生态学报  2014, Vol. 34 Issue (1): 50-58

文章信息

周然, 覃雪波, 彭士涛, 石洪华, 邓仕槐
ZHOU Ran, QIN Xuebo, PENG Shitao, SHI Honghua, DENG Shihuai
渤海湾大型底栖动物调查及与环境因子的相关性
Macroinvertebrate investigation and their relation to environmental factors in Bohai Bay
生态学报, 2014, 34(1): 50-58
Acta Ecologica Sinica, 2014, 34(1): 50-58
http://dx.doi.org/10.5846/stxb201305020903

文章历史

收稿日期:2013-5-2
修订日期:2013-9-22
渤海湾大型底栖动物调查及与环境因子的相关性
周然1, 2, 覃雪波2, 3, 彭士涛2, 4, 石洪华4, 邓仕槐1     
1. 四川农业大学资源环境学院, 成都 611130;
2. 交通运输部天津水运工程科学研究所, 天津 300456;
3. 天津自然博物馆, 天津 300074;
4. 国家海洋局第一海洋研究所, 青岛 266061
摘要:对渤海湾大型底栖动物和环境因子进行调查,利用多元分析技术对大型底栖动物与环境因子之间的关系进行研究。调查期间共发现大型底栖动物45种,平均密度为406个/m2。大型底栖动物数量空间变化明显,呈现从近岸到外海降低的变化特征。运用典范对应分析(CCA)探讨大型底栖动物与环境因子之间的关系,并采用向前引入法对环境因子进行逐步筛选,Monte Carlo置换检验结果显示,水深、无机氮和溶解氧是影响渤海湾大型底栖动物空间分布的关键环境因子。
关键词大型底栖动物    环境因子    典范对应分析(CCA)    渤海湾    
Macroinvertebrate investigation and their relation to environmental factors in Bohai Bay
ZHOU Ran1, 2, QIN Xuebo2, 3, PENG Shitao2, 4, SHI Honghua4, DENG Shihuai1     
1. College of Resource and Environment, Sichuan Agricultural University, Chengdu 611130, China;
2. Tianjin Research Institute for Water Transport Engineering, Tianjin 300456, China;
3. Tianjin Natural History Museum, Tianjin 300074, China;
4. The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
Abstract:Bohai Bay is a semi-enclosed bay, which is located in the western region of Bohai Sea in northern China. This bay has been conditioned strongly, historically, by different anthropogenic pressures. In particular, during the recent three decades, with rapid industrialization and urbanization, the seashore area of Bohai Bay were reclaim for agriculture and aquiculture, and subsequent occupation of those areas for urban, industrial and port developments have provoked a dramatic reduction in size. The seawater quality of Bohai Bay is deteriorated gradually. Due to the low movement of macroinvertebrate, they can be as a good indicator of change in their environment. In the present study, an interdisciplinary survey of hydrological, chemical and biological resources was conducted in the Bohai Bay in May 2008. The distribution of macroinvertebrate and their relation to environmental factors were performed with multivariate analysis techniques. The main aim of this study is describe the composition and abundance of macroinvertebrate and to select the best variables describing the macroinvertebrate distribution in Bohai Bay. The result shown that there were 45 taxa were observed during the study period. The highest frequency of the species is Nucula paulula, which contributed up to 77% of the stations. Planocera sp., Protankyra bidentata and Raphidopus ciliatus were also found in more than 50% of the stations. The mean of macroinvertebrate abundance was 406 ind./m2. The high abundance of macroinvertebrate was found at the coastal sites, while the low at the offshore sites. The highest abundance was found in the S7, with 6008 ind./m2. However, there were not macroinvertebrate were found in the S20, where is nearly the Tianjin Port. There were three dominant species including Abrina lunella, Nucula paulula and Theora fragilis during study periods, with the dominance of 0.02, 0.03 and 0.22, respectively. Abrina lunella and Nucula paulula were found in most of the stations, however, Theora fragilis mainly distributed in the S7 and S8. Compared to the other investigations in the Bohai Bay, the species number, density and dominant species were significantly varied. For example, there were 122 species in the 1983, while 45 species in the present study. It is unexpected that there were 111 species in the 2011. These results indicate that there was variation in the macroinvertebrate community in Bohai Bay. This can be explained by the fact that the changes in the environmental quality of the Bohai Bay as a result of the anthropogenic pressures. Multivariate ordination techniques were used to analyze the effects of environmental variables on the macroinvertebrate community by CANOCO version 4.5. The measured environmental factors, including water depth, water temperature, pH, salinity, dissolved oxygen, dissolved inorganic nitrogen, soluble reactive phosphorus, and silicate. All of these environmental variables were log10 (x+1) transformed before analysis except for pH. In the data matrix of species abundance, only those taxa that occurred greater than 5% of the total abundance at least in one sample were incorporated into the analysis. The species data were log10 (x+1) transformed before analysis to obtain consecutive distributions. The results of canonical correspondence analysis (CCA) with forward selection indicated that water depth (F=1.71, P=0.01), dissolved inorganic nitrogen (F=1.84, P=0.01)and dissolved oxygen (F=1.68, P=0.02), were the most important environmental factors influence macroinvertebrate assemblages during the study periods.
Key words: macroinvertebrate    environmental factors    CCA    Bohai Bay    

