草地植物群落最优分类数的确定——以黄河三角洲为例
作者:
作者单位:

中国科学院生态环境研究中心城市与区域生态国家重点实验室,中国科学院生态环境研究中心城市与区域生态国家重点实验室,中国科学院烟台海岸带研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

国家"十一五"科技支撑资助项目(2006BAC01A13);中国科学院知识创新工程重要方向项目(KZCX2-YW-T13)


Optimal number of herb vegetation clusters: a case study on Yellow River Delta
Author:
Affiliation:

State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing,China,,Yantai Institute of Coastal Zone Research for Sustainable Development,Chinese Academy of Sciences,Shandong,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    植被生态学研究中常需要将样地-物种属性数据划分为多个具有生态意义的集群,在植被分类过程中不仅要在分类方法上做选择,还要确定该植被数据分多少类最合适。有很多指标来确定群落划分中的最优分类数,但都没有得到一致的认可。将黄河三角洲227个样地数据用Ward等级聚类法进行了分类。为了找到最优的分类数和判断指标,用不同的判断标准对植被数据分为2到15类时进行分析。主要从3个方面对最优分类数进行判断:1)比较集群内的同质性和集群间的异质性;2)基于集群的物种组成、环境变量的不同,确定集群与环境的相关性;3)基于物种在不同集群内的频度与多度。判断指标主要包括:average silhouette width指数、 Goodman and Kruskal's Gamma 系数、Dunn 指数、集群分布的熵、wb.ratio指数、Calinski and Harabasz 指数、C-index指数、partana指数、biserial指数。用多响应置换过程对集群间物种组成和环境差异显著性进行分析。用指示物种从生态角度对各集群进行判别,并对指示物种的显著性进行了分析。不同判断标准得到的黄河三角洲最优分类数不同,得到的最优分类数包括分为2、5、7、和15类;多方面综合判断,认为在分为7类时最好。群落分类中应该有较优的断点,划分类较少时,集群特征不明确;划分类较多时,集群特征虽然更明确,但可能会导致较多的小集群,且小集群间环境差异不显著。7类较优,能满足物种组成差异、环境差异、群落内和群落间差异、所含信息量多的要求。分为2-6类时应该都是有意义的,只是所代表的群落特征不同。各判断标准中,dunn、silhouette、Calinski和Harabasz指数和指示物种能比较有效的判断最优分类数。不同的分类方法和物种属性数据的得到的结果有待进一步研究。

    Abstract:

    Community ecologists are often confronted with multiple possible partitions of a single set of records of species composition and/or abundances from several sites. Not only must ecologists choose the classification algorithm and parameters, but they also have to make a choice of the number of clusters to be interpreted. The question is how many clusters are appropriate for the description of a given system. Several methods that intend to locate optical clusters have been developed so far. However, no criterion for determination of the optimal partition has received general acceptance. 227 sites of Yellow River Delta were classified by Ward's hierarchical clustering method. We simultaneously evaluate several criteria while varying the number of clusters (from 2 to 15 clusters), to help determine the most appropriate index and number of clusters. Validation indices (based on comparison of within-cluster and between-cluster heterogeneity), species composition and environment, and number of species with high fidelity to clusters in a cluster were used to validate optimal number of clusters. Validation indices including average silhouette width, Goodman and Kruskal's Gamma coefficient, Dunn index, entropy of the distribution of cluster memberships, wb.ratio(average.within/average.between), Calinski and Harabasz index, Cindex, partana, biserial. We used multiple response permutation procedure (MRPP) to compare the cluster with respect to the dissimilarity of their vegetation composition and environmental variables. The ecological meaning of clusters of sites was assessed by indicator species. The statistical significance of the species indicator values is evaluated using a randomization procedure. The optimal number of clusters is different from different evaluator criteria, which including 2, 5, 7, 11 and 15. Most of the evaluators are agreement at cluster level of seven. There is an optimal level of the vegetation classification. A too high level lead to a small number of large, unspecific clusters, and that a too low level will on the other hand lead to more specific but very small and too many clusters with environmental variables not significant different. When data of Yellow River Delta vegetation were classified into seven clusters, the species composition and environmental variables are significantly different, and the species have high fidelity. Evaluator criteria such as dunn、silhouette、Calinski and Harabasz and indicator species provide useful information about the level of vegetation classification in the field. We used Ward's method to classify abundance vegetation field data to demonstrate the character of evaluators, an alternative approach (e.g. K-means methods) would be to study other data.

    参考文献
    相似文献
    引证文献
引用本文

袁秀,马克明,王德.草地植物群落最优分类数的确定——以黄河三角洲为例.生态学报,2013,33(8):2514~2521

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: