2012, 86(6):578-584.
[76] Di S, Liu T, Diao J, Zhou Z. Enantioselective bioaccumulation and degradation of sediment-associated metalaxyl enantiomers in Tubifex tubifex. Journal of Agricultural and Food Chemistry, 2013, 61(21):4997-5002.
[77] Josefsson S, Leonardsson K, Gunnarsson J, Wiberg K. Bioturbation-driven release of buried PCBs and PBDEs from different depths in contaminated sediments. Environmental Science & Technology, 2010, 44(19):7456-7464.
[78] Koelmans A A, Jonker M T O. Effects of black carbon on bioturbation-induced benthic fluxes of polychlorinated biphenyls. Chemosphere, 2011, 84(8):1150-1157.
[79] Erickson M J, Turner C L, Thibodeaux L J. Field observation and modeling of dissolved fraction sediment-water exchange coefficients for PCBs in the Hudson River. Environmental Science & Technology, 2005, 39(2):549-556.
[80] Pang J, Sun B, Li H, Mehler W T, You J. Influence of bioturbation on bioavailability and toxicity of PAHs in sediment from an electronic waste recycling site in South China. Ecotoxicology and Environmental Safety, 2012, 84:27-233.
[81] Tian S Y, Zhu L Y, Bian J N, Fang S H. Bioaccumulation and metabolism of PBDEs in carps (Cyprinus carpio) in a water/sediment microcosm: the important role of particulate matter exposure. Environmental Science & Technology, 2012 46(5):2951-2958.
[82] Nakata H, Sakai Y, Miyawaki T. Bioaccumulation and toxic potencies of polychiorinated biphenyls and polycyclic aromatic hydrocarbons in tidal fiat and coastal ecosystems of the Ariake Sea, Japan. Environmental Science & Technology, 2003, 37(16):3513-3521.
[83] Tian S Y, Zhu L Y. Bioaccumulation kinetics of sediment-associated DE-83 in benthic invertebrates (Nereis succinea, polychaete). Chemosphere, 2011, 84(1):160-165.
[84] Falandysz J, Strandberg L, Puzyn T, Gucia M, Rappe C. Chlorinated cyclodiene pesticide residues in blue mussel, crab, and fish in the Gulf of Gdańsk, Baltic Sea. Environmental Science & Technology, 2001, 35(21):4163-4169.
[85] Aaron R J, Robert B M, Bruce B J, McElroy A E. Relationship between metabolism and bioaccumulation of benzo pyrene in benthic invertebrates. Environmental Toxicology and Chemistry, 2004, 23(11): 2587-2593.
[86] Goerke H, Weber K. Species-specific elimination of polychlorinated biphenyls in estuarine animals and its impact on residue patterns. Marine Environmental Research, 2001, 51(2):131-149.
[87] Kristensen E, Hansen T, Delefosse M, Banta G T, Quintana C O. Contrasting effects of the polychaetes Marenzelleria viridis and Nereis diversicolor on benthic metabolism and solute transport in sandy coastal sediment. Marine Ecology Progress Series, 2011, 425:125-139.
[88] Papaspyrou S, Gregersen T, Kristensen E, Christensen B, Cox R P. Microbial reaction rates and bacterial communities in sediment surrounding burrows of two nereidid polychaetes (Nereis diversicolor and N. virens). Marine Biology, 2006, 148(3):541-550.
[89] Timmermann K, Banta G T, Klinge L, Andersen O. Effects of bioturbation on the fate of oil in coastal sandy sediments-An in situ experiment. Chemosphere, 2011, 82(10):1358-1366.
[90] Granberg M E, Hansen R, Selck H. Relative importance of macrofaunal burrows for the microbial mineralization of pyrene in marine sediments: impact of macrofaunal species and organic matter quality. Marine Ecology Progress Series, 2005, 288: 59-74.
[91] Timmermann K, Banta G T, Johnsen A R, Andersen O. Effects of the polychaetes Arenicola marina and Nereis diversicolor on microbial pyrene mineralization. Aquatic Microbical Ecology, 2008, 50(2):197-207.
[92] Dai G H, Liu X H. Factors affecting the migration of persistent organic pollutants across the sediment-water interface of aquatic environment. Environmental Chemistry, 2011, 30(1), 224-230.
[93] Przeslawski R, Zhu Q, Aller R C. Effects of abiotic stressors on infaunal burrowing and associated sediment characteristics. Marine Ecology Progress Series, 2009, 92:33-42.
[94] Hunting E R, Mulder C, Kraak M H S, Breure A M, Admiraal W. Effects of copper on invertebrate-sediment interactions. Environmental Pollution, 2013, 180:131-135.
[95] Mermillod-Blondin F, Foulquier A, Gilbert F, Navel S, Montuelle B, Bellvert F, Comte G, Grossi V, Fourel F, Lecuyer C, Simon L. Benzo(a)pyrene inhibits the role of the bioturbator Tubifex tubifex in river sediment biogeochemistry. Science of the Total Environment, 2013, 450:230-241.
[96] Meysman F J, Boudreau B P, Middelburg J J. Modeling reactive transport in sediments subject to bioturbation and compaction. Geochimica et Cosmochimica Acta, 2005, 69(14):3601-3617.
[5] 张志南.水层-底栖耦合生态动力学研究的某些进展. 青岛海洋大学学报, 2000, 30(1):115-122.
[6] 覃雪波, 孙红文, 吴济舟, 王若男, 孙铁珩. 大底栖动物对河口沉积物的扰动作用. 应用生态学报, 2010, 21(2): 458-463.
[13] 覃雪波. 生物扰动对河口沉积物中多环芳烃环境行为的影响 [D]. 天津: 南开大学, 2010.
[48] 董慧, 郑西来, 张健. 污染河口区沉积物-水界面营养盐交换通量的实验研究. 海洋环境科学, 2012, 31(3):423-428.
[51] 张雷, 古小治, 王兆德, 申秋实, 范成新, 钟继承, 尹洪斌. 水丝蚓 (Tubificid worms) 扰动对磷在湖泊沉积物 水界面迁移的影响. 湖泊科学, 2010, 22(5):666-674.
[54] 张雷, 古小治, 邵世光, 胡海燕, 钟继承, 范成新. 河蚬 (Corbicula fluminea) 扰动对湖泊沉积物性质及磷迁移的影响. 环境科学, 2011, 32(1):88-95.
[55] 白秀玲, 周云凯, 张雷. 水丝蚓对太湖沉积物有机磷组成及垂向分布的影响. 生态学报, 2012, 32(17):5581-5588.
[58] 路永正, 阎百兴. 颤蚓扰动作用对铅镉在沉积物-水相中迁移的影响. 中国环境科学, 2010, 30(2):251-255.
[65] 吕继涛, 花修艺, 董德明, 乔倩倩, 梁大鹏. 室内模拟研究颤蚓扰动对污染沉积物中镉形态分布的影响. 吉林大学学报 (理学版), 2009, 47(5): 1097-1103.
[92] 戴国华, 刘新会. 影响沉积物-水界面持久性有机污染物迁移行为的因素研究. 环境化学, 2011, 30(1), 224-230.