渤海湾是一个典型的半封闭海湾,由于与外海的水交换非常缓慢,湾内的各种污染物容易累积,导致水质下降[1]。特别是近年来随着环渤海地区经济的高速发展,大量生产生活污水被排放到渤海湾,水质进一步恶化。作为海洋生态系统中的一个重要的生态类群,大型底栖动物在能流和物流中占有十分重要的地位,特别是其活动能力弱、栖息地相对稳定、对海洋环境反应敏感的特点,长期以来一直作生态系统变化的环境指示种[2, 3, 4]。渤海湾底栖动物早有研究,但主要涉及物种、丰度、生物量、物种多样性、群落结构等[5, 6]。环境因子影响大型底栖动物的分布,然而大型底栖动物和环境因子之间的关系研究在渤海湾却鲜有涉及。

2008年5月,对渤海湾大型底栖动物和环境因子进行调查,运用多元分析探讨大型底栖动物与环境因子之间的关系,明确影响大型底栖动物空间分布的关键环境因子,为评估人类活动对渤海湾生态环境的影响提供科学依据。

1 材料与方法 1.1 站位布设

2008年5月,在渤海湾均匀设置30个站位(图1),其中S7位于南部水域,邻近热电厂;S13邻近海河河口;S19位于北塘河口附近;S位25位于天津汉沽区附近。

图1 渤海湾调查站位 Fig. 1 The sampling stations in Bohai bay
1.2 样品采集与分析

采样使用取样面积为0.10m2 的抓斗式采泥器,每站取样5次,合并为1个样品,用0.50 mm 孔径的网筛分选样品。样品的处理、保存、计数等按《海洋调查规范》[7] 操作。

水深和透明度根据《海洋调查规范》[7]进行测定;水温 (WT)、pH、盐度 (Sal)和溶解氧 (DO) 等环境参数由便携式多参数-水质分析低仪(MS5,HACH) 现场测定。营养盐,包括亚硝酸盐(NO2-N)、硝酸盐(NO3-N)、氨氮(NH4-N)、溶解性活性磷酸盐(SRP)和硅酸盐(SiO4),参考APHA(1998) 方法进行分析[8],其中亚硝酸盐、硝酸盐、氨氮合并为无机氮(DIN)。

1.3 数据处理

优势种由公式y = fi × pi来确定,式中y为优势度,fii种在采样点中出现频率,pii种在总数量中的比例,y﹥0.02时,定为优势种[9]

环境因子和大型底栖动物数量的站位间差异采用单因素方差分析法(One-way ANOVA)进行分析,在SPSS13.0上进行。

大型底栖动物与环境因子的排序分析采用多元分析进行,在Canoco for windows 4.5 软件包上进行。

进入排序的大型底栖动物要经过筛选,只有至少在一个站位数量占该站位总数量5%以上的种类才考虑[10]。分析前,大型底栖动物数据量和环境因子(除pH外)均转换成log(x+1)形式。首先对物种变量进行除趋势对应分析(DCA),以确定群落属于单峰型分布或线型分布[11]。DCA结果表明,所有轴中梯度最长为4,大于3,因此运用典范对应分析(CCA)进行大型底栖动物与环境因子之间关系分析,同时采用向前引入法逐步筛选出显著的环境变量,每一步都采用Monte Carlo置换检验。

2 结果 2.1 海区环境特征

各站位的水环境特征见图2。从图2中可见,水深、盐度从近海到外海呈现增加的趋势,相反,水温呈现下降变化特征;pH和溶解氧的空间分布没有规律性。营养盐的空间分布主要受入海径流的影响,浓度由近岸向外海逐渐降低,表明入海河流是海洋营养盐的重要来源。

图2 渤海湾各站位水体理化参数 Fig. 2 Water physicochemical variables in different sampling stations of Bohai bay
2.2 大型底栖动物种类与数量

调查期间,在渤海湾发现45种大型底栖动物,出现频率最高的是小胡桃蛤(Nucula paulula),达到77%,其次是涡虫(Planocera sp.)、棘刺锚参(Protankyra bidentata)和绒毛细足蟹(Raphidopus ciliatus),出现频率也超过50%。共有35种大型底栖动物至少在一个站位数量占该站位总数量5%以上(表1)。

表1 渤海湾主要大型底栖动物 Table 1 The main macroinvertebrate in Bohai Bay
代码Code大型底栖动物Macroinvertebrate代码Code大型底栖动物Macroinvertebrate
n1小月阿布蛤Abrina lunellan19异足索沙蚕 Lumbrineris heteropoda
n2日本鼓虾Alpheus japonicusn20明樱蛤 Moerella sp.
n3倍棘蛇尾 Amphioplus sp.n21寡鳃齿吻沙蚕 Nereis oligobranchia
n4华岗钩裂虫Ancistrosyllis hanaokain22沙蚕 Nereis sp.
n5轮螺Architectonicidae sp.n23扁玉螺 Neverita didyma
n6日本圆柱水虱Cirolana japonensisn24亮樱蛤 Nitidotellina nitidula
n7大蜾蠃蜚Corophium majorn25小胡桃蛤 Nucula paulula
n8小头栉孔蝦虎鱼Ctenotrypauchen microcephalusn26蛇尾 Ophiuroidea
n9小刀蛏Cultellus attenuatusn27口虾蛄 Oratosquilla oratoria
n10巢沙蚕Diopatra sp.n28涡虫 Planocera sp.
n11薄壳镜蛤Dosinia corrugaian29光滑河篮蛤 Potamocorbula laevis
n12镜蛤Dosinia sp.n30棘刺锚参 Protankyra bidentata
n13圆筒原盒螺Eocylichna cylindrellan31绒毛细足蟹 Raphidopus ciliatus
n14泥钩虾Eriopisella sp.n32短竹蛏 Solen dunkerianus
n15灰双齿蛤Felaniella ustan33脆壳理蛤 Theora fragilis
n16蝦虎鱼Gobiidae sp.n34中型三强蟹Tritodynamia intermedia
n17无疣齿蚕Inermonephtys cf.inermisn35薄云母蛤Yoldia similis
n18纽虫Nem ertinea

渤海湾大型底栖动物平均密度为406个/m2。数量空间分布明显,呈现从近岸到外海降低的分布特征(图3),最高值出现位于南部海域的S7,高达6008个/m2,而位于天津港附近的S20,没有采到大型底栖动物。

图3 渤海湾大型底栖动物数量空间分布 Fig. 3 Distribution of macroinvertebrate amount in Bohai bay

共发现3个优势种,分别是小月阿布蛤(Abrina lunella)、小胡桃蛤(Nucula paulula)和脆壳理蛤(Theora fragilis),优势度分别为0.02,0.03,0.22,其中小月阿布蛤和小胡桃蛤分布于多个站位,而脆壳理蛤主要分布于S7和S8 (图4)。

图4 渤海湾大型底栖动物优势种分布 Fig. 4 Distribution of dominant species in Bohai bay
2.3 大型底栖动物与环境因子之间关系

