Abstract:Landscape fragmentation is the result of the transformation of large habitat patches into smaller and more isolated fragments. Fragmentation greatly affects the structure and function of the landscape ecosystem. It is necessary to quantify the degree of landscape fragmentation to optimize regional development planning and decision-making in an ecological manner. Effective mesh size (meff), which is based on the probability that two points chosen randomly in a region are connected (i.e., located in the same patch), can be used to quantify landscape fragmentation. The Ningxia Yellow River Valley, located in arid and semi-arid regions, accounts for most of the Ningxia Hui Autonomous Region, and its fragmentation may have great significance to the eco-environmental safety of Northwest China. We investigated landscape fragmentation based on Remote Sensing and Geographic Information System techniques using meff and multi-temporal land use data. Quantitative analysis revealed that the degree of landscape fragmentation of the entire Ningxia Yellow River Valley was higher in 2010 than in 1985, corresponding to a decline in the meff from 6326.62 km2 in 1985 to 2974.32 km2 in 2010. The meff of seven sub-basins in the Ningxia Yellow River Valley indicated that the Huangzuo area had the highest degree of fragmentation in both 1985 and 2010. Furthermore, the degree of landscape fragmentation in all sub-basins increased from 1985 to 2010, except in the Yellow River Water Irrigation Area. The expansion of the built-up areas and farmland in the Yellow River Water Irrigation Area simplified the landscape in contrast with the more complex landscapes in other sub-basins. Based on the semi-variable function and moving window method, the characteristic scale for analyzing landscape fragmentation heterogeneity in the Ningxia Yellow River Valley was 4500 m. The spatial heterogeneity of landscape fragmentation indicated that the area with high fragmentation values was larger than the area with low fragmentation values both in 1985 and 2010. The area with high landscape fragmentation values was mostly distributed in the south and mid-east of the Ningxia Yellow River Valley. The spatial variation of highly fragmented areas was higher in scope and degree in 2010 than in 1985, and spatial heterogeneity exhibited a similar change. In terms of elevation, landscape fragmentation below 2400 m was greater than that of areas higher than 2400 m above sea level. Moreover, the degree of landscape fragmentation decreased with increase in elevation above 2400 m. In addition, landscape fragmentation heterogeneity was related to anthropogenic disturbance-the zone 1000-1500 m away from buildings had the highest degree of fragmentation. The change in landscape fragmentation from 1985 to 2010 was mostly affected by human activities. The results provide valuable guidance for further studies on landscape pattern optimization and efficient management of land use in Northwest China.