用CCA分析大型底栖动物与环境因子之间的关系。前两个排序轴的特征值分别为0.36和0.31,环境因子轴与物种排序轴之间的相关系数分别为0.90和0.91;两个物种排序轴近似垂直,相关系数为-0.10,两个环境排序轴的相关系数为0(表2),说明排序轴与环境因子间线性结合的程度较好地反映了物种与环境之间的关系,排序结果可靠[12]。利用向前引入法对环境因子进行逐步筛选,Monte Carlo置换检验结果显示,8个环境因子中,只有水深(F=1.71,P=0.01)、无机氮(F=1.84,P=0.01)和溶解氧(F=1.68,P=0.02)达到显著水平,表明这3个环境因子对渤海湾大型底栖动物分布起到主导作用。

表2 前2 个排序轴和环境因子间的相关系数 Table 2 Correlation coefficients of environmental factors with the first two axes of CCA
SP1SP2EN1EN2 DEP DO Sal WTSRPDINSiO4
*P< 0.05,* * P< 0.01; SP1物种排序轴1,Species axis 1; SP2,物种排序轴2,Species axis 2; EN1,环境因子排序轴1,Environmental factor axis 1; EN2,环境因子排序轴2,Environmental factor axis 2; 水深 Water depth(DEP); 溶解氧 Dissolved oxygen(DO); 水温 Water temperature (WT); 溶解性活性磷酸盐 Soluble reactive phosphorus(SRP); 盐度 Salinity (Sal); 无机氮 Dissolved inorganic nitrogen(DIN)
SP2-0.10 1.00
EN10.900.001.00
EN20.000.91* *0.001.00
DEP-0.56* * -0.36*-0.63* * -0.401.00
DO0.02-0.57* * 0.02-0.62* * -0.021.00
Sal0.36*0.57* *0.40*0.62* *-0.34-0.77* *1.00
WT-0.300.51* *-0.340.56* *0.32-0.48* * 0.351.00
SRP-0.300.17-0.340.190.00-0.180.020.311.00
DIN0.14-0.68* * 0.16-0.74* * 0.53* * 0.28-0.37*-0.10-0.021.00
SiO4-0.130.22-0.140.240.43*-0.44*0.38*0.34*0.150.111.00
pH0.13-0.330.15-0.36*-0.220.31-0.20 -0.65* *-0.57* *-0.07-0.32

渤海湾大型底栖动物与环境因子之间的关系可以很好在CCA排序图中表现出来(图5)。第一轴与水深呈显著负相关,代表水深的梯度变化。从图5的左到右,随着水深减少,即向沿岸,底栖动物相应增加;第二排序轴与无机氮和溶解氧呈显著负相关,代表无机氮和溶解氧的梯度变化。从图5的上到下,随着无机氮和溶解氧增加,底栖动物相应减少,表明底栖动物不喜欢栖息于无机氮含量较高的水域,尽管该水域溶解氧较高。

图5 渤海湾大型底栖动物与环境因子CCA排序图 (数字是大型底栖动物代码,表1) Fig. 5 Correlation plots of the redundancy analysis (RDA) on the relationship between the environmental variables and macroinvertebrate taxa in Bohai bay (the number is the code of the macroinvertebrate in Table 1)
3 讨论 3.1 渤海湾大型底栖动物群落结构变化

历史上,渤海湾的大型底栖动物种类非常多,如1983年的调查,发现122种[5]。进入21世纪以来,渤海湾大型底栖动物的发生较大的变化,主要表现3个方面的变化。一是种数变化,在2005年之前,种数呈现下降趋势,而2005年之后,种数开始回升(表3)。下降的原因是由于多年来特别是改革开放以来,人类活动造成渤海湾水质降低所致。作为我国一个重要的经济区,渤海湾所在的区域经济比较发达,与此同时,各种生产活动产生的废水也较多,这些废水通过河流排入渤海湾。据统计,每年大约有1亿t的来自北京、天津和河北省等的废水被排入渤海湾,使得渤海湾水质急剧下降[14]。加之渤海湾是一个半封闭海湾,水交换能力弱,加剧水质下降趋势[1]。随着渤海湾水质下降,势必造成许多底栖动物无法生存,表现为种类降低。2005年后渤海湾底栖动物种数有所回升,这得益于近年来国家出台各种渤海生态保护政策,如2001年开始实施的《渤海碧海行动计划》、2008年出台的《渤海环境保护总体规划》。在这些政策保障下,一方面,污染物排放量受到控制;另一方面,生态修复工程开始实施,如国家863计划课题的“渤海典型海岸带生境修复技术”就对渤海湾进行了示范。因此,渤海湾的海洋环境得到改善,底栖动物种群开始恢复,表现为种类回升。从表3可见,2011年渤海湾大型底栖动物的种数(111种)与1983年(122种)相差不远。尽管如此,与渤海的临近海湾相比,渤海湾的大型底栖动物种类不仅低于胶洲湾(59种)[15],更低于莱洲湾(214种)[16]。这表明,渤海湾环境压力依然严峻。二是密度发生变化。从表3可以看出,近30年来,渤海湾大型底栖动物的密度呈现不规律的变化,表明环境波动较大,与人为干扰相关。三是优势种更换频繁。如2004年是日本鼓虾和脆壳理蛤,到2011年,则是凸壳肌蛤和长偏顶蛤,这也表明渤海湾水环境不稳定。因此,从大型底栖动物群落结构的变化可以看出,渤海湾的生态修复仍需要进一步进行。

表3 渤海湾大型底栖动物群落结构变化 Table 3 The variation of the macroinvertebrate community structure in Bohai Bay
年份
Year
种数
Species number
密度
Density
优势种
Dominant species
参考文献
References
1983122153 [5]
200429402.8日本鼓虾、脆壳理蛤[4]
20056045无明优势种[5]
200736120.27脆壳理蛤、小胡桃蛤、绒毛细足蟹和涡虫[4]
200845406小月阿布蛤、小胡桃蛤、脆壳理蛤本研究
2009 51656 [13]
201072359 [13]
20111113378凸壳肌蛤、长偏顶蛤[13]
3.2 渤海湾大型底栖动物与环境因子关系

大型底栖动物不仅受到底质影响,也受到底层水环境的影响[17]。在两个底质相同的海区,由于水环境条件不同,两者底栖动物完全不同[18]。以本研究的S19和S20站位为例,两站位均位于北塘入海口附近,底质均为粘土[19],但两个站位的大型底栖动物完全不同,在S19主要分布有小月阿布蛤和泥钩虾,而在S20站位没有采到大型底栖动物。这表明,水环境对底栖动物的分布具有重要的影响。在本研究中,水深、无机氮和溶解氧是影响渤海湾大型底栖动物分布的重要环境因子。

水深影响底栖动物的分布,可能与两方面相关。一是水深与透明度相关。水体透明度影响光在水中的强度。动物的生长需要一定的光照,过高或过低都会影响动物的生长发育。从图5中看,渤海湾的大多底栖动物分布于中等深度的海域中,这是由于水深过低,说明离岸最近,受到的人为干扰大[20],现场调查发现,近岸水域水体较混浊,透明度小,也不利于动物生长发育。然而,水深过高,使得进入水中的光强不够,从而影响动物的生长发育。二是可能与不同的底栖动物的生活习性相关。通常,水深是影响多毛类分布的主要环境因子[21]。因此,在图5中,异足索沙蚕、寡鳃齿吻沙蚕和沙蚕与水深向量显著相关。本研究与Glockzin和Zettler的研究结果相似,他们发现水深显著影响南波罗的海的波美拉尼亚海湾大型底栖动物的分布[22]

Dippner 和Ikauniece认为,富营养化对大型底栖动物群落产生显著影响[23]。作为衡量富营养化程度重要指标之一的无机氮在本研究中显著影响大型底栖动物的分布。一项对山东半岛南部海湾底栖动物研究表明,水体中营养盐物质增加时,大型底栖动物多样性相应降低[17]。在本研究中,大型底栖动物主要分布于无机氮含量较低的水域(图5),表明渤海湾水体无机氮浓度已经对该海域的大型底栖动物产生的负面影响。因此,控制氮的输入是维持渤海湾生态平衡的重要举措之一。

溶解氧对底栖动物的分布及群落结构具有明显的影响[24],相关研究表明,当水体中的溶解氧低于2 mg/L时,底层拖网的渔获量基本为0[25]。然而,在本研究中,发现大型底栖动物主要分布于溶解相对较低的区域(图5)。造成这种原因可能是本研究中的溶解含量总体较高,最低值都超过6 mg/L,均高于一类海水标准。因此可以认为其并非是底栖动物分布的限制因子。相关分析表明,溶解氧和无机氮成显著正相关(表2),可能是造成其成显著环境因子的其中原因之一。从各个环境因子之间的关系也可以看出,其它一些环境因子与本研究得到的3个显著环境因子之间也呈显著相关(表2),这表明,大型底栖动物与环境因子之间的关系是错综复杂,仍需要进一步研究。

4 结论

(1)渤海湾共发现大型底栖动物45种,平均密度为406个/m2。底栖动物数量空间差异明显,呈现从近岸到外海降低的变化特征。

(2)近30年来,渤海湾大型底栖动物种类、密度和优势种都发生了明显的变化,这种变化与渤海湾的海洋环境质量变化相关。渤海湾的环境并不稳定,生态修复仍需要进一步进行。

(3)渤海湾大型底栖动物空间分布主要受到水深、无机氮和溶解氧等3个环境因子的影响。

参考文献
[1] Peng S T, Qin X B, Shi H H, Zhou R, Dai M X, Ding D W. Distribution and controlling factors of phytoplankton assemblages in a semi-enclosed bay during spring and summer. Marine Pollution Bulletin. 2012, 64(5):941-948.
[2] Bilkovic D M, Roggero M, Hershner C H, Havens K H. Influence of land use on macrobenthic communities in nearshore estuarine habitats. Estuaries and Coasts, 2006, 29(6): 1185-1195.
[3] Nordhaus I, Hadipudjana F A, Janssen R, Pamungkas J. Spatio-temporal variation of macrobenthic communities in the mangrove-fringed Segara Anakan lagoon, Indonesia, affected by anthropogenic activities. Regional Environmental Change, 2009, 9(4): 291-313.
[4] Carvalho S, Pereira P, Pereira F, de Pablo H, Vale C, Gaspar M B. Factors structuring temporal and spatial dynamics of macrobenthic communities in a eutrophic coastal lagoon (óbidos lagoon, Portugal). Marine Environmental Research, 2011, 71(2): 97-110.
[5] Pang E J, Li J, Ma W L, Chen W, Wang J L. Preliminary research in the macroinvertebrate of Bohai Bay. Modern Fisheries Information, 2006, 21(10):11-15.
[6] Feng J F, Wang X M, Meng W Q, Li H Y, Zhu L. Variation characteristics of macrobenthic communities structure in Tianjin coastal region in summer. Acta Ecologica Sinica, 2011, 31(20): 5875-5885.
[7] Standardization Administration of China. GB/T 12763.6-2007 Specifications for oceanographic (survey Part 6: Marine biological survey). Beijing: Standards Press of China, 2007.
[8] APHA. Standard methods for the examination of water and wastewater, 20th ed. Washington DC: APHA-AWWA-WPCF, 1998.
[9] Lampitt R S, Wishner K F, Turley C M, Angel M V. Marine snow studies in the northeast Atlantic: distribution, composition and roles as a food source for migrating plankton. Marine Biology, 1993, 116(4): 689-702.
[10] Leira M, Sabater S. Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Research, 2005, 39(1): 73-82.
[11] Lepš J, milauer P. Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press, 2003.
[12] ter Braak CJF. Canonical correspondence analysis: a new eigenvector technique for munltivariate direct gradient analysis. Ecology, 1986, 67(5): 1167-1179.
[13] Cai W Q, Liu L S, Qiao F, Lin KX, Zhou J. Study on the changes of macrobenthos communities and their causes in Bohai Bay. Environmental Science, 2012, 33(9): 3104-3109.
[14] Duan L, Song J, Li X, Yuan H, Xu S. Distribution of selenium and its relationship to the eco-environment in Bohai Bay seawater. Marine Chemistry, 2010, 121(1): 87-99.
[15] Zhang C L, Xu B D, Ren Y P, Xue Y, Ji Y P. The spatio-temporal change in the secondary production of macrozoobenthos in the intertidal zone of Jiaozhou Bay. Acta Ecologica Sinica, 2011, 31(17): 5071-5080.
[16] Zhou H, Hua E, Zhang Z N. Community structure of macrobenthos in Laizhou Bay and adjacent waters. Periodical of Ocean University of China, 2010, 40(8): 80-87.
[17] Zhang Y, Lu Z B, Xu Z F, Liu Y H, Jin Y. Ecological characteristics of macrobenthic communities and their relation to water environmental factors in four bays of southern Shandong Peninsula.Acta Ecologica Sinica, 2011, 31(15): 4455-4467.
[18] Liu R Y, Cui Y H, Xu F S, Tang Z C. Ecological characteristic of benthos in Yellow Sea and East China Sea. Marine Science Bulletin, 1986, 27: 153-l73.
[19] Qin X B, Sun H W, Wang C P, Yu Y, Sun T H. Impacts of crab bioturbation on the fate of polycyclic aromatic hydrocarbons in sediment from the Beitang estuary of Tianjin, China. Environmental Toxicology and Chemistry, 2010, 29(6):1248-1255.
[20] Zhang W, Li C H, Jia X P, Chen P M, Fang L. Canonical correspondence analysis between attaching organisms and environmental factors on artificial reef in the Daya Bay. Acta Ecologica Sinica, 2009, 29(8): 4053-4060.
[21] Mutlu E, Cinar M E, Ergev M B. Distribution of soft-bottom polychaetes of the Levantine coast of Turkey, eastern Mediterranean Sea. Journal of Marine Systems, 2010, 79(1): 23-35.
[22] Glockzin M, Zettler ML.Spatial macrozoobenthic distribution patterns in relation to major environmental factors: A case study from the Pomeranian Bay (southern Baltic Sea).Journal of Sea Research, 2008, 59(3): 144-161.
[23] Dippner JW, Ikauniece A. Long-term zoobenthos variability in the Gulf of Riga in relation to climate variability. Journal of Marine Systems, 2001, 30(3): 155-164.
[24] Dauer D M. Biological criteria, environmental health and estuarine macrobenthic community structure. Marine Pollution Bulletim, 1993, 26(5):24-257.
[25] Renaud M L. Hypoxia in Louisiana coastal water during 1983: implications for fisheries. Fishery Bulletin, 1986, 84(1):19-26.
[5] 房恩军, 李军, 马维林, 陈卫, 王麒麟. 渤海湾近岸海域大型底栖动物(Macrofauna)初步研究. 现代渔业信息, 2006, 21(10):11-15.
[6] 冯剑丰, 王秀明, 孟伟庆, 李洪远, 朱琳. 天津近岸海域夏季大型底栖生物群落结构变化特征. 生态学报, 2011, 31(20):5875-5885.
[7] 中国国家标准化管理委员会. GB/T 12763.6—2007 海洋调查规范(第6部分海洋生物调查). 北京: 中国标准出版社, 2007.
[13] 蔡文倩, 刘录三, 乔飞, 林岿璇, 周娟. 渤海湾大型底栖生物群落结构变化及原因探讨. 环境科学, 2012, 33(9):3104-3109.
[15] 张崇良, 徐宾铎, 任一平, 薛莹, 纪毓鹏. 胶州湾潮间带大型底栖动物次级生产力的时空变化. 生态学报, 2011, 31(17): 5071-5080.
[16] 周红, 华尔, 张志南. 秋季莱州湾及邻近海域大型底栖动物群落结构的研究. 中国海洋大学学报, 2010, 40(8): 80-87.
[17] 张莹, 吕振波, 徐宗法, 刘义豪, 靳洋. 山东半岛南部海湾底栖动物群落生态特征及其与水环境的关系.生态学报, 2011, 31(15): 4455-4467.
[18] 刘瑞玉, 崔玉珩, 徐风山, 唐质灿. 黄海、东海底栖生物的生态特点.海洋科学集刊,1986, 27: 153-173.
[20] 张伟, 李纯厚, 贾晓平, 陈丕茂, 方良. 环境因子对大亚湾人工鱼礁上附着生物分布的影响. 生态学报, 2009, 29(8): 4053-4060.